1,898 research outputs found

    A heterogeneous peer-to-peer network testbed

    Get PDF
    In this paper, we describe a heterogeneous peer-to-peer network testbed, which is developed as part of a joint research project to investigate novel resource discovery and content distribution protocols in a heterogeneous wired/wireless environment. We describe the testbed requirements, the testbed architecture, the multi-functional wireless node, and the software architecture. We also describe some of the proposed protocols to be developed and tested on the testbed. © 2009 IEEE.published_or_final_versionThe 1st International Conference on Ubiquitous and Future Networks (ICUFN 2009), Hong Kong, 7-9 June 2009. In Proceedings of the 1st ICUFN, 2009, p. 46-5

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    On localized application-driven topology control for energy-efficient wireless peer-to-peer file sharing

    Get PDF
    Wireless Peer-to-Peer (P2P) file sharing Is widely envisioned as one of the major applications of ad hoc networks in the near future. This trend is largely motivated by the recent advances in high-speed wireless communication technologies and high traffic demand for P2P file sharing applications. To achieve the ambitious goal of realizing a practical wireless P2P network, we need a scalable topology control protocol to solve the neighbor discovery problem and network organization problem. Indeed, we believe that the topology control mechanism should be application driven in that we should try to achieve an efficient connectivity among mobile devices in order to better serve the file sharing application. We propose a new protocol, which consists of two components, namely, Adjacency Set Construction (ASC) and Community-Based Asynchronous Wakeup (CAW). Our proposed protocol is shown to be able to enhance the fairness and provide an incentive mechanism in wireless P2P file sharing applications. It is also capable of increasing the energy efficiency. © 2008 IEEE.published_or_final_versio

    Resource management for next generation multi-service mobile network

    Get PDF

    A Privacy-Aware Distributed Storage and Replication Middleware for Heterogeneous Computing Platform

    Get PDF
    Cloud computing is an emerging research area that has drawn considerable interest in recent years. However, the current infrastructure raises significant concerns about how to protect users\u27 privacy, in part due to that users are storing their data in the cloud vendors\u27 servers. In this paper, we address this challenge by proposing and implementing a novel middleware, called Uno, which separates the storage of physical data and their associated metadata. In our design, users\u27 physical data are stored locally on those devices under a user\u27s full control, while their metadata can be uploaded to the commercial cloud. To ensure the reliability of users\u27 data, we develop a novel fine-grained file replication algorithm that exploits both data access patterns and device state patterns. Based on a quantitative analysis of the data set from Rice University, this algorithm replicates data intelligently in different time slots, so that it can not only significantly improve data availability, but also achieve a satisfactory performance on load balancing and storage diversification. We implement the Uno system on a heterogeneous testbed composed of both host servers and mobile devices, and demonstrate the programmability of Uno through implementation and evaluation of two sample applications, Uno@Home and Uno@Sense

    Building Robust Distributed Infrastructure Networks

    Get PDF
    Many competing designs for Distributed Hash Tables exist exploring multiple models of addressing, routing and network maintenance. Designing a general theoretical model and implementation of a Distributed Hash Table allows exploration of the possible properties of Distributed Hash Tables. We will propose a generalized model of DHT behavior, centered on utilizing Delaunay triangulation in a given metric space to maintain the networks topology. We will show that utilizing this model we can produce network topologies that approximate existing DHT methods and provide a starting point for further exploration. We will use our generalized model of DHT construction to design and implement more efficient Distributed Hash Table protocols, and discuss the qualities of potential successors to existing DHT technologies

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    • …
    corecore