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Abstract—The effective evaluation of the connectable capacity 

of renewable energy plays a vital role in the development of a 

sustainable distribution network. Quantifying the capacity while 

considering network security and the local renewable 

accommodation policy is a challenge. This paper proposes a 
scenario-based bi-level mathematical model using a Bayesian 

integrated optimization method to evaluate and quantify the 

connectable capacity of distributed wind generation in 

distribution networks, which effectively integrates the 

characteristics of wind power and the local accommodation policy. 

The constraint on the generation curtailment ratio (CR) is 

innovatively designed to represent the renewable accommodation 

policy and integrated with network security constraints to 

coordinatively quantify the capacity. The model is solved by the 

Bayesian integrated optimization method. The regression-based 

algorithm greatly reduces the complexity of alternating iteration 

and improves the calculation efficiency. Practical cases are used to 

verify the effectiveness of the proposed method. Results indicate 

that the method is more efficient than traditional optimization 

algorithms, and CR integration ensures that the connectable 

capacity fits local renewable energy development policies well. 

 
Index Terms—Capacity evaluation, Bayesian optimization, 

distributed wind generation, renewable accommodation policy. 

 

I. INTRODUCTION 

ISTRIBUTED wind generation (DWG) has been 

increasingly connected to distribution networks due to its 

environmental protection and greenness features. By December 

2017, the total installed capacity of wind generation reached 

539,123 MW worldwide [1]. The integration of DWG can 

effectively alleviate the operation pressure and increase the 

available capacity of the network [2]. However, wind power 

generation often needs curtailing due to the temporal 

uncertainty of wind speed and network constraints [3]. 

Therefore, a critical need exists for the policy of renewable 

accommodation to be considered when evaluating the 

connectable capacity of DWG in distribution networks. 

DWG is a typical distributed generation (DG). The hosting 

capacity problem for DG units has been widely investigated 

[4]– [8]. “Hosting capacity” usually refers to the maximum DG 
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capacity allowed to be connected to the distribution network 

under the premise of satisfying various network security 

constraints, such as node voltage, line capacity, and power 

quality [9]–[12]. Various methods of enhancing the hosting 

capacity have been proposed recently. An integrated heat and 

power dispatch model that considers the thermal inertia of the 

district heating network is proposed to improve the flexibility 

of the wind power accommodation in [13]. Other measures, 

such as energy storage coordination [4] and demand response 

[14], are also used to increase the hosting capacity. 

The above studies contributed in evaluating and increasing 

the DG hosting capacity in a distribution network, but few 

studies have considered the impact of accommodation policies 

on hosting capacity. Thus, on the basis of “hosting capacity,” 

“connectable capacity” is proposed to present the maximum 

capacity of the DG that can be connected to the distribution 

network with both policy and network security constraints. 

Given that the accommodation policy is mainly aimed at wind 

power, the evaluation problem is modeled for wind generations. 

Furthermore, a bi-level coordinative optimization model is 

proposed for evaluating the connectable capacity of DWG 

considering the renewable accommodation policy. The upper-

level is formulated as a capacity evaluation model to evaluate 

the maximum capacity of DWG. The lower-level is formulated 

as a multi-period operation model to optimize the operation of 

DWG to improve renewable utilization. In addition, the 

constraint on the generation curtailment ratio (CR) is 

innovatively designed to present the renewable accommodation 

policies in different regions. 

Intelligent optimization algorithms [15]–[17], such as genetic 

algorithms (GA) [15]–[16] and particle swarm optimization 

(PSO) [5][17], were used for solving the optimal capacity 

problem. However, existing intelligent optimization algorithms 

require many iterations to find the optimum and cannot deeply 

mine the complex coupling correlation between evaluation and 

operation to increase the convergence speed. In recent years, 

analytical methods were also used to evaluate the hosting 

capacity. Specifically, various methods such as polygonal 

inner-approximation [18], bender decomposition [19], and 

second-order cone relaxation [20], are used to convert non-

convex and nonlinear power flow constraints into linear 

constraints, and the distribution network operation model is 
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converted into a mixed-integer linear programming (MILP) 

model, which is solved by commercial software such as CPLEX 

and GUROBI. However, when renewable accommodation 

policies are considered, the model will have bilinear terms and 

will be difficult to solve directly. Therefore, the above methods 

are inapplicable, and the efficiency of optimization must be 

urgently improved. 

In this paper, a regression-based Bayesian integrated 

optimization method, which combines LP and Bayesian 

optimization, is proposed to solve the model. The lower-level is 

converted into LP through second-order cone relaxation [20] 

and polyhedral-based linearization [21] and then embedded in 

the upper-level as a soft constraint. Overall, an unconstrained 

model is established based on the penalty function method and 

solved by Bayesian optimization. The probabilistic surrogate 

model (PSM) is used to simulate the coupling correlation 

between evaluation and operation. The evaluation point (input 

of operation level) is actively selected based on the acquisition 

function.  

Thus, the main contributions of this paper are as follows: 

1) A novel bi-level coordinative optimization model, which 

effectively integrates the characteristics of wind power and 

the local accommodation policy to evaluate the 

connectable capacity of DWG, is proposed. 

2) A regression-based Bayesian integrated optimization 

method, in which the mined correlation by Bayesian highly 

improves the computing efficiency, is proposed. 

3) The CR is innovatively designed and integrated with 

traditional security constraints to quantify the connectable 

capacity of DWG. The integration of CR enables the 

evaluated capacity to satisfy local renewable energy 

development policies. 

The rest of this paper is structured as follows. The proposed 

bi-level coordinative optimization model is introduced in 

Section II. Model solving based on Bayes’ theorem is 

introduced in Section Ⅲ. The proposed model is demonstrated 

in practical networks in Section Ⅳ. Finally, Sections V 

concludes this paper. 

II. BI-LEVEL COORDINATIVE OPTIMIZATION MODEL 

A. Research Framework 

As shown in Fig. 1, supposing that the output of each DWG 

can be controlled continuously in each time period, the 

operation level is optimized to minimize the average CR by 

controlling the DWG, and numerous physical constraints are 

included in it. The optimization variable is the power 

curtailment of each DWG in each time period, and the capacity 

is given by the evaluation level. CR presents the curtailment of 

renewable energy and defined as the ratio of the potential 

generation of the DWG to its power curtailment. After solving 

the operation level, the minimum average CR is sent to the 

evaluation level, which then updates the evaluation sample set, 

selects the next evaluation point, and sends it back to the 

operation level for another iteration until the stop criteria are 

met. Overall, the lower-level is converted into a soft constraint 

and embedded in the upper-level. Evaluation results that 

comply with the policy of renewable accommodation can be 

obtained after multiple iterations. 

 

Fig. 1. Bi-level framework for evaluating the connectable capacity of DWG 

B. Lower-lever: Multi-period operation of DWG 

1) Objective Function 

The objective of the lower-level is to minimize the average 

CR: 
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where ave  is the average CR, t is the index of the time period, 

and ω is the scenario index. g  is the CR of the g-th DWG, 
p

g

CaP  

is the capacity of the g-th DWG determined by the upper model, 

and tN  is the total number of time periods. A scenario-based 

method [22] is introduced to deal with the uncertainty of wind 

power generation. Let   be the probability of the ω-th scenario 

and S  the set of scenarios, while T  and G are the 

respective sets of operating periods and DWGs. 

2) Numerous Constraints 

The model is subject to many constraints, and the constraints 

on the power flow are as follows: 
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 ( ) ( ) ( ), , , , , ,

2 2 2

+    , ,line line line L

ij t ij t ij t

ine T SS Q ij tP   =         (5) 

 ( ) ( ) ( )
2 2

, , , ,

2

, ,    , ,line li

ij t i

ne Lin S

i t j t

e TV I S ij t   =         (6) 

where B  is the set of buses, Line  is the set of lines, ( )f i  

represents the end bus set of the branch with bus i as the head 

bus, and ( )a i  represents the end bus set of the branch with bus 

i as the head bus. kiR , ijR , kiX , and ijX are the resistance and 

reactance on branches ki and ij, respectively; e

ki

linI  and 
e

ij

linI  are the 

respective currents of lines ki and ij; 
e

ij

linP , 
e

ij

linQ , and 
e

ij

linS  are the 

respective active, reactive, and apparent powers of branch ij; 
e

ki

linP  and e

ki

linQ  are the active and reactive powers of branch ki, 

respectively; P

i

WP  and P

i

WQ  are the respective active and reactive 

powers injected by the DWG at bus i; and 
D

iP  and D

iQ  are the 

active and reactive powers of the load at bus i, respectively. 
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Constraints (2) and (3) represent the bus active and bus 

reactive power balances, respectively; Constraint (4) represents 

the voltage drop in the branch; Constraints (5) and (6) are 

branch power constraints. The main grid can supply power to 

the distribution network through the grid supply point (GSP). 

The active and reactive power constraints of the GSP are as 

follows: 

 ,   ,GSP GSP GSP T S

tP P P t         (7) 

 ,   ,GSP GSP GSP T S

tQ Q Q t         (8) 

where GSPP  and GSPP  are the minimum and maximum output 

active powers of the GSP, respectively; and 
GSPQ  and GSPQ  are 

the minimum and maximum output reactive powers of the GSP, 

respectively. 

Constraints (7) and (8) limit the GSP’s active and reactive 

power output, respectively. When bus i is the GSP, Constraints 

(2) and (3) can be replaced with Constraints (9) and (10): 

 
( )

, , , , , , ,    ,
a

GS

ij t i t

P line WP D T S

t i

i

t

j

P P PP t    


− + =       (9) 

 
( )

, , , , , , ,    ,
a

GS

ij t i t

P line WP D T S

t t

j i

iQ Q Q Q t    


− + =       (10) 

For network security, the bus voltages should be limited 

within a range, as shown in (11): 

  , ,    , ,N T S

i i t iV V V i t           (11) 

where  iV  and iV  are the minimum v and maximum voltage 

levels of bus i, respectively. 

3) Operation and Control of DWG 

DWG adopts power factor and output control technology, 

which enables operation with leading or lagging power factor 

and the continuous control of the output. In practice, the power 

factor must be kept within a certain range. Given the difference 

between the local demand and output of DWG over time, if 

DWG injects its output into the distribution network, the bus 

voltage may exceed the limit and the network security will be 

violated. In this case, the DWG output must be curtailed. Power 

curtailment is represented by introducing a negative generation 

[8]. 

 
( )( ) ( )( )1 max 1

, , , , , ,

mintan cos tan cos

, ,

g t g t g t

WP WP WP

g g

G T S

P PF Q P PF

g t

  



− − 

     
 

 (12) 

 , , , ,   , ,WP Cap C

g t g g t

urt G T S

tP P P g t  = −         (13) 

 , , ,, ,   , ,Curt Cap G T S

gg gt ttP P g t    =         (14) 

where 
max

gPF  and 
min

gPF  respectively represent the maximum 

and minimum power factors that the g-th DWG can operate in; 

,t   is the ratio of the maximum power that the DWG can 

generate to the DWG capacity in the t-th time period, which is 

determined by the wind speed in the t-th time period; and 
t

g

CurP  is 

the power curtailment of the g-th DWG. 

Constraint (12) limits the reactive power output of the DWG 

according to the range of the power factor; Constraint (13) 

represents the actual active output of the DWG; the CR of the 

DWG is defined in Constraint (14). 

C. Upper-level: evaluating connectable DWG capacity 

The upper-level is established to evaluate the connectable 

capacity of the DWG with the accommodation policy as the 

constraint: 

 2max
G

Cap

g

gZ P


=    (15) 

 1. .   s Zt    (16) 

where   is the limit of the average CR, presenting the policy of 

renewable energy accommodation. 

The models represented by (1)–(14) are embedded in the 

upper-level as a soft constraint, and the upper-level represented 

by (15)–(16) is converted into an unconstrained optimization 

model by the penalty function. The details are introduced in 

Section Ⅲ. 

III. BAYESIAN INTEGRATED OPTIMIZATION METHOD 

The lower-level is a strictly non-convex and non-linear 

model, which is difficult to solve directly. In this section, the 

nonlinear programming (NLP) is converted into LP through 

second-order cone relaxation [20] and polyhedral-based 

linearization [21]. By using the penalty function method, the 

linearized lower-level is converted into a soft constraint and 

embedded in the upper-level. Then, an unconstrained model is 

established and solved by the proposed Bayesian integrated 

method.  

A. Linearization of power flow constraints 

Given the strict nonlinearity of Constraints (2)–(6), the 

proposed model is difficult to solve directly in its original NLP 

formulation. Thus, the lower-level must be transformed into a 

LP model. 

By introducing auxiliary variables, namely, ( )
2

, , , ,

line lin

k

e

i t ki tI I = , 

( )
2

, , , ,

line lin

i

e

j t ij tI I = , ( )
2

, ,, ,i t i tV V = , and ( )
2

, ,, ,j t j tV V = , Constraints (2)–(4), 

(6), and (11) can be converted into the following constraints: 
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 ( ) ( ) , ,

22
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Constraints (5) and (20) are still non-convex constraints. The 

left side of (20) can be rewritten as: 

 ( ) ( ), , , , , , , ,

2

, , ,

2

, 2 2line l

i

ine

j

line

i t it i t i tj t ij tI I IV V V     
   = + − −
   

  (22) 

Then, based on the second-order cone relaxation, Constraints 

(5) and (22) are transformed into convex constraints, as shown 

in (23) and (24): 

 ( ) ( ), , , ,
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  (24) 

Considering the errors caused by the second-order cone 

relaxation [20], the objective function of the lower-level model 
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is modified as: 

 
'

1 , ,1min min min
S Line T

line

ij t

ij tZ Z S 




  

= +      (25) 

where   is a sufficiently small number compared to min Z1 

which is 10-6 here. 

Constraints (23) and (24) have the following form: 

 ( ) ( )
2 2

3 1 2d d d= +   (26) 

A highly accurate method based on polyhedral approximation 

is used to linearize Constraints (23) and (24) [21]: 

 1 2,  ,   0l ld d l   =   (27) 
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 3 1
, tan ,

2
ll l l

z l L


  
+
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  (29) 

where l  and l  are auxiliary variables, and L is a constant. 

Linear Constraints (27)–(29) approximate (26) in such a way 

that [23]: 

 ( ) ( ) ( )
2 21

3 1 2cos 2Ld d d +  +   (30) 

B. Unconstrained processing of the upper model 

A bi-level mathematical model is raised to evaluate the 

connectable capacity of the DWG. However, the operation 

model composed of Formulas (1)–(14) and the evaluation 

model composed of Formulas (15)–(16) are two independent 

optimization models, which make the proposed bi-level model 

difficult to solve directly. Therefore, an optimization model 

coupled with operation and evaluation models must be built. 

Thus, the penalty function method is used to convert Constraint 

(16) into a soft constraint, and the upper-level is converted into 

an unconstrained model. This reformulation makes possible the 

gradually finding of an optimal solution that meets the soft 

constraint using the Bayesian integrated method. The upper-

level is then converted into the following form: 

 
'

2 2max Z Z M = −   (31) 

 
( )

1

2

1 1

0                     

       

Z

Z Z




 

 
= 

− 

  (32) 

where M is a large positive number and δ is a penalty factor. 

C. Model solving based on Bayesian optimization 

The correlation between the evaluation and operation levels 

presents a black box characteristic, and the computation 

efficiency can be improved by effectively mining the above 

correlation. Therefore, regression-based Bayesian optimization 

is designed to solve the model. The PSM and the acquisition 

function are two parts of the algorithm. 

1) Probabilistic Surrogate Model 

The PSM is updated based on Bayes’ theorem: 

 ( )
( )

( )
1:

1:

1:

| ( )
|

r

r

r

p f p fC
p

p C
f C =   (33) 

where f is the unknown objective function, in this study, 

C1:r={(x1,f1), (x2,f2),⋯ , (xr,fr)} is the set of evaluated sample 

points, fr is the function value obtained by the last evaluation, 

p(C1:r| f) is the likelihood distribution of f, p(f) is the prior 

probability distribution model of f, p(C1:r) is the marginal 

likelihood distribution after f is marginalized, and p(f |C1:r) is 

the posterior probability distribution of f. 

Here, ( )1 2, , ,
g

Cap Cap Cap

Nx P P P=  is an evaluation point on a Ng-

dimensional space as the input of the operation level which 

represents the capacity of each DWG, where Ng is the number 

of DWG. f denotes the objective function '

2Z of the upper-level. 

PSM includes parametric and non-parametric models [24]. 

Among them, Gaussian Process (GP) is widely used and has a 

great fitting performance. GP is expressed as follows: 

 

( )( )
 

( ) ( ) ( )( ) ( ) ( )( )

( ) ~ ( ), ,

,

( ) ( )

f x gp m x k x x

k x x E f x m x f x m x

m x E f x



  







 = − −  

=   (34) 

where ( ),k x x
is the covariance function,and ( )m x is the mean 

function. To simplify the calculation, suppose ( )=0m x , then 

( )( )( ) ~ 0, ,f x gp k x x
. The prior distribution of the objective 

function can be expressed as: 

 ( ) ( )1: 1:r| C ~ 0,r rp f K   (35) 

where ( ) is the Gaussian distribution probability density 

function,  1: 1 2, , ,r rf f f f= is the set of evaluated sample points, 

and 𝐾𝑟  is the covariance matrix from the covariance function as 

shown in (36). 
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  (36) 

When a new evaluation sample ( )1 1,r rx f+ +  is added to the 

sample set, (37) is used to update the covariance matrix, and 

(38) is used to estimate the posterior probability of 1rf + : 
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  (38) 

where 1r +  represents the predicted mean, and 2

1r + represents 

the predicted covariance。 

2) Acquisition function 

The acquisition function is the basis for searching the next 

input point of the operation level. Here, expected improvement 

(EI) is used as the acquisition function. EI is defined as the 

expectation of the improved function ( )*( ) max 0, ( )u x f x f= − , 

where *f is the optimal value in the evaluated sample set. The 

acquisition function is defined as follows: 

 
 1

* *

:

*

1:( ) | ,

( )

r r r

r r r
r r

r r

r
r

u x x C

f f

AC E

f
 

  
 

   − −
−  +

=

  
   

=

  (39) 

where ( ) is the cumulative density function of the standard 
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normal distribution, and ( ) is the probability density function 

of the standard normal distribution. The next evaluation point 

is collected according to (40): 

 ( )1 arg maxr xx AC x+ =   (40) 

D. Model solving process 

The proposed bi-level optimization model is solved by the 

Bayesian integrated method. Here, two stopping criteria are 

used: “Max iterations number” and “Max stall iterations 

number.” The flowchart and the specific implementation are as 

follows: 

Start

initialI I

0I =

Fit the evaluated 

sample set with PSM

Select next evaluation 

point through 

acquisition function

Solve the lower-level 

model with 

evaluation point

1I I= +

Send the minimum 

average CR to the 

upper- level

Use (31) to calculate the 

new evaluation value

maxI I=

Output connectable 

capacity of  DWG

Random select the  

evaluation point 

based on 

the range of 

DWG capacity

Update sample set with 

evaluation point and 

evaluation value

1S SI I= + max

S SI I=

N

Y

*

If f

=0SI

* = If f =0SI

Y

Y

Y

N

N

N

 

Fig. 2. Model solving process. 

1) Set the iteration counter and the stall iteration counter to

0I =  and 0SI = , respectively. 

2) If the iteration counter is greater than or equal to the initial 

number of iterations, go to Step 3); otherwise, randomly 

select the initial evaluation point based on the range of the 

DWG capacity, and then go to Step 4). 

3) Fit the set of evaluated samples using the PSM and select 

the next evaluation point through the acquisition function. 

4) Solve the multi-period DWG operation model is solved 

according to the selected evaluation point. Obtain and send 

the minimum average CR to the upper-level. 

5) Calculate the objective function of the upper-level using 

Formula (31). Update the sample set with the evaluation 

and evaluation values. 

6) Update iteration counter: 1I I= + . 

7) If the iteration counter equals the maximum number of 

iterations, output the connectable capacity of the DWG; 

otherwise, go to Step 8). 

8) If the evaluation value is less than or equal to the optimal 

value in the evaluated sample set, update the stall iteration 

counter 1S SI I= + , and go to Step 9); otherwise, update the 

optimal value in the evaluated sample set 
*

If f= , reset the 

stall iteration counter to 0SI = , and go to Step 2). 

9) If the stall iteration counter equals the maximum number 

of stall iterations, output the connectable capacity of the 

DWG; otherwise, go to Step 2). 

IV. CASE STUDY 

A. Case description 

1) Scenario analysis 

To choose a reasonable operation period, scenario analysis is 

performed firstly, based on one-year wind speed data in 

Northern Scotland [25] as shown in Fig.3.  

Scenario 1 Scenario 1Scenario 2

Similar

 

Fig. 3. One-year wind speed data 

The change in wind speed throughout the year presents 

seasonal characteristics. Obviously, the average wind speed and 

fluctuations in summer are smaller than those in winter. 

Therefore, all wind speed scenarios can be divided into two 

typical scenarios. Meanwhile, the wind speed scenarios of 

different months in the same typical scenarios are similar. For 

example, the wind speed scenario in May is like that in June. In 

addition, one-month wind speed scenarios are more abundant 

than one-day scenarios, and the timing characteristics are more 

significant. Thus, the operation period is set to one month. 

Furthermore, given that January is the strongest wind month 

and stresses the network to the most extent, January is selected 

as the reference scenario. Hourly wind power production 

(relative to capacity) and demand (relative to peak demand) are 

based on those provided in [8], as shown in Fig. 4. Five typical 

scenarios are generated to describe the uncertainty of DWG by 

K-means, as shown in Appendix A. 

 

Fig. 4. Hourly wind power generation (reference scenario, relative to capacity) 
and demand (relative to peak demand) [8]. 
2) Test system and the data 

The proposed method is applied to a sample radial section of 

the Irish 38-kV distribution network [26], as shown in Fig. 5. 

The line impedance is given in Table Ⅰ. Each line between the 

DWG and the bus is assumed to be short enough for its 

impedance to be ignored. The voltage limits of each bus are 

given in Table Ⅱ. The peak demand data are provided in Table 

Ⅲ. The minimum power factor of each DWG is set to 0.9. The 

model is simulated on Matlab2018a, and the lower-level is 

solved with CPLEX. 
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Fig. 5. Test system [26]. 

TABLE Ⅰ 
TEST SYSTEM IMPEDANCE 

Line 
Resistance(Ω) Reactance (Ω) 

From To 

1 2 1.19 1.176 

2 3 2.98 3.14 

3 4 9.32 9.80 
1 5 3.36 3.53 

5 6 10.44 10.98 

TABLE Ⅱ 

VOLTAGE LIMITS 

Bus 1 2 3 4 5 6 

Max 1.0789 1.0718 1.0526 1.0487 1.0508 1.0474 
Min 1.0789 1.0508 0.9561 0.9237 1.0097 1.0039 

TABLE Ⅲ 

PEAK DEMAND OF TEST SYSTEM 

Bus 2 3 4 5 6 

Active power (MW) 0.68 4.12 4.95 0.68 4.67 

Reactive power (MVar) 0.17 1.35 1.44 4.87 1.53 

Index of DWG 1 2 3 4 5 

B. Bayesian integrated capacity evaluation trace  

The evaluation trace of the Bayesian integrated method with 

the average CR not exceeding 10% is obtained, as shown in Fig. 

6. To observe the iteration trace of the method, 50 iterations 

were performed. 

 

Fig. 6. Evaluation trace with the average CR not exceeding 10% based on 

Bayesian integrated method. 

The overall trend shows that when the iterations counter is 

less than 14, the evaluation value (
'

2Z  in objective function (31)) 

changes significantly. Although the correlation between 

evaluation and operation can be described by the PSM based on 

the evaluated sample set, after the steady improvement of the 

evaluation values in the 8th to 11th iterations, the values in the 

12th to 15th iterations show significant volatility due to the very 

small number of iterations (8 iterations compared to 5-

dimensions of the evaluation point), which results in the 

insufficient accuracy of the PSM-based fitting.  

Compared with the first 14 iterations, the evaluation values in 

the following iterations are similar, and the average CR 

obtained from the operation-level can meet the CR limit, 

indicating that after 14 iterations, the coupling correlation of 

operation and evaluation can be described by the PSM. The 

entire trace shows that when the obtained average CR cannot 

meet the CR limit, the value will become extremely small, 

demonstrating that the penalty term ( M  ) in Formula (31) can 

make an evaluation point gradually meet the CR limit and an 

optimal point fall to the feasible region. 

C. Diverse evaluation results 

Several reasonable connectable capacity evaluation results 

with an average CR limit of 10% are shown in Table Ⅳ. The 

average CR in each result is approximately 10%, and the total 

capacity in each result is not very different. The CR is a relative 

value, as shown in Formula (14). Thus, for the first result, 

although the CR of the 2nd DWG seems significantly different 

from that of the 4th DWG, the absolute average generation 

curtailment between the two DWGs is not very different (the 

absolute curtailment of the 2nd DWG is 0.808 MW, while that 

of the 4th DWG is 0.717MW). In other results, a large CR does 

not mean a large absolute curtailment. 
TABLE Ⅳ 

DIVERSE RESULTS 

DWG index 1 2 3 4 5 Overall 

Capacity (MW) 1.07 6.12 1.41 1.80 4.72 15.11 

CR (%) 0.27 13.21 0 39.83 0 10.02 

Capacity (MW) 0.83 4.46 0.72 1.68 7.94 15.63 

CR (%) 11.95 10.26 0 43.79 4.91 10.77 

Capacity (MW) 1.77 2.16 2.30 1.75 7.28 15.26 

CR (%) 46.91 11.11 0.60 73.27 3.80 9.91 

Capacity (MW) 1.43 4.16 1.21 6.54 2.01 15.34 

CR (%) 0 0 0.03 25.68 0 10.95 

Capacity (MW) 0.96 2.17 1.09 8.61 1.96 14.80 
CR (%) 0 0 0 17.36 0 10.10 

Theoretically, when the output of DWG great than load 

demand, the larger the capacity, the larger the power that needs 

to be curtailed, and the CR will increase. However, the total 

capacity of the 1st result is 15.11 MW greater than the 14.80 

MW of the 5th result, but the average CR of the 1st result is 

10.02% less than the 10.10% of the 5th result. The 3rd and 5th 

results have a similar relation, indicating that excessive 

generation is curtailed not only because it exceeds the demand 

but also the distribution network capacity. 

D. Multi-period DWG operation 

On the basis of the evaluated DWG capacity (1.77, 2.16, 2.30, 

1.75, and 7.28 MW), the multi-period DWG operation model is 

solved with Scenario 1, and the CR of each DWG in each period 

is obtained, as shown in Fig. 7. In each period with a large CR, 

the CRs of the 1st and 4th DWGs are higher than those of the 

2nd, 3rd, and 5th DWGs. This situation is caused by the 

different installation locations of various DWGs, such as, the 

demand for the 1st and 4th DWG installation points (buses 2 

and 5) is much lower than that of the others. During periods 

with fast wind speed, most of the DWG output on the bus with 

a large demand can be consumed by the local demand. If the 
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DWG on the bus with small demand does not curtail power or 

its CR is extremely small, the large volumes of generation will 

be exported to the distribution network, resulting in difficult to 

meet power flow and network security constraints. Therefore, 

the power curtailment of the DWG with a small demand is 

greater than that of the DWG with a large demand, verifying 

that the proposed “connectable capacity” depends not only on 

the policy constraint but also on security constraints. 

 

Fig. 7. CRs of each DWG in each period. 

The total DWG output, network losses, and demand in each 

period are shown in Fig. 8. To facilitate analysis, all data is 

converted into per-unit values. Generally, the integration of 

DWG can reduce network losses, but the general trend indicates 

that when the DWG output is greater, the network loss is also 

relatively largeer. This phenomenon may be attributed to the 

goal of the operation, which is to accommodate the output of 

DWG rather than minimize network losses. When the wind 

speed is fast, the power flow direction in the distribution 

network may change from the end bus to the head bus. 

According to the system parameters, the resistance of line 56 is 

10.44 ohms, which is the largest resistance among all lines, and 

the capacity of the DWG installed at bus 6 is 7.28 MW, which 

far exceeds the peak demand in bus 6, indicating that some 

periods will have a large amount of power from bus 6 to bus 5, 

causing huge network losses. 

 

Fig. 8. Total DWG output (relative to 14MW), network loss (relative to 
0.45MW) and demand (relative to peak demand) in each period.  

E. Parameter analysis on CR 

1) Performance of the method under different CR limits 

To analyze the performance of the Bayesian integrated 

algorithm under different CR limits, the model is solved with a 

CR limit = 15%, 20%, 30%, as shown in Fig. 9.  Although the 

Bayesian integrated algorithm converges to the optimal value 

after 9 iterations when the CR limit = 10%, 35 iterations are still 

performed here for stability. Furthermore, the selection of the 

initial evaluation points (the first four iterations) is the same to 

compare the difference in objective function values under 

different CR limits. For the first four iterations, the objective 

function value increases with the CR limit because as the CR 

limit increases, the penalty term in Equation (31) decreases. 

When the CR limit is 10%, 15%, 20%, and 30%, the curves start 

to flatten from the 15th, 13th, 12th, and 9th iterations, 

respectively, indicating that the larger the CR limit is, the faster 

the algorithm converges. This phenomenon occurs because 

models with different CR limits are solved within the same 

DWG capacity search range (each DWG capacity search range 

is [0MW, 20MW]); the larger CR limit is, the larger the feasible 

range is, and the correlation between operation and evaluation 

can be better described by the Bayesian integrated method. 

 
Fig. 9. Evaluation trace with different CR limits. 

2) Constraints without renewable accommodation policy  

Constraints without a renewable accommodation policy are 

implemented (CR limit = 0), and the model is solved with the 

first scenario. In this case, the entire output of the DWG is 

injected into the network, and the connectable capacity of the 

DWG is only constrained by the distribution network security, 

which is the defined basic hosting capacity. Thus, the capacity 

(8.916 MW) is significantly less than that of CR = 10%. The 

total DWG outputs and network losses under different CR 

limits are compared, as shown in Fig. 10. After power 

curtailment is implemented, renewable accommodation is 

greatly promoted, and network losses are significantly reduced. 

 

Fig. 10. Total DWG output (relative to 14MW) and network loss (relative to 

0.7MW) in each period with different CR limits.  

3) Full sensitivity analysis 
The sensitivity curve that represents the connectable capacity 

of the DWG under a wide range of CR limits is shown in Fig. 

11. On the basis of the observed points, inverse regression, 

linear regression, and quadratic regression were used to fit the 

curve. 

 

Fig. 11. Sensitivity curve of connectable capacity fitted with different 

regression models. 

The fitting function and effect are shown in Table Ⅴ. 

According to the definition of CR in (14), the average CR is 

inverse the total capacity. Therefore, the fitting effect of inverse 

proportional regression is better than those of linear regression 
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and quadratic regression. The sensitivity curve indicates that the 

connectable capacity of DWG increase as the limit on allowed 

curtailments is relaxed, and they show an inverse correlation. 
TABLE Ⅴ 

FITTING FUNCTION AND FITTING PERFORMANCE WITH DIFFERENT MODELS 

Regression model Function R-squared 

Inverse proportional 
129.069

159.068
1

y
x

= − −
−

  0.929 

Linear 492.177 79.305y x= −  0.594 

Quadratic 21465.276 680.044 57.454y x x= − +  0.865 

Note: x present CR Limit. y present evaluated connectable capacity. R-squared 

is the goodness of fit, indicates how well the regression curve fits the 

observations, the larger the R-squared, the better the fitting effect. 

F. Accuracy and efficiency of Bayesian integrated method  

To verify the effectiveness and accuracy of the proposed 

method. The initial NLP model is compared with the LP model. 

Moreover, the Bayesian integration method is compared with 

the GA, PSO, and the simulated annealing algorithm (SAA). 

All methods are implemented on the reference scenario, and the 

results are shown in Table Ⅵ. 
TABLE Ⅵ 

EFFECTIVENESS AND ACCURACY OF DIFFERENT MODELS/ ALGORITHMS 

Model/ Algorithm Total Capacity (MW) Solving time 

NLP (lower-level) Infeasible Infeasible 
LP (lower-level) Infeasible 7.9min 

GA 14.95 14.03h 

PSO 14.95 12.62h 
SAA 14.50 9.22h 

Bayesian integrated method 15.26 71min 

The initial model is not solvable using CPLEX. After 

gradually linearizing, the lower-level is converted into a LP 

model, which can be solved by CPLEX in 7.9 min. Fig. 6 shows 

that the proposed regression-based method converged to the 

optimal value after nine iterations, which takes 4278 s (i.e., 

approximately 71 min) (on a PC, Intel Core5 2.8GHz, 8GB of 

RAM). If GA, SAA, or PSO is used with the same lower-level 

LP model (the population size for GA and PSO is set to 20), the 

time consumed is at least 9.22 h. This result shows that 

Bayesian optimization with regression as the essence can 

effectively simulate the correlation between evaluation and 

operation to increase the convergence speed. Meanwhile, the 

evaluation results of the GA, PSO, the SAA, and the Bayesian 

integrated method are very close, verifying the accuracy of the 

proposed method. Overall, the computational cost can be 

significantly reduce using proposed method, and this advantage 

will become more apparent as the system scale or operation 

period increases. 

G. Larger system evaluation 

To further verify the efficiency and benefit of the method, 33 

[27], 69 [28], 85 [29], and 141-bus systems [30] are tested on 

the reference scenario via the proposed method. Since that the 

purpose of this part is to verify the efficiency, 20 operation 

periods are sampled from 744 periods for evaluation based on 

Monte Carlo simulation. The number of iterations and the 

convergence time are summarized in Table Ⅶ. The results 

indicate that the maximum number of lower-level evaluations 

(i.e., iterations) in all systems is only 12. This result again 

verifies that the regression-based Bayesian integrated 

optimization method would reduce the number of evaluations 

by effectively simulating the coupling correlation between 

evaluation and operation. Furthermore, given the computational 

time of each evaluation depends on the system scale, the overall 

convergence time of the 141-bus system is much longer than 

that of the 6-bus system. In addition, as the scale of the system 

increases, the difference between the solving time of the 

Bayesian integrated optimization method and that of the 

traditional method continuously increases, again showing that 

the efficiency advantage of the proposed method will become 

more apparent as the system scale increases. 

The “number of iterations to converge” does not depend on 

the scale of the system. The proposed method can be regarded 

as a regression-based search algorithm. The iteration numbers 

mainly depend on the correlation between the search range and 

the feasible region. For all systems, except the 6-bus system, 

the DWG capacity search range is set to [0 MW, 15 MW]. 

Obviously, under the same search range, the smaller the feasible 

region is, the more iterations are needed. According to the 

processing of soft constraints by Formulas (31) and (32), when 

the average CR exceeds the CR limit, the objective function will 

be penalized, and its value will decrease. Describing the 

correlation between operation and evaluation is unfavorable for 

the PSM. In this case, more evaluation points must be obtained 

through iteration. Thus, under the same search range, the 

greater the optimal value (connectable capacity) is, the larger 

the range of DWG capacity that meets Constraint (16) and the 

fewer the iterations needed are. 
TABLE Ⅶ 

EFFECTIVENESS OF DIFFERENT SYSTEM 

Test 

system 

Connectable 
Capacity 

(MW) 

Proposed method 
Convergence 
time for PSO 

(s) 

Number of 

iterations to 
converge 

Convergence 

time (s) 

6-bus 15.26 9 81.48 802.8 

33-bus 3.79 9 493.33 5079.56 
69-bus 3.25 12 1600.02 12887.11 

85-bus 2.55 12 1919.02 15262.08 

141-bus 12.05 8 2021.95 24389.75 

V. CONCLUSION 

A Bayesian integrated optimization method is designed to 

solve the proposed bi-level coordinative model for evaluating 

the connectable capacity of DWG in distribution networks 

when the policy of renewable accommodation is in place. The 

following conclusions are drawn. 

1) The coordinative optimization of evaluation and operation 

can provide advice for the variable capacity expansion of 

the distribution network through maximizing the capacity 

of DWG and improving energy utilization under a specific 

renewable policy. 

2) Efficiency analysis shows Bayesian optimization with 

regression as the essence that enables the proposed method 

to find the optimum after a few iterations. The efficiency 

of the method is at least 7–11 times better than that of 

traditional intelligent optimization algorithms. This 

advantage will become more apparent as the system scale 

increases. 

3) The integration of CR and DWG control can significantly 

promote renewable accommodation and reduce network 

losses. Parameter analysis shows that the proposed method 

can efficiently evaluate connectable capacity under 

different renewable accommodation policies, and the CR 
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limit is inverse the connectable capacity. 

In the next study, accommodation methods such as energy 

storage and demand response could be incorporated into the 

model to further increase the DWG connectable capacity. 

Considering the high efficiency requirements of rolling 

planning, the proposed method is worthy of further research. 

APPENDIX A 

The algorithm flow of K-means is as follows: 

Taking Nm samples 1 2{ , , , }MS S S  in the sampling period as 

the initial sample set, K-means clustering method is used to 

cluster the initial samples into K scenarios based on similarity. 

The calculation steps are as follows: 

1) Randomly select K samples from Nm samples as cluster 

centers denoted as 1 2, , , K   , and denote the k-th 

cluster as kC . 

2) For sample mS , calculate the distance between it and 

each cluster center based on the Euclidean distance 

shown in the (A1), select the cluster center with the 

smallest distance, and classify it into the class where the 

cluster center is located. 

( ) ( ) ( )
2 2 2

1 1

1

( , )
T

m m m

T t t

m

T

t

d S s s s   
=

= − + + − = −  (A1) 

where T represents the dimension of the sample, which 

in this paper represents the number of operation periods. 

3) After all samples are classified, calculate the number of 

samples in each cluster and take the average of all the 

samples classified into the cluster to obtain new cluster 

centers: 

 
1

k
m

m

k

S Ck

S
N




=   (A2) 

4) Calculate the convergence criterion, where τ is the 

number of iterations: 

 ( ) ( )
1

,
m

k

K

i

k S

m

C

E d S 
= 

=    (A3) 

5) Judge whether the iteration has converged. If 

( ) ( )1E E  − −  , stop the iteration and output the 

iteration result. Otherwise, go to 2). 

6) After convergence, calculate the probability of each 

scenario: 

 
k

k

m

N

N
 =  (A4) 

The generated scenarios, which are expressed by the 

difference with the reference scenario, are shown as Fig. A1. 

 

 

Fig. A1 Typical scenarios of wind power generation (compared with the 
reference scenario). 

REFERENCES 

[1] Global Wind Energy Council, "Global wind report", Global Wind Energy 
Council, Brussels, Belgium, April, 2019. 

[2] R.A. Walling, R. Saint, R.C. Dugan, J. Burke, and L.A. Kojovic, 

"Summary of distributed resources impact on power delivery systems," 
IEEE Trans. Power Del., vol.23, no.3, pp.1636-1644, Jul.2008. 

[3] R. A. F. Currie, G. W. Ault, R. W. Fordyce, D. F. MacLeman, M. Smith 

and J. R. McDonald, "Actively managing wind farm power output," IEEE 
Transactions on Power Systems, vol. 23, no. 3, pp. 1523-1524, Aug. 2008. 

[4] Y. Xiang, W. Han, J. Zhang, J. Liu and Y. Liu, " Optimal sizing of energy 

storage system in active distribution networks using Fourier–Legendre 
series based state of energy function." IEEE Transactions on Power 

Systems, vol. 33, no. 2, pp. 2313-2315, March 2018. 

[5] Y. Xiang, Lili Zhou, et al., " Coordinated DG-tie planning in distribution 
networks based on temporal scenarios," Energy, vol. 159, no. 15, pp. 774-

785, September 2018. 

[6] Y. Xiang, et al., " An economic criterion for distributed renewable 

generation planning," Electric Power Components and Systems, vol. 45, 

no. 12, pp. 1298-1304, Nov. 2017. 

[7] Y. Xiang, H. Cai, et al., " Cost-benefit analysis of integrated energy system 
planning considering demand response," Energy, vol. 192, no. 1, pp. 

116632, Feb. 2020. 

[8] L. F. Ochoa, C. J. Dent and G. P. Harrison, "Distribution network capacity 
assessment: variable DG and active networks," IEEE Transactions on 

Power Systems, vol. 25, no. 1, pp. 87-95, Feb. 2010. 

[9] E. Mulenga, et al. " A review of hosting capacity quantification methods 
for photovoltaics in low-voltage distribution grids," International Journal 

of Electrical Power & Energy Systems, vol. 115, pp. 105445.1-105445.13, 

-Feb. 2020. 
[10]X. Chen, W. Wu, B. Zhang and C. Lin, "Data-Driven DG Capacity 

Assessment Method for Active Distribution Networks," IEEE 

Transactions on Power Systems, vol. 32, no. 5, pp. 3946-3957, Sept. 2017. 
[11]S. Wang, Y. Dong, L. Wu and B. Yan, "Interval Overvoltage Risk Based 

PV Hosting Capacity Evaluation Considering PV and Load 

Uncertainties," IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2709-
2721, May 2020 

[12]F. Ding and B. Mather, "On Distributed PV Hosting Capacity Estimation, 

Sensitivity Study, and Improvement," IEEE Transactions on Sustainable 
Energy, vol. 8, no. 3, pp. 1010-1020, July 2017 

[13]J. Zheng et al., " Integrated heat and power dispatch truly utilizing thermal 

inertia of district heating network for wind power integration," Applied 
Energy, vol. 211, no. 1, pp. 865-874, Feb. 2018. 

[14] Z. Zhao, L. Wu, S. Zhang and X. Li, "An enhanced network-constrained 

UC model for leveraging system operation cost and financial profitability 
of incentive-based DR loads," IEEE Transactions on Smart Grid, vol. 9, 

no. 1, pp. 3-13, Jan. 2018. 

[15]S. Ganguly and D. Samajpati, "Distributed generation allocation on radial 
distribution networks under uncertainties of load and generation using 

genetic algorithm," IEEE Transactions on Sustainable Energy, vol. 6, no. 

3, pp. 688-697, July 2015. 
[16]B. R. Pereira, G. R. M. da Costa, J. Contreras and J. R. S. Mantovani, 

"Optimal distributed generation and reactive power allocation in electrical 
distribution systems," IEEE Transactions on Sustainable Energy, vol. 7, 

no. 3, pp. 975-984, July 2016. 

[17]A. Ameli, S. Bahrami, F. Khazaeli and M. Haghifam, "A multiobjective 
particle swarm optimization for sizing and placement of DGs from DG 

owner's and distribution company's viewpoints," IEEE Transactions on 

Power Delivery, vol. 29, no. 4, pp. 1831-1840, Aug. 2014. 
[18]S. Wang, S. Chen, L. Ge and L. Wu, "Distributed Generation Hosting 

Capacity Evaluation for Distribution Systems Considering the Robust 

Optimal Operation of OLTC and SVC," IEEE Transactions on Sustainable 
Energy, vol. 7, no. 3, pp. 1111-1123, July 2016. 

[19]X. Xu, J. Li, et al., "Enhancing photovoltaic hosting capacity—A stochastic 

approach to optimal planning of static var compensator devices in 

distribution networks," Applied Energy, vol. 238, no. 15, pp.952-962, 2019. 

[20]Q. Guo et al. "A model for multi-objective coordination optimization of 

voltage and reactive power in distribution networks based on mixed integer 
second-order cone programming." Proceedings of The Chinese Society for 

Electrical Engineering, vol. 38, no. 5, pp. 1385-1396, 2010. 

[21]A. Zare, C. Y. Chung, J. Zhan and S. O. Faried, "A distributionally robust 
chance-constrained milp model for multistage distribution system planning 

with uncertain renewables and loads," IEEE Transactions on Power 

Systems, vol. 33, no. 5, pp. 5248-5262, Sept. 2018. 



 10 

[22]J. Xu, X. Yi, Y. Sun, T. Lan and H. Sun, "Stochastic Optimal Scheduling 
Based on Scenario Analysis for Wind Farms," IEEE Transactions on 

Sustainable Energy, vol. 8, no. 4, pp. 1548-1559, Oct. 2017. 

[23]A. Ben-Tal and A. Nemirovski, "On polyhedral approximations of the 
second-order cone," Math. Ope: Res., vol.26, pp.193-205, 2001. 

[24]W. Lyu et al., "An efficient Bayesian optimization approach for automated 

optimization of analog circuits," IEEE Transactions on Circuits and 
Systems I, vol. 65, no. 6, pp. 1954-1967, June 2018. 

[25]T. Boehme,J. Taylor,A.R. Wallace, and J.W. Bialek, Matching Renewable 

Electricity Generation With Demand. Edinburgh,U.K.: Scottish Executive, 
Feb.2006. 

[26]A. Keane, L. F. Ochoa, E. Vittal, C. J. Dent and G. P. Harrison, "Enhanced 

utilization of voltage control resources with distributed generation," IEEE 
Transactions on Power Systems, vol. 26, no. 1, pp. 252-260, Feb. 2011. 

[27]M. E. Baran and F. F. Wu, "Network reconfiguration in distribution 

systems for loss reduction and load balancing," IEEE Transactions on 
Power Delivery, vol. 4, no. 2, pp. 1401-1407, April 1989. A. Keane, L. F.  

[28]D. Das, "Optimal placement of capacitors in radial distribution system 

using a Fuzzy-GA method," International Journal of Electrical Power & 
Energy Systems, vol. 30, no. 6-7, pp. 361-367, Sep. 2008. 

[29]D. Das, D. P. Kothari, A. Kalam, " Simple and efficient method for load 

flow solution of radial distribution networks," International Journal of 
Electrical Power & Energy Systems, vol. 17, no. 5, pp. 335-346, Oct. 1995. 

[30]H. M. Khodr, F. G. Olsina, P. M. De Oliveira-De Jesus, and J. M. Yusta, 

"Maximum savings approach for location and sizing of capacitors in 
distribution systems," Electric Power Systems Research, vol. 78, no. 7, pp. 

1192-1203, July 2008. 


