7,500 research outputs found

    An Empirical Analysis of On-demand Ride Sharing and Traffic Congestion

    Get PDF
    Sharing economy, which leverages information technology to re-distribute unused or underutilized assets to people who are willing to pay for the services, has received tremendous attention in the last few years. Its creative business model has disrupted many traditional industries (e.g., transportation, hotel) by fundamentally changing the mechanism to facilitate the matching of demand with supply in real time. In this research, we investigate how Uber, a peer-to-peer mobile ride-sharing platform, affects traffic congestion in the urban areas of the United States. Combining data from Uber and the Urban Mobility Report, we empirically examine whether and how the entry of Uber car services affect traffic congestion using a difference-in-difference framework. Findings from this research provide evidence on the potential effect of ride sharing services in the transportation industry, contributing to the understanding of the sharing economy and government policy decisions

    Synergistic Interactions of Dynamic Ridesharing and Battery Electric Vehicles Land Use, Transit, and Auto Pricing Policies

    Get PDF
    It is widely recognized that new vehicle and fuel technology is necessary, but not sufficient, to meet deep greenhouse gas (GHG) reductions goals for both the U.S. and the state of California. Demand management strategies (such as land use, transit, and auto pricing) are also needed to reduce passenger vehicle miles traveled (VMT) and related GHG emissions. In this study, the authors explore how demand management strategies may be combined with new vehicle technology (battery electric vehicles or BEVs) and services (dynamic ridesharing) to enhance VMT and GHG reductions. Owning a BEV or using a dynamic ridesharing service may be more feasible when distances to destinations are made shorter and alternative modes of travel are provided by demand management strategies. To examine potential markets, we use the San Francisco Bay Area activity based travel demand model to simulate business-as-usual, transit oriented development, and auto pricing policies with and without high, medium, and low dynamic ridesharing participation rates and BEV daily driving distance ranges. The results of this study suggest that dynamic ridesharing has the potential to significantly reduce VMT and related GHG emissions, which may be greater than land use and transit policies typically included in Sustainable Community Strategies (under California Senate Bill 375), if travelers are willing pay with both time and money to use the dynamic ridesharing system. However, in general, large synergistic effects between ridesharing and transit oriented development or auto pricing policies were not found in this study. The results of the BEV simulations suggest that TODs may increase the market for BEVs by less than 1% in the Bay Area and that auto pricing policies may increase the market by as much as 7%. However, it is possible that larger changes are possible over time in faster growing regions where development is currently at low density levels (for example, the Central Valley in California). The VMT Fee scenarios show larger increases in the potential market for BEV (as much as 7%). Future research should explore the factors associated with higher dynamic ridesharing and BEV use including individual attributes, characteristics of tours and trips, and time and cost benefits. In addition, the travel effects of dynamic ridesharing systems should be simulated explicitly, including auto ownership, mode choice, destination, and extra VMT to pick up a passenger

    Instruments of Transport Policy.

    Get PDF
    The material in this Working Paper was generated as input to DETR's Guidance on the Methodology for Multi Modal Studies (GOMMMS). DETR subsequently decided only to provide summary information on transport policy measures, and to leave the consultants involved in individual multi modal studies to make their own assessment of individual policy measures in the context of specific study areas. It has been decided to make this fuller document available as a reference source. The purpose of the review of policy measures was to provide summary information on the range of policy measures available, experience of their use and, based on past studies, their potential contribution to the range of policy objectives specified for GOMMMS. The review was based on an earlier one included in the Institution of Highways and Transportation's Guidelines on Developing Urban Transport Strategies (1996). This material was updated using references published since 1996 and expanded to cover policy measures relevant in inter-urban areas. It had been intended to circulate it for comment before publishing a revised version. However, DETR decided to use an abridged version before this consultation was complete. It should be borne in mind that this document has not, therefore, undergone the peer assessment which had been intended. To avoid unnecessary further work, the material is presented as it had been drafted for the GOMMMS Guidance document. The only modifications have been to change the chapter and paragraph numbers, and to remove the cross references to other parts of the Guidance document

    Capping Uber In New York City: Ramifications for Rideshares, the Road, and Outer-Borough Residents

    Get PDF

    An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service

    Full text link
    In this paper, we present machine learning approaches for characterizing and forecasting the short-term demand for on-demand ride-hailing services. We propose the spatio-temporal estimation of the demand that is a function of variable effects related to traffic, pricing and weather conditions. With respect to the methodology, a single decision tree, bootstrap-aggregated (bagged) decision trees, random forest, boosted decision trees, and artificial neural network for regression have been adapted and systematically compared using various statistics, e.g. R-square, Root Mean Square Error (RMSE), and slope. To better assess the quality of the models, they have been tested on a real case study using the data of DiDi Chuxing, the main on-demand ride hailing service provider in China. In the current study, 199,584 time-slots describing the spatio-temporal ride-hailing demand has been extracted with an aggregated-time interval of 10 mins. All the methods are trained and validated on the basis of two independent samples from this dataset. The results revealed that boosted decision trees provide the best prediction accuracy (RMSE=16.41), while avoiding the risk of over-fitting, followed by artificial neural network (20.09), random forest (23.50), bagged decision trees (24.29) and single decision tree (33.55).Comment: Currently under review for journal publicatio
    corecore