251 research outputs found

    Research on a modifeied RANSAC and its applications to ellipse detection from a static image and motion detection from active stereo video sequences

    Get PDF
    制度:新 ; 報告番号:甲3091号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2010/2/24 ; 早大学位記番号:新535

    Independent Motion Detection with Event-driven Cameras

    Full text link
    Unlike standard cameras that send intensity images at a constant frame rate, event-driven cameras asynchronously report pixel-level brightness changes, offering low latency and high temporal resolution (both in the order of micro-seconds). As such, they have great potential for fast and low power vision algorithms for robots. Visual tracking, for example, is easily achieved even for very fast stimuli, as only moving objects cause brightness changes. However, cameras mounted on a moving robot are typically non-stationary and the same tracking problem becomes confounded by background clutter events due to the robot ego-motion. In this paper, we propose a method for segmenting the motion of an independently moving object for event-driven cameras. Our method detects and tracks corners in the event stream and learns the statistics of their motion as a function of the robot's joint velocities when no independently moving objects are present. During robot operation, independently moving objects are identified by discrepancies between the predicted corner velocities from ego-motion and the measured corner velocities. We validate the algorithm on data collected from the neuromorphic iCub robot. We achieve a precision of ~ 90 % and show that the method is robust to changes in speed of both the head and the target.Comment: 7 pages, 6 figure

    Efficient Min-cost Flow Tracking with Bounded Memory and Computation

    Get PDF
    This thesis is a contribution to solving multi-target tracking in an optimal fashion for real-time demanding computer vision applications. We introduce a challenging benchmark, recorded with our autonomous driving platform AnnieWAY. Three main challenges of tracking are addressed: Solving the data association (min-cost flow) problem faster than standard solvers, extending this approach to an online setting, and making it real-time capable by a tight approximation of the optimal solution

    Visuelle Detektion unabhängig bewegter Objekte durch einen bewegten monokularen Beobachter

    Get PDF
    The development of a driver assistant system supporting drivers in complex intersection situations would be a major achievement for traffic safety, since many traffic accidents happen in such situations. While this is a highly complex task, which is still not accomplished, this thesis focused on one important and obligatory aspect of such systems: The visual detection of independently moving objects. Information about moving objects can, for example, be used in an attention guidance system, which is a central component of any complete intersection assistant system. The decision to base such a system on visual input had two reasons: (i) Humans gather their information to a large extent visually and (ii) cameras are inexpensive and already widely used in luxury and professional vehicles for specific applications. Mimicking the articulated human head and eyes, agile camera systems are desirable. To avoid heavy and sensitive stereo rigs, a small and lightweight monocular camera system mounted on a pan-tilt unit has been chosen as input device. In this thesis information about moving objects has been used to develop a prototype of an attention guidance system. It is based on the analysis of sequences from a single freely moving camera and on measurements from inertial sensors rigidly coupled with the camera system.Die Entwicklung eines Fahrerassistenzsystems, welches den Fahrer in komplexen Kreuzungssituationen unterstützt, wäre ein wichtiger Beitrag zur Verkehrssicherheit, da sehr viele Unfälle in solchen Situationen passieren. Dies ist eine hochgradig komplexe Aufgabe und daher liegt der Fokus dieser Arbeit auf einen wichtigen und notwendigen Aspekt solcher Systeme: Die visuelle Detektion unabhängig bewegter Objekte. Informationen über bewegte Objekte können z.B. für ein System zur Aufmerksamkeitssteuerung verwendet werden. Solch ein System ist ein integraler Bestandteil eines jeden kompletten Kreuzungsassistenzssystems. Zwei Gründe haben zu der Entscheidung geführt, das System auf visuellen Daten zu stützen: (i) Der Mensch sammelt seine Informationen zum Großteil visuell und (ii) Kameras sind zum Einen günstig und zum Anderen bereits jetzt in vielen Fahrzeugen verfügbar. Agile Kamerasysteme sind nötig um den beweglichen menschlichen Kopf zu imitieren. Die Wahl einer kleinen und leichten monokularen Kamera, die auf einer Schwenk-Neige-Einheit montiert ist, vermeidet die Verwendung von schweren und empfindlichen Stereokamerasystemen. Mit den Informationen über bewegte Objekte ist in dieser Arbeit der Prototyp eines Fahrerassistenzsystems Aufmerksamkeitssteuerung entwickelt worden. Das System basiert auf der Analyse von Bildsequenzen einer frei bewegten Kamera und auf Messungen von der mit der Kamera starr gekoppelten Inertialsensorik

    Dynamic Estimation of Rigid Motion from Perspective Views via Recursive Identification of Exterior Differential Systems with Parameters on a Topological Manifold

    Get PDF
    We formulate the problem of estimating the motion of a rigid object viewed under perspective projection as the identification of a dynamic model in Exterior Differential form with parameters on a topological manifold. We first describe a general method for recursive identification of nonlinear implicit systems using prediction error criteria. The parameters are allowed to move slowly on some topological (not necessarily smooth) manifold. The basic recursion is solved in two different ways: one is based on a simple extension of the traditional Kalman Filter to nonlinear and implicit measurement constraints, the other may be regarded as a generalized "Gauss-Newton" iteration, akin to traditional Recursive Prediction Error Method techniques in linear identification. A derivation of the "Implicit Extended Kalman Filter" (IEKF) is reported in the appendix. The ID framework is then applied to solving the visual motion problem: it indeed is possible to characterize it in terms of identification of an Exterior Differential System with parameters living on a C0 topological manifold, called the "essential manifold". We consider two alternative estimation paradigms. The first is in the local coordinates of the essential manifold: we estimate the state of a nonlinear implicit model on a linear space. The second is obtained by a linear update on the (linear) embedding space followed by a projection onto the essential manifold. These schemes proved successful in performing the motion estimation task, as we show in experiments on real and noisy synthetic image sequences

    Automatic Food Intake Assessment Using Camera Phones

    Get PDF
    Obesity is becoming an epidemic phenomenon in most developed countries. The fundamental cause of obesity and overweight is an energy imbalance between calories consumed and calories expended. It is essential to monitor everyday food intake for obesity prevention and management. Existing dietary assessment methods usually require manually recording and recall of food types and portions. Accuracy of the results largely relies on many uncertain factors such as user\u27s memory, food knowledge, and portion estimations. As a result, the accuracy is often compromised. Accurate and convenient dietary assessment methods are still blank and needed in both population and research societies. In this thesis, an automatic food intake assessment method using cameras, inertial measurement units (IMUs) on smart phones was developed to help people foster a healthy life style. With this method, users use their smart phones before and after a meal to capture images or videos around the meal. The smart phone will recognize food items and calculate the volume of the food consumed and provide the results to users. The technical objective is to explore the feasibility of image based food recognition and image based volume estimation. This thesis comprises five publications that address four specific goals of this work: (1) to develop a prototype system with existing methods to review the literature methods, find their drawbacks and explore the feasibility to develop novel methods; (2) based on the prototype system, to investigate new food classification methods to improve the recognition accuracy to a field application level; (3) to design indexing methods for large-scale image database to facilitate the development of new food image recognition and retrieval algorithms; (4) to develop novel convenient and accurate food volume estimation methods using only smart phones with cameras and IMUs. A prototype system was implemented to review existing methods. Image feature detector and descriptor were developed and a nearest neighbor classifier were implemented to classify food items. A reedit card marker method was introduced for metric scale 3D reconstruction and volume calculation. To increase recognition accuracy, novel multi-view food recognition algorithms were developed to recognize regular shape food items. To further increase the accuracy and make the algorithm applicable to arbitrary food items, new food features, new classifiers were designed. The efficiency of the algorithm was increased by means of developing novel image indexing method in large-scale image database. Finally, the volume calculation was enhanced through reducing the marker and introducing IMUs. Sensor fusion technique to combine measurements from cameras and IMUs were explored to infer the metric scale of the 3D model as well as reduce noises from these sensors

    Visually-guided walking reference modification for humanoid robots

    Get PDF
    Humanoid robots are expected to assist humans in the future. As for any robot with mobile characteristics, autonomy is an invaluable feature for a humanoid interacting with its environment. Autonomy, along with components from artificial intelligence, requires information from sensors. Vision sensors are widely accepted as the source of richest information about the surroundings of a robot. Visual information can be exploited in tasks ranging from object recognition, localization and manipulation to scene interpretation, gesture identification and self-localization. Any autonomous action of a humanoid, trying to accomplish a high-level goal, requires the robot to move between arbitrary waypoints and inevitably relies on its selflocalization abilities. Due to the disturbances accumulating over the path, it can only be achieved by gathering feedback information from the environment. This thesis proposes a path planning and correction method for bipedal walkers based on visual odometry. A stereo camera pair is used to find distinguishable 3D scene points and track them over time, in order to estimate the 6 degrees-of-freedom position and orientation of the robot. The algorithm is developed and assessed on a benchmarking stereo video sequence taken from a wheeled robot, and then tested via experiments with the humanoid robot SURALP (Sabanci University Robotic ReseArch Laboratory Platform)

    A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity

    Get PDF
    Eyes of the hoverfly Eristalis tenax are sexually dimorphic such that males have a fronto-dorsal region of large facets. In contrast to other large flies in which large facets are associated with a decreased interommatidial angle to form a dorsal `acute zone' of increased spatial resolution, we show that a dorsal region of large facets in males appears to form a `bright zone' of increased light capture without substantially increased spatial resolution. Theoretically, more light allows for increased performance in tasks such as motion detection. To determine the effect of the bright zone on motion detection, local properties of wide field motion detecting neurons were investigated using localized sinusoidal gratings. The pattern of local preferred directions of one class of these cells, the HS cells, in Eristalis is similar to that reported for the blowfly Calliphora. The bright zone seems to contribute to local contrast sensitivity; high contrast sensitivity exists in portions of the receptive field served by large diameter facet lenses of males and is not observed in females. Finally, temporal frequency tuning is also significantly faster in this frontal portion of the world, particularly in males, where it overcompensates for the higher spatial-frequency tuning and shifts the predicted local velocity optimum to higher speeds. These results indicate that increased retinal illuminance due to the bright zone of males is used to enhance contrast sensitivity and speed motion detector responses. Additionally, local neural properties vary across the visual world in a way not expected if HS cells serve purely as matched filters to measure yaw-induced visual motion
    corecore