1,427 research outputs found

    Slicing of Concurrent Programs and its Application to Information Flow Control

    Get PDF
    This thesis presents a practical technique for information flow control for concurrent programs with threads and shared-memory communication. The technique guarantees confidentiality of information with respect to a reasonable attacker model and utilizes program dependence graphs (PDGs), a language-independent representation of information flow in a program

    Sound Static Deadlock Analysis for C/Pthreads (Extended Version)

    Full text link
    We present a static deadlock analysis approach for C/pthreads. The design of our method has been guided by the requirement to analyse real-world code. Our approach is sound (i.e., misses no deadlocks) for programs that have defined behaviour according to the C standard, and precise enough to prove deadlock-freedom for a large number of programs. The method consists of a pipeline of several analyses that build on a new context- and thread-sensitive abstract interpretation framework. We further present a lightweight dependency analysis to identify statements relevant to deadlock analysis and thus speed up the overall analysis. In our experimental evaluation, we succeeded to prove deadlock-freedom for 262 programs from the Debian GNU/Linux distribution with in total 2.6 MLOC in less than 11 hours

    Probabilistic Noninterference Based on Program Dependence Graphs

    Get PDF

    Program slicing for Java 6 SE

    Get PDF

    Dynamic slicing of concurrent specification languages

    Full text link
    This is the author’s version of a work that was accepted for publication in Parallel Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Parallel Computing, 53, 1-22., (2016). DOI 10.1016/j.parco.2016.01.006.[EN] Dynamic slicing is a technique to extract the part of the program (called slice) that influences or is influenced, in a particular execution, by a given point of interest in the source code (called slicing criterion). Since a single execution is considered, the technique often uses a trace of this execution to analyze data and control dependencies. In this work we present the first formulation and implementation of dynamic slicing in the context of CSP. Most of the ideas presented can be directly applied to other concurrent specification languages such as Promela or CCS, but we center the discussion and the implementation on CSP. We base our technique on a new data structure to represent CSP computations called track. A track is a data structure which represents the sequence of expressions that have been evaluated during the computation, and moreover, it is labeled with the location of these expressions in the specification. The implementation of a dynamic slicer for CSP is useful for debugging, program comprehension, and program specialization, and it is also interesting from a theoretical perspective because CSP introduces difficulties such as heavy concurrency and non-determinism, synchronizations, frequent absence of data dependence, etc. © 2016 Elsevier B.V. All rights reservedThis work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economia y Competitividad under Grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under Grant PROMETEOII/2015/013 (SmartLogic). Salvador Tamarit was partially supported by Madrid regional projects N-GREENS Software-CM (S2013/ICE-2731), and by European Union project POLCA (STREP FP7-ICT-20133.4 610686).Llorens Agost, ML.; Oliver Villarroya, J.; Silva, J.; Tamarit Muñoz, S. (2016). Dynamic slicing of concurrent specification languages. Parallel Computing. 53:1-22. https://doi.org/10.1016/j.parco.2016.01.006S1225
    • …
    corecore