

 Karlsruhe Reports in Informatics 2012, 6
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Probabilistic Noninterference Based
on Program Dependence Graphs

 Dennis Giffhorn
Gregor Snelting

Institute for Program Structures and Data Organization

 2012

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

Probabilistic Noninterference Based on Program Dependence
Graphs∗

Dennis Giffhorn, Gregor Snelting
Lehrstuhl Programmierparadigmen, Karlsruher Institut für Technologie

April 23, 2012

Abstract
We present a new algorithm for checking probabilistic
noninterference in concurrent programs. The algorithm
uses the Low-Security Observational Determinism crite-
rion. It is based on program dependence graphs for con-
current programs, and is thus very precise: it is flow-
sensitive, context-sensitive, object-sensitive, and option-
ally time-sensitive. The algorithm has been implemented
for full Java bytecode with unlimited threads, and avoids
restrictions or soundness leaks of previous approaches.
A soundness proof is provided. Precision and scalability
have been experimentally validated.

Keywords. software security, noninterference, pro-
gram dependence graph, information flow control

1 Introduction
Information flow control (IFC) discovers software secu-
rity leaks by analysing the software source or machine
code. IFC for concurrent or multi-threaded programs is
challenging, as it must prevent possibilistic or probabilis-
tic information leaks. Both types of leaks depend on the
interleaving of concurrent threads on a processor: pos-
sibilistic leaks may or may not occur depending on a
specific interleaving, while probabilistic leaks exploit the
probability distribution of interleaving orders. Figure 1

∗This article is based on parts of the PhD thesis of the first author [6],
with additional contributions by the second author. The research was
partially supported by Deutsche Forschungsgemeinschaft (DFG grant
Sn11/9-2) and in the scope of the priority program “Reliably Secure
Software Systems” (DFG grant Sn11/12-1).

presents an example: the program in the middle has a pos-
sibilistic leak e.g. for interleaving order 2,6,7,3, which
causes the secret PIN to be printed on public output. The
program to the right has no possibilistic channel leaking
PIN information, because the printed value of x is always
0 or 1. But the PIN’s value may alter the probabilities of
these outputs, because the running time of the loop may
influence the interleaving order of the two assignments to
x. Thus a secret value changes the probability of a public
output – a typical probabilistic leak.

IFC aims at discovering all such security leaks. Most
IFC analyses check some form of noninterference [28],
and to this aim classifies program variables, input and out-
put as high (secret) or low (public). Probabilistic Nonin-
terference (PN) [32, 30, 29, 31, 19] is the established se-
curity criterion for concurrent programs. It is difficult to
guarantee PN, as an IFC must in principle check all possi-
ble interleavings and their impact on execution probabili-
ties. This is why some PN analyses put severe restrictions
on program or scheduler behaviour.

One specific form of PN however is scheduler indepen-
dent: Low-Security Observational Determinism (LSOD)
demands that for a program which runs on two low-
equivalent inputs, all possible traces are low-equivalent
[21, 27, 40, 14]. Low-equivalent input streams coincide
on low input values, and low-equivalent traces coincide
on operations on low variables resp. low memory cells.
Earlier research [40, 14] has shown that the LSOD crite-
rion guarantees PN, and that LSOD can be implemented
as a program analysis. The following criterion is sufficient
to guarantee LSOD [40]: 1. program parts contributing
to low-observable behaviour are conflict-free, that is, the

1

1 void main ():
2 x = inputPIN ();
3 if (x < 1234)
4 print (0);
5 y = x;
6 print(y);

1 void thread_1 ():
2 x = input ();
3 print(x);
4

5 void thread_2 ():
6 y = inputPIN ();
7 x = y;

1 void thread_1 ():
2 x = 0;
3 print(x);
4

5 void thread_2 ():
6 y = inputPIN ();
7 while (y != 0)
8 y--;
9 x = 1;

10 print (2);

Figure 1: Examples for information leaks in sequential programs (left), for a possibilistic channel (mid) and for
probabilistic channels (right).

program is low-observable deterministic; 2. implicit or
explicit flows do not leak high data to low-observable be-
haviour. Several attempts to devise analysis algorithms
for LSOD however turned out to be unsound, unprecise,
or very restrictive. Hence LSOD never gained popularity,
and there are no implementations for realistic languages.

It is the main contribution of this paper to demonstrate
that the LSOD criterion can be checked easily and nat-
urally using Program Dependence Graphs (PDGs) and
slicing algorithms for concurrent programs. PDGs have
already been developed as an IFC analysis tool for full
sequential Java [11, 10, 33, 38], and demonstrated high
precision and scaleability. In the current article, we show
how to use PDGs for a precise LSOD checker. Our LSOD
checker uses a new definition of low-equivalent traces,
which – in case of infinite (i.e. nonterminating) traces –
avoids certain problems of earlier definitions. Exploit-
ing the structure of PDGs, the algorithm is flow-sensitive,
object-sensitive, and context-sensitive. It is sound and
does not impose restrictions on the thread or program
structure. The algorithm has been implemented for full
Java including an arbitrary number of threads. It also
exploits advances in the may-happen-in-parallel (MHP)
analysis of concurrent programs, which allow even time-
sensitive and lock-sensitive MHP and IFC. We present de-
tails of the algorithm, a soundness proof, and empirical
data about precision and scalability.

2 Dependence Graphs and Nonin-
terference

2.1 PDG Basics

Program dependence graphs are a standard tool to model
information flow through a program. Program statements
or expressions are the graph nodes. There are two kinds of
edges: data dependences and control dependences. A data
dependence edge x→ y means that statement x assigns a
variable which is used in statement y, without being re-
assigned underway. A control dependence edge x → y
means that the mere execution of y depends directly on
the value of the expression x (which is typically a condi-
tion in an if- or while-statement). Control and data depen-
dences are transitive. For a dependency x→ y, x is called
the source and y the sink of the dependency.

In a PDG G = (N,→), a path x→∗ y means that infor-
mation can flow from x to y; if there is no path, it is guar-
anteed that there is no information flow [12, 26, 24, 38].
Thus PDGs are correct. Exploiting this fundamental
property, all statements possibly influencing y (the so-
called backward slice) are easily computed as BS(y)= {x |
x→∗ y}. y is called the slicing criterion of the backward
slice. Similarly, the forward slice is FS(x) = {y | x→∗ y}.
The Slicing Theorem [26] shows that for any initial state
on which the program terminates, the program and its
slice compute the same sequence of values for each el-
ement of the slice.

As an example, consider the small program and its de-

2

1 a = u();
2 while (f()) {
3 x = v();
4 if (x>0)
5 b = a;
6 else
7 c = b;
8 }
9 z = c;

Figure 2: A small program and its dependence graph

pendence graph in figure 2. Control dependences are
shown as dotted edges, data dependences are shown as
solid edges; transitive dependences are not explicitly part
of the PDG. There is a path from statement 1 to state-
ment 9 (i.e. 9 ∈ FS(1)), indicating that input variable a
may eventually influence output variable z. Since there
is no path (1)→∗ (4) (1 6∈ BS(4)), there is definitely no
influence from a to x>0.

PDGs and backward slices for realistic languages
with procedures, complex control flow, and data struc-
tures are much more complex than the basic concept
sketched above. Our interprocedural analysis is based on
the context-sensitive Horwitz-Reps-Binkley (HRB) algo-
rithm [25, 13], which uses so-called summary edges to
model flow through procedures. Full sequential Java re-
quires even more complex algorithms, which have been
described in [8, 11]. Thus in the general case, compu-
tation of BS(x) involves much more than just backward
paths in the PDG.

The power of PDGs stems from the fact that they are
flow-sensitive, context-sensitive, and object-sensitive: the
order of statements does matter and is taken into account,
as is the actual calling context for procedures, and the
actual reference object for method calls. Thus the PDG
resp. backward slice never indicates influences which are
in fact impossible due to the given statement execution
order of the program; only so-called “realizable” (that is,
dynamically possible) paths are considered. But this pre-
cision is not for free: PDG construction can have com-
plexity O(|N|3). In practice, PDG use is limited to pro-
grams of about 100kLOC [2].

i n t x , y ;

void t h r e a d _ 1 () :
x = y + 1 ;
y = 0 ;

void t h r e a d _ 2 () :
a = y ;
x = < i n p u t > ;
i f a > 0

b = 0 ;
e l s e

y = 0 ;

Figure 3: Interference dependences between two threads.

2.2 Noninterference and PDGs
As explained, a missing path from a to b in a PDG – or
more precisely a 6∈ BS(b) – guarantees that there is no in-
formation flow from a to b. This is true for all information
flow which is not caused by hidden physical side channels
such as timing leaks. It is therefore not surprising that
noninterference is related to PDGs.

Indeed we have published a machine-checked proof
that (sequential) noninterference holds if no high varia-
ble or input is in the backward slice of a low output. This
result was shown for the intraprocedural as well as the
interprocedural (HRB) case [38, 36].

2.3 PDGs and Slicing for Multi-Threaded
Programs

For multi-threaded programs operating on shared mem-
ory, PDGs are extended by so-called interference depen-
dencies1 which connect an assignment to a variable in one
thread with a read of the same variable in another thread
[15]. Figure 3 shows a small example with two interfer-
ence edges.

The simplest slicer for concurrent programs is the iter-
ated two-phase slicer (I2P) [22, 9]. I2P uses the context-

1“interference dependencies” have nothing to do with “noninterfer-
ence” in the IFC sense; the naming is for historical reasons.

3

sensitive HRB algorithm2, but does not traverse interfer-
ence edges directly. Instead I2P adds the starting point of
interference edges to a work list and thus repeatedly ap-
plies the intra-thread HRB backward slice algorithm for
every interference edge.

I2P can be improved by using May-happen-in-parallel
(MHP) information. Due to locks or the fork/join struc-
ture, not all statements can be executed in parallel. In fact,
often a program analysis can prove that certain statements
can not happen in parallel. Such information can be used
to prune interference dependencies, drastically improving
scalability and precision. Various MHP algorithms for
Java have been published, e.g. [23, 16, 6].

Unfortunately, I2P is – even with MHP – not very pre-
cise, as it ignores the issue of time travel. This phe-
nomenon can be explained as follows. In any real in-
formation flow or leak, the information source must be
executed before (i.e. physically earlier) than the sink. If
for all possible interleavings the source executes after the
sink, flow is impossible. This applies in particular to
interference dependencies. Naive traversal of interfer-
ence dependencies however can indicate “flows” where
the source is executed after the sink. No scheduler will
ever generate such an execution trace.

Figure 3 presents an example: the two dashed inter-
ference edges exclude each other, because flow along the
first requires thread_1 to execute before thread_2, and
flow along the second requires thread_2 to execute be-
fore thread_1. Hence the light gray node y = 0; in
thread_1 cannot influence the node x = y+1;. The
example also demonstrates that interference dependences
are – in contrast to data and control dependencies – not
transitive. In fact, this intransitivity is the root cause
for time travel. As a consequence, summary edges in
HRB can never contain flow through interference edges,
as summary edges are transitive. This explains why I2P
needs a worklist for interference edges.

A time-sensitive analysis discards impossible, “time-
travelling” flows.3 Time-sensitivity is based on the
fork/join structure of threads, and is even more com-
plex for interprocedural analysis. I2P is context-sensitive
inside threads, but not time-sensitive; benchmarks have

2HRB slicing has two phases, hence the name I2P.
3“time sensitivity” has nothing to do with “timing leaks” in the IFC

sense, the naming is for historical reasons.

shown that its precision (i.e. slice size) is ca. 25% worse
than the best known time-sensitive slicer [6].

Figure 4 shows an example for time-sensitive slicing
and MHP. MHP prunes the interference dependence 20→
13, as node 20 is always executed after node 13. Fur-
thermore, the time-sensitive backward slice for node 14
does not include nodes 16 - 20: in order to influence node
14 via node 9 and 13, node 20 has to be executed before
nodes 9 and 13. But thread 2 is started only after node
13, hence the dependence chain 20→ 9→ 13→ 14 is
time-sensitively impossible. The example also shows that
time-sensitivity is improved by MHP: without MHP, edge
13→ 20 would exist and force nodes 16 – 20 into the
time-sensitive slice.

Time-sensitive slicing algorithms are very complex,
and cannot be described in detail here. Indeed, for many
years, no scalable algorithm existed. Today, our new al-
gorithms, which are based on earlier work by Krinke and
Nanda [15, 22] allow to analyse at least a few kLOC of
full Java. The algorithms can handle full Java with an ar-
bitrary number of threads, and are described in detail in
[5, 7, 6].

3 Formalising LSOD

3.1 Low-equivalent traces

Before presenting a formal definition of our LSOD cri-
terion, let us begin with an informal description. We as-
sume that program data, input values, output values, and
statements are classified either low (public) or high (se-
cret). Note that in our flow-sensitive approach, classifi-
cation of values and variables happens per statement –
there is no global classification of variables or memory
cells. Depending on the context, a variable may at one
program point contain a low value, and at another point
a high value. Still, soundness is guaranteed, while flow-
sensitivity (which is naturally provided by PDGs) offers
precision gains and less restrictions on programs (see also
section 6). Note that most of the statement-level classi-
fications can be derived automatically from classification
of just program inputs and outputs by a fixpoint iteration
on the PDG [11].

We assume that a potential attacker knows the source
code and its PDG, and can observe execution of all op-

4

i n t x , y ;

void main () :
x = 0 ;
y = 1 ;
f o r k t h r e a d _ 1 () ;
i n t p = x − 2 ;
i n t q = p + 1 ;
y = q ∗ y ;

void t h r e a d _ 1 () :
i n t a = y + 1 ;
f o r k t h r e a d _ 2 () ;
i n t b = a ∗ 4 ;
x = b / 2 ;

void t h r e a d _ 2 () :
y = 0 ;

 fork
thread_2

 start
thread_2

y = 0

16

18

19

20

y

y

 fork
thread_1

y = 1

1

2 3

4

5 6

7

8

9

10

11 12

13

14

15

entry
main

x = 0

 start
thread_1

p = x - 2

q = p + 1

y = q * y

a = y + 1

 b = a * 4

x = b / 2

x y

x y

17

data dependence

summary edge

call- or parameter edge

interference edge

control dependence

Figure 4: More precise MHP information results in more
precise slices: The gray nodes denote the time-sensitive
slice for node 14 in case all threads are assumed to hap-
pen in parallel. The dark gray nodes denote the slice af-
ter MHP analysis, which prunes edge 20→ 13, which re-
moves nodes 16-20 from the slice.

erations (i.e. dynamically executed statements) and their
operands which read or write a low value. The attacker
can however not observe high values, or high operations.
For example, if the source statement print(x) is classi-
fied low, then its dynamic execution and printed value can
be observed; if read(x) is classified high, the dynami-
cally read value of x cannot be observed. Remember that
variable x does not posses a global classification; corre-
spondingly, the attacker can not see all low values at any
time (see also discussion in section 6).

Of course, the attacker can also see low input; we
assume that program input is a list of (perhaps non-
primitive) values, where each value is classified high or
low. Inputs are low-equivalent if the sublists of low input
values are equal. The attacker is also aware of the proba-
bility with which an input causes a certain low-observable
behavior. Under these assumptions, our LSOD criterion
guarantees to discover all explicit, implicit, possibilistic,
or probabilistic leaks. Note that our LSOD does not check
termination leaks, for reasons to be discussed later.

Technically, LSOD is based on low-equivalent traces.
A trace of a program execution is a (possibly infinite)
list of program configurations, where a configuration in-
cludes the executed operation, the memory before exe-
cution of the operation, and the memory after executing
it. Note that a trace is valid only with respect to a spe-
cific interleaving or scheduling of program threads. Low-
observable events are configurations from a trace which
read or write low memory cells; only low memory cells
are part of low-observable events. The low-observable
behaviour of an execution trace is the subtrace which con-
tains only low-observable events. Low-equivalent traces
have identical low-observable behaviour.

LSOD demands that any two executions with low-equi-
valent inputs have low-equivalent traces. Thus LSOD is
defined in a way similar to classical (sequential) noninter-
ference; using program traces instead of program states.
This also explains why LSOD is scheduler independent.

The natural definition of low-equivalent traces becomes
however problematic in case of nontermination. The clas-
sical definition, as formalized in the literature, allows one
trace to terminate and the other to not terminate. Hence
the problem of infinite traces and termination channels
arises, which needs to be discussed before we formally
present our new definition of low-equivalent traces.

Consider the program in the middle of figure 5, whose

5

void main () :
x = i n p u tP I N () ;
whi le (x > 0)

p r i n t (" x ") ;
x−−;

whi le (t rue)
s k i p ;

void main () :
x = i n p u tP I N () ;
whi le (x != 0)

x−−;
p r i n t (1) ;

void main () :
x = i n p u t P I N () ;
whi le (x == 0)

s k i p ;
p r i n t (" x ") ;
whi le (x == 1)

s k i p ;
p r i n t (" x ") ;
. . .
whi le (x == 42)

s k i p ;
p r i n t (" x ") ;
. . .

Figure 5: Three tough nuts for termination-insensitive definitions of low-equivalent traces. The program on the
left must be rejected because it gradually leaks the PIN, the one in the mid could be accepted because its leak is a
termination channel. The program on the right exploits termination channels to leak the input PIN.

input in line 2 is high data and whose print-statement
is low-observable. If a run of the program does not ter-
minate, the print-statement is delayed infinitely, which
leads to the conclusion that the input was < 0. Worse, fig-
ure 5 (right) exploits a termination channel which leaks
the PIN completely. It is known that in case of inter-
active programs, termination channels can leak arbitrary
amounts of information [1]. To prevent this, several vari-
ants of LSOD resp. PN forbid low-observable events be-
hind loops guarded by high data.

However, this is a severe, if not unacceptable restriction
in practice. Sometimes, program analysis can deduce that
a loop will terminate, and in such cases the restriction can
be relaxed. But in general, no other means to always avoid
termination leaks are known. Therefore several authors
– including ourselves – allow termination channels (see
discussion in section 6).

We thus aim at a sound formal definition of LSOD
which however may allow termination leaks. This ap-
proach has already been tried in earlier research. Pub-
lished LSOD definitions that aim to permit termination
channels declare traces to be low-equivalent if their low-
observable behavior is equal up to the length of the
shorter sequence of low-observable events [34, 40]. But
as pointed out by Huisman et al. [14], this may lead to
unintended information leaks. Consider the program on
the left side of figure 5, whose traces always diverge, and
assume that the input PIN is high data and that the exe-
cutions of the print statement comprise its low-observable

behavior. The program exposes the input PIN by printing
an equal number of x’s to the screen. If low-equivalence
of traces is confined to the length of the shorter sequence
of low-observable events, this behavior is perfectly legal,
because all traces with low-equivalent inputs are equal up
to the length of the shorter sequence (see more detailed
discussion in section 6).

In order to solve this problem, we suggest the follow-
ing new approach: For finite traces, we stick to the com-
mon definition that they are low-equivalent if their low-
observable behaviors are equal. If both traces are infinite,
then the low-observable behaviors must be equal up to the
length of the shorter sequence, and the low-observable
events missing in the other trace must be missing due to
infinite delay. The latter additional constraint is new and
makes sure that the missing events leak information only
via termination channels. Similarly, if one of both traces
is finite and the other is infinite, then the finite trace must
have at least as much low-observable events as the infinite
one, the low-observable behaviors must be equal up to
the length of the shorter sequence and the low-observable
events missing in the infinite trace must be missing due to
infinite delay.

Fortunately, our new constraint can be statically ap-
proximated through PDGs and slicing. Without a PDG
approach, our new and – as we will argue later – more
powerful definition of LSOD would not be useable.

6

6 3 7 4 9 10

63 7 7’ 9 104 8

1 main():
2 fork thread_1();
3 l = 0;
4 print(l);

5 thread_1():
6 h = inputPIN();
7 while (h != 0)
8 h--;
9 l = input();
10 print(l2);

dyn. data dependence

dyn. control dependence

void

void

1 5

1 5

s 2

2s

Figure 6: A program and two possible traces. The first trace results from input (inputPIN() = 0, input() = 0), the
second from (inputPIN() = 1, input() = 0). The shaded nodes represent the low-observable behavior.

3.2 Formalizing low-equivalent traces and
LSOD

In the following, we will formally develop our definition,
prove that it guarantees LSOD, and use it as basis for an
algorithm. Full details can be found in [6].

Definition 1 (Trace) An operation is a dynamic instance
of a program statement (e.g. assignment execution, pro-
cedure call, thread fork). For operation o, stmt(o) is the
corresponding source program statement.

A Trace is a list of events of the form (m,o,m), where
o is an operation, m is the memory before execution of o,
and m is the memory after execution of o.

The low-observable behaviour of a trace

T = (m1,o1,m1), . . .(mk,ok,mk)

is a list of events

obslow(T)= eventlow(m1,o1,m1), . . . ,eventlow(mk,ok,mk)

where

eventlow(m,o,m) =

(m |use(o),o,m |def (o)) o reads or

writes low
values;

λ otherwise.

m |use(o) resp. m |def (o) are the memory cells in m resp. m
which are read (used) resp. written (defined) by operation
o; λ is the empty event.

We write o ∈ T if ∃m,m : (m,o,m) ∈ T . Operations
in (different) traces can be uniquely identified by their
calling-context and control-flow history (see below). Op-
erations which perform a low read or low write are low-
observable, together with the corresponding parts of the
memory. Note that m |use(o) resp. m |def (o) do not contain
high memory cells.

For later use within our LSOD criterion, traces must
be enriched with dynamic control and data dependencies
as in figure 6: these connect dynamic reads and writes of
variables (with no intermediate writes to the variables),
and dynamic conditions from if, while etc. and the opera-
tions “governed” by these conditions (similar to dynamic
slicing [39]). This is formalized in

Definition 2 (Dynamic dependencies) Let T be a trace
of a program p.

1. An operation o∈ T is dynamically control dependent

on operation b ∈ T , written b
dcd
99K o, iff

• o is a thread entry and b is the corresponding
fork operation, or

• o is a procedure entry and b is the operation
that invoked that procedure, or

• b is the director of the innermost control region
of o [39].

2. An operation o is dynamically data dependent on op-
eration a in T , written a

v
99K o, iff there exists a vari-

able v ∈ use(o)∩def (a), o executes after a in T and

7

there is no operation o′ with v ∈ def (o′) executing
between a and o in T .

3. Pot(o) = {q ∈ T | o (
v
99K ∪ dcd

99K)∗ q} denotes the set
of all operations which are (transitively) dynamically
control or data dependent on o.

DCD(o) = 〈q1 . . .qn | qi ∈ T,q1 = start,qn =

o,qi
dcd
99K

∗
o〉 is the list of operations on which o

is (transitively) dynamically control (but not data)
dependent; topologically sorted by dynamic depen-
dency.

Note that dynamic dependencies are cycle-free. Pot(o),
the operations potentially influenced by o, can be seen as
a dynamic forward slice; DCD can be seen as a dynamic
backward control slice. In figure 6 (lower part), Pot(5) =
{6,7,8,7′,9,10}, and DCD(4) = 〈start,1,4〉.

It is important to note that every operation has exactly
one predecessor on which it is dynamically control depen-
dent (except the start operation, which has no dynamic

predecessor). For o 6= start and b
dcd
99K o, b is the unique

dynamic control predecessor of o, written b = dcp(o).
Note also that dynamic dependencies and thus Pot

and DCD can be soundly approximated by static
slices. In particular if Pot(o) = {p1, . . . , pk, . . .} then
{stmt(p1), . . . ,stmt(pk), . . .} ⊆ FS(stmt(o)). If p 6∈
Pot(o), it is guaranteed that o cannot influence p through
explicit or implicit flow.

We are now ready to tackle low-equivalency of traces.
As explained earlier, we want to define low-equivalency
of two traces T,U such that for infinite T , if T misses
a low-observable operation o executed in U , o is miss-
ing due to an infinite delay in T . Other reasons for non-
execution of o in T are not allowed.

This idea requires a formalization of the notion “an
operation happens in two different traces”. First we ob-
serve that an operation is uniquely identified by its calling
context and control flow history. More formally, p = q
holds for operations p∈ T and q∈U if stmt(p) = stmt(q),
and either p = q = start, or dcp(p) = dcp(q). This re-
cursive definition terminates as backward control depen-
dency chains are finite. Thus p = q ⇐⇒ DCD(p) =
DCD(q). This definition explicitely includes the case that
an operation occurs in two different traces T and U , writ-
ten o ∈ T ∩U . Note that o ∈ T ∩U still allows that the

memories (in particular the high parts) in both traces at o
are not identical.

Next we observe that the execution of a branching point
in a trace T triggers the execution of all operations in the
chosen branch which are dynamically control dependent
on the branching point; up to the next branching point.
For example, in the code fragment if(b){o1; o2}, both
o1 and o2 are (statically and dynamically) control depen-
dent on b (but o2 is not control dependent on o1). If b
evaluates to true and the then-branch is executed, both
o1 and o2 are executed, unless o1 does not terminate.4

In terms of traces, if b1
dcd
99K o1,o2 . . .ok

dcd
99K b2 (where not

necessarily oi
dcd
99K oi+1), and o1 ∈ T (that is, o1 belongs

to the branch chosen by b1 and thus is executed) then
o2, . . .ok are executed as well, unless there is nontermi-
nation in some oi, causing oi+1 to be delayed infinitely.
Other possibilities for the non-execution of oi+1 do not
exist, because control dependency just means that b1 (and
nobody else) decides about the execution of o1 . . .ok. The
same argument applies if b occurs in two traces T and U .
Hence we define

Definition 3 (Infinite delay) Let T,U be traces and let
both execute branching point b: b ∈ T ∩U. Let o ∈ T be

an operation where b
dcd
99K o (thus o belongs to the branch

b chooses to execute in T). If o 6∈U, U infinitely delays o.

Thus if U executes b and chooses the same branch as in
T , then either U executes o, or does not execute o due to
e.g. an infinite loop between b and o. This definition is
used for the formalization of low-equivalent traces:

Definition 4 (Low-equivalence of traces, ∼low)
Let p be a program and let T and U be two
traces of p. Let obslow(T) = (m0,o0,m0) · · · and
obslow(U) = (n0,q0,n0) · · · be their low-observable
behaviors. Let kT be the number of events in obslow(T)
and kU be the number of events in obslow(U). T and
U are low-equivalent, written T ∼low U, if one of the
following cases holds:

1. T and U are finite, kT = kU , and ∀0≤ i≤ kT :

mi = ni∧oi = qi∧mi = ni

4Note that exceptions and handlers generate additional control de-
pendencies in PDGs and traces [11]. Thus if o1 may throw an ex-
ception, the dependency situation is more complex than in a “regular”
if(b){o1;o2}. Still, the following argument for traces holds.

8

2. T is finite and U is infinite, and

• kT ≥ kU ,

• ∀0≤ i≤ kU : mi = ni∧oi = qi∧mi = ni, and

• ∀kU < j ≤ kT , U infinitely delays an operation
b ∈ DCD(o j).

3. T is infinite and U is finite, and

• kU ≥ kT ,

• ∀0≤ i≤ kT : mi = ni∧oi = qi∧mi = ni, and

• ∀kT < j ≤ kU , T infinitely delays an operation
b ∈ DCD(q j).

4. T and U are infinite, and

• if kT = kU , then ∀0≤ i≤ k : mi = ni∧oi = qi∧
mi = ni.

• if kT > kU , then ∀0 ≤ i ≤ kU : mi = ni ∧ oi =
qi∧mi = ni, and
∀kU < j ≤ kT , U infinitely delays an operation
b ∈ DCD(o j).

• if kT < kU , then ∀0 ≤ i ≤ kT : mi = ni ∧ oi =
qi∧mi = ni, and
∀kT < j ≤ kU , T infinitely delays an operation
b ∈ DCD(q j).

In this definition, “U infinitely delays b ∈ DCD(o j)” ex-
plicitely expresses that the delayed operation must not
necessarily be the low-observable o j, but can be a dy-
namic control predecessor of o j. In any case, b is on the
dynamic control path between okU and o j.

The following definition of LSOD is standard, but uses
our new definition of low-equivalent traces:

Definition 5 (Low-security observational determinism)
Program p is low-security observational deterministic if
the following holds for every pair (t,u) of low-equivalent
inputs: Let T and U be the sets of possible traces resulting
from t and u. Then ∀T,U ∈ T∪U : T ∼low U must hold.

Zdancewic and Myers [40] observed that probabilistic
leaks can only occur if the program contains concurrency
conflicts such as data races. LSOD is guaranteed if there
is no implicit or explicit flow, and in addition program
parts influencing low-observable behaviour are conflict

free. Their observation served as starting point for our
own work, as we realized that not only explicit and im-
plicit flow can naturally be checked using PDGs [11], but
also conflicts and their impact are naturally modeled in
PDGs enriched with conflict edges. We thus provide the
following definition:

Definition 6 (Data and order conflicts) Let a and b be
two operations that may happen in parallel.

• There is a data conflict from a to b, written a
dconf
 b,

iff a defines a variable v that is used or defined by b.

• There is an order conflict between a and b, written

a
oconf
! b, iff both operations are low-observable.

• An operation o is potentially influenced by a data
conflict if there exists operations a,b such that o ∈
Pot(b) and a

dconf
 b.

The following lemma states that an operation in a trace
which is not influenced by a data conflict or by high data,
is either executed in all traces with low-equivalent input,
or is delayed infinitely due to some nontermination in
other operations on which it is control dependent.

Lemma 1 Let p be a program. Let T be a trace of p
and Θ be the set of possible traces whose inputs are low-
equivalent to the one of T . Let o be an operation of p that

is not potentially influenced by a data conflict a
dconf
 b or

an operation q reading high input: o 6∈ (Pot(a)∪Pot(b)∪
Pot(q)). If o ∈ T , then every U ∈ Θ either executes o or
infinitely delays an operation in DCD(o).

Only this lemma justifies our definition of low-
equivalent traces. Appendix A sketches the most impor-
tant proof steps; the full proof can be found in [6]. Note
again that dynamic dependencies can be soundly approx-
imated using PDGs and slices; hence it can be statically
checked whether an operation is missing due to infinite
delay. This remarkable fact, which also guarantees high
precision, characterizes the core difference between our
definition and earlier approaches.

The fundamental soundness theorem for our LSOD cri-
terion can now be stated:

9

Theorem 1 A program is low-security observational de-
terministic if

1. no low-observable operation o is potentially influ-
enced by an operation reading high input,

2. no low-observable operation o is potentially influ-
enced by a data conflict, and

3. there is no order conflict between any two low-
observable operations.

The first rule ensures that the implicit and explicit flow
to o does not transfer high data. The second rule ensures
that high data cannot influence the data flowing to o via in-
terleaving. The third rule ensures that high data cannot in-
fluence the execution order of low-observable operations
via interleaving.

The full proof can be found in [6]; in appendix A we
explain the most important proof steps in a semiformal
way. Note that the theorem is only valid if sequential con-
sistency can be assumed. The Java memory model was
designed to guarantee sequential consistency for race-
free programs, and today formal definitions and machine-
checked guarantees of the JMM are available [18, 17].

A detailed discussion and comparison of our LSOD
variant with other LSOD variations from the literature is
presented in section 6.

4 A Slicing-based LSOD Check
We will now show how to implement a flow-sensitive,
context-sensitive, and optionally time-sensitive IFC
which is based on theorem 1. Indeed, the three condi-
tions of theorem 1 can naturally be checked using slicing
for concurrent programs, as slicing provides sound and
precise approximations of dynamic dependencies.

First, we assume that all PDG nodes are annotated
(classified) with a security level. In practice it is enough
to annotate program inputs and outputs, as the security
level for intermediate nodes can be determined by a fix-
point iteration similar to data flow analysis on the PDG
[11, 10]. Note also that the analysis can handle arbitrary
lattices of security levels, not just the two-element lattice
with levels “high” and “low”. The implementation offers
even a lattice editor [9].

control dependence

data dependence

data confl ict

interference dependence

order confl ict

thread_2thread_1

x = 0

print(x)

y=inputPIN()

whi le(y !=0)

y--

x = 1

print(2)

Figure 7: PDG of the program on the right side of Fig.
1, enriched with data and order conflict edges. The gray
nodes denote the slice for node print(x). Note that the
slice ignores conflict edges.

For the implementation of the LSOD criterion using
PDGs, these are enriched with data and order conflict
edges. The resulting structure is called a CPDG (conflict-
enriched program dependency graph).

Definition 7 (Data and order conflict edges) Let m and
n be two nodes in a PDG G that may happen in parallel.
There is a data conflict edge m→dconf n to G if m defines
a variable v that is used or defined by n. There is an order
conflict edge m↔oconf n to G if both nodes are classified
as sources or sinks.

Figure 7 shows the CPDG of the program on the right
side of Fig. 1, enriched with conflict edges. The exam-
ple assumes that y = inputPIN() is classified as a source
of high data and print(x) and print(2) are classified as
sinks of low data. The CPDG contains two order conflict
edges, one between print(x) and print(2) and one be-
tween print(x) and y = inputPIN(), and three data con-
flict edges, from x = 0 to x = 1, from x = 1 to x = 0 and
from x = 1 to print(x).

The algorithm also needs

Definition 8 (TCFG) A Threaded Control Flow Graph
(TCFG) consists of the interprocedural CFGs for the in-
dividual threads, connected by fork and join edges.

A formal definition of TCFGs can be found in [6].
Once CPDG and TCFG have been constructed, the IFC
checker proceeds as follows:

1. Compute a backward slice for every sink (program
output) s. Let l be the security level of s.

10

2. If the backward traversal encounters a source of level
h 6v l, then the program may leak data of level h via
explicit or implicit flow and is rejected. Note that
this criterion is also used in our sequential IFC [11].

3. If the traversal encounters an incoming data conflict
edge, the program may contain a probabilistic data
channel and is rejected.

4. If the traversal encounters an order conflict edge,
check if the order conflict is low-observable (i.e. both
conflicting nodes are classified low). If so, the pro-
gram may contain a probabilistic order channel and
is rejected.

As an example, consider Fig. 7. The backward slice
for print(2) encounters the order conflict edge between
print(2) and print(x), so the program may contain a
probabilistic order channel. The slice for print(x), high-
lighted gray in figure 7, encounters all data conflict edges,
so the program may contain a probabilistic data channel
as well, whereas its implicit and explicit flow is secure.

In order to avoid false alarms in programs which do
not use any high data, we optimize item 4 in the above
algorithm as follows:

4. If the traversal encounters an order conflict edge,
check if the order conflict is low-observable. If so,
check in the TCFG if any node that can be executed
before both conflicting nodes is a high source. If so,
the program may contain a probabilistic order chan-
nel and is rejected.

In the implementation, rules 2. - 4. are integrated into a
backward slicer for multi-threaded Java. Note that we use
an I2P slicer: a time-sensitive slicer would be more pre-
cise, but would make the algorithm much more complex
and expensive. Integration of a time-sensitive slicer is left
for future work. In practice, I2P precision is often suffi-
cient; time-sensitive slicing can have exponential runtime
and thus should only be applied if the I2P approach pro-
duces too many false alarms.

Algorithms 1, 2 and 3 present detailed pseudocode. Al-
gorithm 1 receives a CPDG in which sources and sinks
are already classified and which already contains the or-
der conflict edges, the corresponding TCFG and the secu-
rity lattice in charge. It then runs a slicing-based check
of the implicit and explicit flow (that is, it checks rule 2;

Algorithm 1 Information flow control for concurrent pro-
grams.
Require: A classified CPDG G = (N,E), its TCFG C, a

security lattice L.
Ensure: ‘true’ if the program is LSOD (up to declassifi-

cation and harmless conflicts), ‘false’ otherwise.
Let src(n) be the source level of node n (=⊥ if n is not
a source).
Let sink(n) be the the sink level of node n (=> if n is
not a sink).

/* Check implicit and explicit flow: */
Let flow(G,C,L) be a function that returns false if G
contains illicit implicit or explicit flow.
if flow(G,C,L) == false then

return false

/* Scan the program for probabilistic channels. */
/* Check sources: */
for all n ∈ N : src(n) 6=⊥ do

if prob(G,C,n,src(n),L) == false then
return false

/* Check sinks: */
for all n ∈ N : sink(n) 6=> do

if prob(G,C,n,sink(n),L) == false then
return false

return true

in fact the algorithm from [11] is used). If the program
passes that check, it is scanned for probabilistic channels
by checking rules 3 and 4. This is done by Alg. 2.

Algorithm 2 receives the CPDG, the TCFG, the secu-
rity lattice and a source or sink s of a certain security level
l. The algorithm first checks whether s is involved in a
low-observable order conflict that can be preceded by a
source of high data. This task is delegated to the auxil-
iary procedure benign in Alg. 3. After that, it executes an
extended I2P slicer which additionally checks if s is po-
tentially influenced by a data conflict whose nodes can be
preceded by a source of high data. This check is again del-
egated to procedure benign. The “phase 1” and “phase 2”
in the I2P loop are just the two phases of the HRB slicer,
which is inlined into the I2P algorithm.

11

Algorithm 2 Procedure prob detects probabilistic chan-
nels.
Require: An CPDG G = (V,E), its TCFG C, a node s,

its security level l, the security lattice L.
Ensure: ‘false’ if s leaks information through a proba-

bilistic channel, ‘true’ otherwise.
/* Check G for probabilistic order channels. */
/* inspect order conflicts: */
for all m↔oconf s do

if benign(C,m,n,oconf ,L,x) == false then
return false

/* Check G for probabilistic data channels. */
/* initialize the modified I2P-slicer*/
W = {s} {a worklist}
M = {s 7→ true} {maps visited nodes to true (phase 1)
or false (phase 2)}
repeat

W =W \{n} {remove next node n from W}
/* look for data conflicts */
for all m→dconf n do

if benign(C,m,n,dconf ,L, l) == false then
/* conflict is harmful */
return false

/* proceed with standard I2P slicing */
/* handle incoming edges, exclude conflict edges */
for all m→e n,e /∈ {oconf ,dconf} do

/* if m hasn’t been visited yet or we are in phase 1
and m has been visited in phase 2 */
if m 6∈ dom M ∨ (¬M(m)∧ (M(n)∨ e == conc))
then

/* if we are in phase 1 or if e is not a call or
param-in edge, add m to W */
if M(n)∨ e /∈ {pi,call} then

W =W ∪{m}
/* determine how to mark m: */
if M(n)∧ e == po then

/* we are in phase 1 and e is a param-out
edge: mark m with phase 2 */
M = M∪{m 7→ false}

else if ¬M(n)∧ e == conc then
/* we are in phase 2 and e is a concurrency
edge: mark m with phase 1 */
M = M∪{m 7→ true}

else
/* mark m with the same phase as n */
M = M∪{m 7→M(n)}

until W =∅
return true /* no probabilistic channels */

Algorithm 3 Procedure benign identifies benign con-
flicts.
Require: A TCFG C = (N,E), two conflicting nodes a

and b, the kind e of the conflict, a security lattice L, a
security level l ∈ L.

Ensure: ‘true’ if the conflict is harmless, ‘false’ other-
wise.
Let reaches(m,n,C) return ‘true’ if there exists a real-
izable path from node m to node n in C.

/* Check visibility of order conflicts. */
if e == oconf then

x = (src(a) 6= ⊥∧ src(a) v l) ∨ (sink(a) 6= >∧
sink(a)v l) {is ‘a’ visible?}
y = (src(b) 6= ⊥∧ src(b) v l) ∨ (sink(b) 6= >∧
sink(b)v l) {is ‘b’ visible?}
if ¬x ∨ ¬y then

return true /* the order conflict is not visible */

/* Check if a source of high data may execute before
the conflicting nodes. */
for all n ∈ N do

if src(n) 6v l then
if (reaches(n,a)∨n ‖ a)∧ (reaches(n,b)∨n ‖ b)
then

return false /* the conflict is harmful */

return true /* the outcome of the conflict cannot be
influenced by high data */

Procedure benign checks whether the given conflict is
an order conflict and whether it is low-observable, which
it is if both conflicting nodes are visible to the attacker.
Next, it checks for both order and data conflicts whether
the involved nodes can be preceded by a source n of high
data. This is the case if n reaches them on realizable paths
in the TCFG or if it may happen in parallel to them.

Example. Let us apply the algorithm to figure 7. Al-
gorithm 1 passes the flow call successfully (no implicit
or explicit flows, as checked by sequential IFC for ev-
ery thread). It then calls algorithm 2 for the high source
y = inputPIN() and for the two low sinks print(x) and
print(2). Just for illustration, let us trace the last call.
Algorithm 2 sees the order conflict between print(2) and

12

print(x), hence it calls algorithm 3. The latter discovers
visibility of the conflict in the second main phrase of the
first if, which prevents the conflict to be benign – algo-
rithm 2 immediately returns false. But for illustration,
let us assume this order conflict would not exist, and trace
the algorithm a little further. The worklist for the I2P
slicer is initialized with print(x). In the first iteration,
the for loop discovers m =x=0; and m =x=1; to be in im-
mediate data conflict with n =print(x), so algorithm 3 is
called, which discovers that a source of high data, namely
y=inputPIN(); can reach print(x); hence the data con-
flict is harmful. The I2P slicer does not preceed any fur-
ther, but immediately returns false.

The other two calls to algorithm 2 from algorithm 1
proceed similarly. The example shows that the LSOD
check is terminated as soon as a leak is found; it can also
be modified to return a list of all leaks (CPDG paths).

Run-time analysis. Let us now discuss the run-time
of our algorithm. If we exclude the check of the im-
plicit and explicit flow done by the external procedure
flow, the runtime complexity is dominated by the reacha-
bility check in procedure benign. For each conflict edge,
O(|NCPDG|) complete traversals of the TCFG may be nec-
essary, and the number of conflict edges in the CPDG is
bound by O(|NCPDG|2). This means a worst case com-
plexity of O(|ECPDG|+ |NCPDG|3 ∗ |ETCFG|) for one call
of procedure prob, the first summand being the upper
bound for the costs of the extended I2P slicer, the sec-
ond summand, for procedure benign. Since prob can be
called O(|NCPDG|) times in the worst case, the complete
IFC check has a worst case complexity of O(|NCPDG| ∗
|ECPDG|+ |NCPDG|4 ∗ |ETCFG|).

Several optimizations trading memory for speed are
possible. The harmlessness of a conflict edge needs
to be checked at most once for each security level in
the lattice L and can be cached and reused. It also
can be precomputed which sources of information can
reach which conflicting nodes, which can be efficiently
done in O(|NCPDG| ∗ |ETCFG|) by computing a context-
sensitive forward slice of the TCFG for each source.
Both optimizations together reduce the runtime complex-
ity to O(|NCPDG|) slices of the CPDG in prob, O(|L| ∗
|NCPDG|2) calls of benign and O(|NCPDG|) slices of the
TCFG, summing up to a total complexity of O(|NCPDG| ∗
|ECPDG|+ |L| ∗ |NCPDG|2 + |NCPDG| ∗ |ETCFG|).

5 Evaluation
The above algorithms have been implemented for full
Java, and integrated into the sequential IFC analysis as
described in [11]. In the following, we apply the algo-
rithm to two example programs, and we evaluate scalabil-
ity through a benchmark. More case studies can be found
in [6]. To our knowledge, no other evaluations of LSOD
precision or scaleability have been published, hence we
cannot compare our implementation to other algorithms.

5.1 Analysis of literature examples
Our first example program is from [32], and is given in
figure 8. It reads a PIN and employs three threads to com-
pute a value result, which is finally printed. There is
no explicit or implicit flow from PIN to result, so an
IFC analysis considering only these kinds of information
flow classifies the program secure. But the assignments
to result in threads Alpha and Beta are conflicting, and
the outcome of the conflict is influenced by the values of
trigger0 and trigger1, which in turn are changed depen-
dent on PIN’s value in thread Gamma. Thus, this program
contains a probabilistic data channel which leaks infor-
mation about PIN to result. And actually, according to
[32], if the input PIN is less twice the value of variable
mask, then PIN’s value is eventually copied into result
and printed to the screen (provided that scheduling is fair).

We classified statement PIN = Integer.parseInt
(args[0]) as a high source and System.out.println
(result) as a low sink. No other classifications were nec-
essary. Our algorithm detected a probabilistic data chan-
nel from the source to the sink, as required.

Our second example is from [20], and is given in fig-
ure 9. The program is probabilistic noninterferent, hence
safe, which is however difficult to discover: only very pre-
cise IFC will avoid false alarms. The program manages a
stock portfolio of Euro Stoxx 50 entries. It consists of
four threads, coordinated by an additional main thread.
The program first runs the Portfolio and EuroStoxx50
threads concurrently, where Portfolio reads the user’s
stock portfolio from storage and EuroStoxx50 retrieves
the current stock rates. When these threads have fin-
ished, threads Statistics and Output are run concur-
rently, where Statistics calculates the current profits
and Output incrementally prepares a statistics output. Af-

13

c l a s s Alpha ex tends Thread {
p u b l i c vo id run () {

whi le (mask != 0) {
whi le (t r i g g e r 0 == 0) ; /∗ busy w a i t ∗ /
r e s u l t = r e s u l t | mask ;
t r i g g e r 0 = 0 ;
m a i n t r i g g e r ++;
i f (m a i n t r i g g e r == 1) t r i g g e r 1 = 1 ;

}
}

}
c l a s s Beta ex tends Thread {

p u b l i c vo id run () {
whi le (mask != 0) {

whi le (t r i g g e r 1 == 0) ; /∗ busy w a i t ∗ /
r e s u l t = r e s u l t & ~mask ;
t r i g g e r 1 = 0 ;
m a i n t r i g g e r ++;
i f (m a i n t r i g g e r == 1) t r i g g e r 0 = 1 ;

}
}

}
c l a s s Gamma ex tends Thread {

p u b l i c vo id run () {
whi le (mask != 0) {

m a i n t r i g g e r = 0 ;
i f ((PIN & mask) == 0) t r i g g e r 0 = 1 ;
e l s e t r i g g e r 1 = 1 ;
whi le (m a i n t r i g g e r < 2) ; /∗ busy w a i t ∗ /
mask = mask / 2 ;

}
}

}

c l a s s SmithVolpano {
s t a t i c i n t m a i n t r i g g e r , t r i g g e r 0 ,

t r i g g e r 1 = 0 , PIN , r e s u l t = 0 ;
s t a t i c i n t mask = 2048 ; / / a power o f 2

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s)
throws E x c e p t i o n {

PIN = I n t e g e r . p a r s e I n t (a r g s [0]) ;
Thread a=new Alpha () ;
Thread b=new Beta () ;
Thread g=new Gamma () ;
g . s t a r t () ; a . s t a r t () ; b . s t a r t () ;

/ / s t a r t a l l t h r e a d s
g . j o i n () ; a . j o i n () ; b . j o i n () ;

/ / j o i n a l l t h r e a d s
System . o u t . p r i n t l n (r e s u l t) ;

}
}

Figure 8: Example from Smith and Volpano [32]

ter these threads have finished, the statistics are displayed,
together with a pay-per-click commercial. An ID of that
commercial is sent back to the commercials provider to
avoid receiving the same commercial twice. The port-
folio data, pfNames and pfNums, is secret, hence the Euro
Stoxx request by EuroStoxx50 and the message sent to the
commercials provider should not contain any information
about the portfolio. As Portfolio and EuroStoxx50 do
not interfere, the Euro Stoxx request does not leak infor-
mation about the portfolio. The message sent to the com-
mercials provider is not influenced by the values of the
portfolio, either, because there is no explicit or implicit
flow from the secret portfolio values to the sent message.
Furthermore, the two outputs have a fixed relative order-
ing, as EuroStoxx50 is joined before Output is started.
Hence, the program should be considered secure.

We classified the two statements reading the portfo-
lio from storage, pfNames = getPFNames() and pfNums
= getPFNums(), as high sources and the output flushes
nwOutBuf in EuroStoxx50 and at the end of main as low
sinks; other classifications were not necessary. The chal-
lenge of this program is to detect that EuroStoxx50 is
joined before nwOutBuf is flushed in the main procedure,
because otherwise it cannot be determined that the two
flushes of nwOutBuf have a fixed execution order. And
then the program would have to be rejected because the
resulting order conflict is influenced by both sources.

Our MHP analysis was able to detect that the joins of
the threads are must-joins, which enabled our IFC algo-
rithm to identify that there is no order conflict between
the two flushes of nwOutBuf, therefore no probabilistic
channel was reported. This example thus demonstrates
the high precision of our algorithm.

5.2 Runtime Behavior
We investigated how well our implementation scales with
increasing program sizes, lattice sizes and numbers of
sources and sinks. We applied our algorithm to a bench-
mark of 8 small and medium-sized programs between 200
and 3000 LOC (taken from the Bandera benchmark and
the JavaGrande benchmark). We used three different se-
curity lattices: Lattice A is a simple chain of three ele-
ments, public v confidential v secret. Lattice B consists
of 22 elements, arranged in a lattice of height 9, result-
ing in many incomparable pairs of elements. Lattice C

14

c l a s s Mante l {
/ / t o a l l o w mutua l acces s , t h r e a d s are g l o b a l v a r i a b l e s
s t a t i c P o r t f o l i o p = new P o r t f o l i o () ;
s t a t i c EuroStoxx50 e = new EuroStoxx50 () ;
s t a t i c S t a t i s t i c s s = new S t a t i s t i c s () ;
s t a t i c Outpu t o = new Outpu t () ;

s t a t i c B u f f e r e d W r i t e r nwOutBuf =
new B u f f e r e d W r i t e r (new O u t p u t S t r e a m W r i t e r (System . o u t)) ;

s t a t i c B u f f e r e d R e a d e r nwInBuf =
new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (System . i n)) ;

s t a t i c S t r i n g [] o u t p u t = new S t r i n g [5 0] ;

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) throws E x c e p t i o n {
/ / g e t p o r t f o l i o and e u r o s t o x x 5 0
p . s t a r t () ; e . s t a r t () ;
p . j o i n () ; e . j o i n () ;
/ / compute s t a t i s t i c s and g e n e r a t e o u t p u t
s . s t a r t () ; o . s t a r t () ;
s . j o i n () ; o . j o i n () ;
/ / d i s p l a y o u t p u t
s t T a b P r i n t ("No . \ t | Name \ t | P r i c e \ t | P r o f i t ") ;
f o r (i n t n = 0 ; n < 5 0 ; n ++)

s t T a b P r i n t (o u t p u t [n]) ;
/ / show commerc ia l s
s t T a b P r i n t (e . c o S h o r t +" P r e s s # t o g e t more i n f o r m a t i o n ") ;
char key = (char) System . i n . r e a d () ;
i f (key == ’ # ’) {

System . o u t . p r i n t l n (e . c o F u l l) ;
nwOutBuf . append ("shownComm : "+e . coOld) ;
nwOutBuf . f l u s h () ;

/ / p u b l i c o u t p u t
}

}
}

c l a s s P o r t f o l i o ex tends Thread {
i n t [] e s O l d P r i c e s , pfNums ;
S t r i n g [] pfNames ; S t r i n g p f T a b P r i n t ;

p u b l i c vo id run () {
pfNames = getPFNames () ; / / s e c r e t i n p u t
pfNums = getPFNums () ; / / s e c r e t i n p u t
f o r (i n t i = 0 ; i < pfNames . l e n g t h ; i ++)

p f T a b P r i n t += pfNames [i] + " | " + pfNums [i] ;
}

i n t locPF (S t r i n g name) {
f o r (i n t i = 0 ; i < pfNames . l e n g t h ; i ++)

i f (pfNames [i] . e q u a l s (name)) re turn i ;
re turn −1;

}
}

c l a s s EuroStoxx50 ex tends Thread {
S t r i n g [] esName = new S t r i n g [5 0] ;
i n t [] e s P r i c e = new i n t [5 0] ;
S t r i n g c o S h o r t ;
S t r i n g c o F u l l ;
S t r i n g coOld ;

p u b l i c vo id run () {
t r y {

nwOutBuf . append (" getES50 ") ;
nwOutBuf . f l u s h () ;

/ / p u b l i c o u t p u t
S t r i n g nwIn = nwInBuf . r e a d L i n e () ;
S t r i n g [] s t r A r r = nwIn . s p l i t (" : ") ;
f o r (i n t j = 0 ; j < 5 0 ; j ++) {

esName [j] = s t r A r r [2∗ j] ;
e s P r i c e [j] = I n t e g e r . p a r s e I n t (s t r A r r [2∗ j + 1]) ;

}
/ / commerc ia l s
c o S h o r t = s t r A r r [1 0 0] ;
c o F u l l = s t r A r r [1 0 1] ;
coOld = s t r A r r [1 0 2] ;

} ca tch (IOExcep t ion ex) {}
}

}

c l a s s S t a t i s t i c s ex tends Thread {
i n t [] s t = new i n t [5 0] ;
i n t k = 0 ;

p u b l i c vo id run () {
k = 0 ;
whi le (k < 50) {

i n t i p f = p . locPF (e . esName [k]) ;
i f (i p f > 0)

s t [k] = (p . e s O l d P r i c e s [k] − e . e s P r i c e [k]) ∗ p . pfNums [i p f] ;
e l s e

s t [k] = 0 ;
k ++;

}
}

}

c l a s s Outpu t ex tends Thread {
p u b l i c vo id run () {

f o r (i n t m = 0 ; m < 5 0 ; m++) {
whi le (s . k <= m) ; /∗ busy w a i t ∗ /
o u t p u t [m] = m+" | "+e . esName [m]+ " | " + e . e s P r i c e [m]+ " | "+s . s t [m] ;

}
}

}

Figure 9: Example from Mantel et al [20], converted to Java. For brevity, some methods are not shown.

15

Table 1: Average execution times of our IFC algorithm
for different programs, lattices and numbers of sources
and sinks (in seconds).

Name + sources x sinks Name + sources x sinks
Lattice 10 x 10 33 x 33 100x 100 Lattice 10 x 10 33 x 33 100x 100
LG + A 1.6 4.8 21.2 MC + A 17.1 53.3 224.2
LG + B 1.6 5.8 29.7 MC + B 18.7 53.3 173.6
LG + C 2.0 9.5 170.7 MC + C 17.5 54.8 205.0
(200 LOC) (1400 LOC)
SQ + A 5.9 17.2 54.0 JS + A 2.2 5.2 18.8
SQ + B 5.5 17.3 68.0 JS + B 2.4 5.6 20.3
SQ + C 5.8 21.1 162.5 JS + C 2.4 5.8 40.7
(350 LOC) (500 LOC)
KK + A 25.7 58.5 170.0 PO + A 6.4 18.1 54.6
KK + B 22.1 57.5 187.8 PO + B 7.4 19.1 66.8
KK + C 25.2 64.9 256.2 PO + C 7.0 20.4 89.8
(600 LOC) (2000 LOC)
RT + A 8.9 25.3 99.3 CS + A 19.4 52.5 153.3
RT + B 7.3 23.9 116.1 CS + B 21.5 52.1 160.2
RT + C 8.4 27.2 175.1 CS + C 21.0 53.6 177.3
(950 LOC) (3000 LOC)

is a huge lattice of height 7 with 254 elements. For each
program and lattice, we randomly chose 10 sources and
10 sinks, 33 sources and 33 sinks and finally 100 sources
and 100 sinks of random security levels and analyzed the
classified programs with our algorithm. We thereby mea-
sured the execution times of the whole algorithm, of the
scan for probabilistic channels and of the scan for illicit
and explicit flow. The test was run ten times and the pre-
sented results are the average values.

Table 1 shows the average execution times. It contains
one row for each combination of program and lattice, i.e.
row ‘LG + A’ contains the results for program “Laplace-
Grid” and lattice A. The numbers reveal that the most im-
portant factor influencing the runtime behavior is, besides
the sheer size of the program, the number of sources and
sinks. If only 10 sources and 10 sinks were selected, the
size of the lattice in charge did not really matter. The run-
time for lattice C was in several cases faster than that for
lattice B or A. The cause of that behavior is that with 10
sources and 10 sinks the size of lattice C is not exhausted
– the classification can introduce at most 20 different se-
curity levels to the analysis, the same maximal number as
with lattice B. With 33 sources and 33 sinks the huge size
of lattice C slowly became noticeable. Here the analysis
for a program with lattice C was in most cases the most
expensive. With 100 sources and 100 sinks the size of
lattice C eventually became the dominating cost factor.

Table 2 shows the percentage share of the probabilis-
tic channel detection among the overall execution times.

Table 2: The percentage share of the probabilistic channel
detection among the overall execution times.

Name + sources x sinks Name + sources x sinks
Lattice 10 x 10 33 x 33 100x 100 Lattice 10 x 10 33 x 33 100x 100
LG + A 53 48 62 MC + A 45 38 38
LG + B 56 54 73 MC + B 43 38 39
LG + C 58 73 94 MC + C 44 40 47
SQ + A 44 39 44 JS + A 52 46 41
SQ + B 43 40 55 JS + B 46 46 46
SQ + C 43 50 80 JS + C 53 54 71
KK + A 57 45 43 PO + A 46 38 35
KK + B 58 46 45 PO + B 45 37 36
KK + C 58 48 58 PO + C 43 39 46
RT + A 44 40 44 CS + A 38 29 28
RT + B 49 41 50 CS + B 34 30 28
RT + C 47 46 67 CS + C 32 31 34

The remaining time was consumed by the algorithm of
Hammer et al. [11], which is employed for verifying
the explicit and implicit flow. The results show that the
two checks were similarly fast. However, it should be
noted that the performance of the detection of probabilis-
tic channels seems to decline stronger for huge lattices
than Hammer et al.’s algorithm. For lattice C and 100x100
sources and sinks, the detection of probabilistic channels
was in most cases more time-consuming. According to
Hammer [9, 10], slicing-based IFC gets along with com-
paratively few annotations, which is an encouraging diag-
nosis.

6 Discussion and Related Work
In the following, we compare our variant of LSOD with
probabilistic noninterference and LSOD definitions from
the literature.

6.1 Weak Probabilistic Noninterference
Smith and Volpano’s weak probabilistic noninterference
(WPN) property [31, 35] enforces probabilistic noninter-
ference via weak probabilistic bisimulation. A program
is WPN if for each pair of low-equivalent inputs, each se-
quence of low-observable events caused by one input can
be caused by the other input with the same probability.
It is called ‘weak’ because the number of steps between
two events in one run may differ from the number of steps
between them in the other run.

WPN addresses explicit and implicit flow and proba-
bilistic channels. Like in our analysis, timing channels

16

void t h r e a d _ 1 () :
h = i n p u tP I N () ;
i f (h < 0)

h = h ∗ (−1) ;
l = 0 ;

void t h r e a d _ 2 () :
x = 1 ;

void t h r e a d _ 1 () :
h = i n p u t P I N () ;
i f (h == 0)

h = h + 2 ;
e l s e

h = h − 2 ;
l = 0 ;

void t h r e a d _ 2 () :
l = 1 ;

Figure 10: Two examples comparing the restrictions of
LSOD and weak probabilistic noninterference. We as-
sume that Smith and Volpano’s technique classifies var-
iables h and x as high and l as low, and that our technique
classifies h = inputPIN() as a high input and l = 0 and
l = 1 as low output. The left program is accepted by our
condition and rejected by theirs, the right program is re-
jected by ours and accepted by theirs.

and termination channels are excluded (which permits the
probabilistic bisimulation to be weak). This renders their
interpretation of low-observable behavior very similar to
ours: It consists of a sequence of low-observable events,
but lacks information about the time at which such an
event occurs. The major difference between their defi-
nition of equivalent low-observable behavior and ours is
that their definition disallows low-observable events to
be delayed infinitely in the one low-observable behavior
and being executed in the other. Thus, their definition is
stricter with respect to termination channels and only per-
mits the sheer termination of the program to differ.

Attacker model. The WPN attacker model is quite dif-
ferent from ours, and it is necessary to discuss the inter-
dependence between attacker model and precision. WPN
globally partitions the program variables into high and
low, and the attacker is able to see all low variables at
any time. Hence, the values of the low variables and their
changes over time constitute the low-observable behavior.
In contrast, our attacker can only see low operations and
operands once they are executed, but cannot see all low
variables at all times. In particular, in our flow-sensitive
approach the same variable can be low at one program
point or high at another, dependent on the context. Theo-
rem 1 guarantees soundness anyway.

Thus the WPN attacker is generally more powerful than

ours, because we assume that only low operations/events
and their low operands are visible to the attacker. Our
mechanism aims to classify I/O operations as high or low
and to treat unclassified operations as invisible, which in
turn is not possible with Smith and Volpano’s mechanism.

Why did we choose a weaker attacker? WPN pays a
price for their stronger attacker model, in terms of pre-
cision and program restrictions. WPN is not flow sensi-
tive which leads – in particular for concurrent programs
– to strange false alarms. For example, the fragment int
h = PIN(); print(l); l = h; print(l2); is con-
sidered unsafe by WPN, but safe by our LSOD. In fact
flow-sensitive PDGs and slicing can only be applied un-
der our attacker model, as under WPN all low variables
must be considered, even those which are not found by
slicing. Summarizing, WPN attackers see low memory,
LSOD attackers see low events; it depends on the appli-
cation context which attacker scenario is more realistic.

Implementation. Smith and Volpano present a
security-type system that guarantees that well-typed pro-
grams are weakly probabilistic noninterferent. Expres-
sions are classified as high or low, where an expression
is low iff it does not contain any high variable. A program
is weakly probabilistic noninterferent if

• only low expressions can be assigned to low varia-
bles,

• a conditional structure with a high guard cannot as-
sign to a low variable and

• a conditional structure whose running time depends
on high variables cannot be followed sequentially by
assignments to low variables.

Restrictions. A weakness of Smith and Volpano’s
security-type system is that it lacks a detection of con-
flicts. Probabilistic channels are prevented by forbidding
assignments to low variables sequentially behind condi-
tional structures whose running time depends on high var-
iables, which is very restrictive. The program on the left
side of Fig. 10 is rejected by their security constraint, be-
cause the running time of the if-structure depends on high
data and is followed sequentially by l = 0. However, it
does not contain a probabilistic channel because l = 0 is
not involved in an order conflict or influenced by a data
conflict. It therefore satisfies our LSOD.

17

The type system assumes that a single statement has a
fixed running time, which is not necessarily the case in
reality. Based on this assumption, programs like that on
the right side of Fig. 10 are accepted by their type system,
because the branches of the if-structure have equal length
and thus different values of h do not alter the probabilities
of the possible ways of interleaving of l = 0 and l = 1.
We explicitly aim to reject such programs, arguing that
different running times of h = inputPIN() could already
cause a probabilistic channel, and our security constraint
rejects the program because of the data conflict between
l = 0 and l = 1.

Smith and Volpano’s security-type system is restricted
to probabilistic schedulers and breaks, for example, in the
presence of a round-robin scheduler [31]. This is a dis-
advantage compared with LSOD, which holds for every
scheduler. The type system does not support a modular
verification of programs and libraries, which is also true
for our LSOD checker.

6.2 Strong Security
Sabelfeld and Sands’ security property strong secu-
rity [30] addresses implicit and explicit flow, probabilistic
channels and termination channels. It enforces probabilis-
tic noninterference for all schedulers whose decisions are
not influenced by high data. It makes the following re-
quirements to a program p and all possible pairs (t,u) of
low-equivalent inputs: Let T and U be the set of possible
program runs resulting from t and u. For every T ∈ T,
there must exist a low-equivalent program run U ∈ U.

Even though it looks like a possibilistic property, strong
security is capable of preventing probabilistic channels,
the trick being the definition of low-equivalent program
runs: Two program runs are low-equivalent if they have
the same number of threads and they produce the same
low-observable events and create or kill the same number
of threads at each step under any scheduler whose deci-
sions are not influenced by high data. This ‘lockstep exe-
cution’ requirement allows to ignore the concrete schedul-
ing strategy.

Attacker model. Programs are classified by partition-
ing variables into high and low variables. The attacker
sees all low variables at any one time (see discussion
above) and is aware of program termination, so the values
of the low variables, their changes over time and the ter-

mination behavior constitute the low-observable behavior.
Strong security assumes that the attacker is not able to see
which statement is responsible for a low-observable event
and is designed to identify whether two syntactically dif-
ferent subprograms have equivalent semantic effects on
the low-observable behavior, which makes it possible to
identify programs like that on the left side of Fig. 11 as
secure. Even though the assignments to the low variable l
are influenced by high data via implicit flow, strong secu-
rity states that the low-observable behavior is not, because
both branches lead to 0 being assigned to l. Our algorithm
is not able to recognize this program as secure and rejects
it, the same holds for weak probabilistic noninterference.

Comparing their definition of low-observable behavior
with ours and with the one of Smith and Volpano shows
typical disagreement on the capabilities of the attacker.
Sabelfeld/Sands and Smith/Volpano assume that the at-
tacker is able to see low variables at any time, which
we do not, Smith/Volpano and we assume that the at-
tacker cannot exploit termination channels and is able to
identify statements responsible for low-observable events,
which is seen contrarily by Sabelfeld/Sands.

Advantages and restrictions. The requirement of
lock-step execution implies that strongly secure pro-
grams can be combined sequentially or in parallel
to a new strongly secure program (compositionality).
Sabelfeld [29] has proven that strong security is the least
restrictive security property that provides this degree of
compositionality and scheduler-independence. Its com-
positionality is its outstanding property and an advantage
over our LSOD, which is not compositional. On the other
hand, lockstep execution imposes serious restrictions to
programs, and an investigation of its practicability re-
mains an important open issue.

The restriction to schedulers which do not touch high
data means that any information possibly used by the
scheduler, for example thread priorities or the mere num-
ber of existing threads, must be classified as low. This in
turn means that the classification of a program becomes
scheduler-dependent, so the scheduler-independence of
strong security is bought by making the classification
scheduler-dependent. This makes it possible to break
strong security by running the program under a sched-
uler for which the attacker knows the classification of the
program to be inappropriate. This is a disadvantage com-
pared with our technique, whose security property, secu-

18

void main () :
h = i n p u tP I N () ;
i f (h < 0)

l = 0 ;
e l s e

l = 0 ;

void t h r e a d _ 1 () :
h = i n p u tP I N () ;
i f (h < 0)

h = h ∗ (−1) ;
e l s e

s k i p ;
l = 0 ;

void t h r e a d _ 2 () :
x = 1 ;

Figure 11: Two examples demonstrating the capabilities
of strong security. We assume that h and x are classified as
high and l as low. The left program is strongly secure, be-
cause both branches assign the same value to l. The right
program is a transformation of the program on the left of
Fig. 10, where the additional skip statement removes the
probabilistic data channel.

rity constraint and classification mechanism are schedu-
ler-independent.

Implementation. Sabelfeld and Sands present a
security-type system which ensures that a well-typed pro-
gram is strongly secure. The type system checks – sim-
ilarly to that of Smith and Volpano – whether implicit
and explicit flow is secure, and disallows loops with high
guards completely in order to prevent termination chan-
nels.

Similar to Smith and Volpano, and in contrast to our
LSOD, the authors assume that a single statement has a
fixed execution time. Under that assumption, probabilis-
tic channels may only appear if assignments to low varia-
bles are sequentially preceded by if-structures with high
guards (since they forbid loops with high guards com-
pletely). The specific feature of their type system is that it
transforms if-structures with high guards such that they
cannot cause probabilistic channels. For that purpose,
it pads the branches of such an if-structure with skip-
statements until the branches have the same number of
statements. For example, the program on the left-hand
side of Fig. 10 would be transformed to the program on
the right-hand side of Fig. 11 and would then be accepted.

6.3 LSOD by Zdancevic and Myers
Zdancevic and Myers [40] pointed out that conflicts are a
necessary condition of probabilistic channels. They sug-

gested combining a security-type system for implicit and
explicit flow with a conflict analysis, arguing that pro-
grams without conflicts have no probabilistic channels.

The authors address implicit and explicit flow as well as
probabilistic data channels, called internal timing chan-
nels in [40]. They exclude termination channels and prob-
abilistic order channels and justify that by confining the
attacker to be a program itself (e.g. a thread). Such an
attacker is not able to observe the relative order of low-
observable events, because such an observation requires a
probabilistic data channel in which the differing relative
orders manifest.

A program is classified by partitioning variables into
high and low, hence the low-observable behavior consists
of the changes of low variables over time. Since the rela-
tive order of low-observable events does not matter, each
low variable can be inspected in isolation. Let T be a
program run and T (v) be the sequence of values a var-
iable v has during the program run, called the location
trace of v. Two program runs T and U are low-equivalent
if for every low variable l the location traces T (l) and
U(l) are equal up to the length of the shorter run and
up to stuttering, which means that up to the shorter se-
quence l undergoes the same changes in both program
runs, but not necessarily at the same time. For example, if
T (l) = 〈0,0,0,1,1,2,3〉 and U(l) = 〈0,1,2〉, then T and
U are equivalent with respect to l.

The authors apply the approach to λ PAR
SEC , a concurrent

language with message-passing communication. Choos-
ing message-passing makes the detection of data conflicts
more specific: Data conflicts can only appear due to con-
flicting accesses to the same communication channel. The
language provides linear channels, communication chan-
nels that are used for transmitting exactly one message
and thus guarantee conflict-free communication. The au-
thors present a security-type system that verifies confiden-
tiality of implicit and explicit flow, and verifies that linear
channels are used exactly once. The type system guar-
antees that well-typed programs are low-security obser-
vational deterministic if they are additionally free of data
conflicts. However, a suitable analysis of data conflicts is
not presented.

Attacker model. Zdancevic and Myers’ attacker is
weaker than ours, as probabilistic order channels are
excluded. It is explicitly designed to tackle malicious
threads spying out confidential information in the host

19

system. It is possible to modify our analysis to comply
with their attacker, by simply skipping the detection of
probabilistic order channels.

Restrictions. Their security constraint requires that
programs are completely free of data conflicts, which is
much stricter than ours. This requirement de facto pre-
vents an application to languages with shared memory,
because any program containing a data conflict would be
rejected, even if the conflict does not influence the low-
observable behavior at all.

6.4 LSOD by Huisman et al.
Huisman et al. [14] took up and improved the work of
Zdancevic and Myers. They pointed out that Zdancevic
and Myers’ security property contains a leak, because its
definition of low-equivalent program runs is restricted to
the length of the shorter run. Consider the program on
the left of Fig. 12, taken from [14], which copies a secret
PIN to low variable l. It is sequential and therefore free
of conflicts. Because of the loop, no two program runs
with low-equivalent inputs and different input values for
h have the same length. The additional assignments to
l in the longer run, after which h has been copied to l,
always fall out of the comparison. But up to the length
of the shorter program run l has the same values in both
program runs after every step, hence the program is ac-
cepted by Zdancevic and Myers’ property. Huisman et
al. [14] close that leak by strengthening the definition of
low-equivalent program runs: Two program runs T and
U are low-equivalent if for every low variable l the loca-
tion traces T (l) and U(l) are equal up to stuttering. This
means that assignments to low variables sequentially be-
hind loops iterating over high data are forbidden.

The authors present an additional definition of low-
equivalent program runs that closes termination channels.
It additionally requires that either both program runs ter-
minate or none of them. They also describe the necessary
measurements to encounter probabilistic order channels.
This can be achieved by extending location traces to the
set L of low variables: In that case two program runs T
and U are low-equivalent if the set of low variables in T
and U undergoes the same sequence of changes in both
program runs up to stuttering.

The authors enforce their security property via model
checking. They formalized their different security proper-

void main () :
h = i n p u t P I N () ;
l = 0 ;
whi le (h > 0)

l ++;
h−−;

void main () :
h = i n p u tP I N () ;
x = y ;
f o r k t h r e a d _ 1 () ;
f o r k t h r e a d _ 2 () ;

void t h r e a d _ 1 () :
x = 0 ;
p r i n t (x) ;

void t h r e a d _ 2 () :
y = 1 ;

Figure 12: Two examples demonstrating the strengths and
weaknesses of Huisman et al.’s security property. Both
programs are rejected, the first because it copies the PIN
to the low variable l, the second because the order of the
assignments x = 0 and y = 1 depend on interleaving.

ties via two temporal logics, CTL∗ and the polyadic modal
µ-calculus, for which the model-checking problem is de-
cidable if the program in question can be expressed by a
finite-state-machine. This permits a very precise detection
of relevant data conflicts, such that total freedom of data
conflicts is not required. Hence, their approach can be ap-
plied to languages with shared-memory communication.

Advantages and restrictions. Huisman’s security
property is very flexible, as it permits to include and ex-
clude termination channels and probabilistic order chan-
nels. But it is also more restrictive than ours. It is
stricter towards termination channels, because it forbids
low-observable events sequentially behind loops iterating
over high data. Furthermore, the optional treatment of
probabilistic order channels imposes severe restrictions
on the analyzed programs. Since a program is classified
by partitioning variables into high and low, each assign-
ment to a low variable is regarded as a low-observable
event. The security property addressing probabilistic or-
der channels requires that two low-equivalent program
runs must make the same sequence of changes to low var-
iables. This means in effect that if two threads work on
different low variables, then the assignments to these var-
iables must have a fixed interleaving order, even if the var-
iables are completely unrelated (apart from being ‘low’).

As an example, consider the program on the right side
of Fig. 12. Its main thread reads a PIN, assigns y to x
and then forks both threads. Thread 1 sets x to 0 and then

20

prints it, thread 2 sets y to 1. Assume that the PIN is high
data and the output is low-observable. Using Huisman
et al.’s technique, h is classified as a high variable and x
as a low variable. Now it is compulsory that y is also
classified as low because otherwise the assignment x = y
would be illegal. This means that the assignments x = 0
and y = 1 are low-observable. Since the order of these
assignments is not fixed, the program is rejected. Using
our IFC technique, h = inputPIN() is classified as a high
source and print(x) as a low sink, and the program is ac-
cepted by our security property. We therefore argue that
our approach of classifying operations instead of variables
is better suited for low-security observational determin-
ism, because it permits a much less restrictive treatment
of probabilistic order channels.

7 Future Work

7.1 Time sensitivity
Integration of a time-sensitive slicer instead of I2P will
make our algorithm even more precise, but also much
more expensive. Today, time-sensitive slicing is feasible
for medium-sized programs, hence we plan to develop
a time-sensitive LSOD checker. Algorithm engineering
will be necessary to balance precision against scalability,
and to use time-sensitivity only if necessary.

7.2 Lock sensitivity
As described in section 2, MHP analysis is crucial for pre-
cision of the PDGs and hence for overall IFC precision.
The current MHP analysis however does not necessarily
take into account explicit locks in the program. The latter
property is called lock sensitivity and has been explored in
[3, 4] in the scope of Dynamic Pushdown Networks. We
recently integrated this analysis into our IFC. Preliminary
experiments indicate that MHP indeed becomes more pre-
cise, as more interference edges are pruned.

7.3 Termination channels
Our security property excludes termination channels.
This is common practice in IFC techniques for sequen-
tial programs, because termination channels are assumed

to be sufficiently small, an assumption that does only hold
for batch programs which can be seen as black boxes. As
soon as programs interact with a user, termination chan-
nels can be used to leak an arbitrarily amount of infor-
mation [1]. These channels can be prevented by forbid-
ding low-observable behavior behind loops with guards
that may receive high data, but this is a too severe restric-
tion. A termination analysis for loops could solve that
problem: Low-observable behavior behind such a loop
can be permitted if its termination is guaranteeed by a
static analysis. Several algorithms of varying precision
for loop-termination analysis are available.

7.4 Declassification

We currently do not provide a declassification mechanism
for probabilistic channels. Instead of declassifying proba-
bilistic channels, we consider Zdancevic and Myers’ idea
of using linear channels for deterministic communication
between threads [40] more promising. Linear channels
can be integrated in form of a library into languages with
shared memory. We have recently a added such a li-
brary as a proof-of-concept implementation, but our expe-
riences with it are preliminary and are not reported here.

7.5 Machine-checked proofs

It is our long-term goal to formalize our LSOD check in
Isabelle and provide a machine-checked proof for Theo-
rem 1; just as we have provided machine-checked sound-
ness proofs for the sequential (interprocedural) PDG-
based IFC [38, 37].

7.6 Case studies

We will apply our analysis to reference scenarios in the
DFG priority program “Reliably secure software sys-
tems”5, which include an e-voting system and various An-
droid apps. Analysis of the latter requires an adaption of
our analysis to Android’s Dalvik bytecode. Case stud-
ies will also allow to compare our LSOD criterion against
other PN analysis methods with respect to precision, scal-
ability, and usability.

5http://www.reliably-secure-software-systems.de/

21

8 Conclusion
We presented a new method for information flow control
in concurrent programs. The method guarantees prob-
abilistic noninterference, and is based on a new variant
of low-security observational determinism. It turns out
that the criteria from the literature which are sufficient for
LSOD can be naturally implemented through slicing al-
gorithms for concurrent programs. We also demonstrated
how our LSOD criterion fixes some weaknesses of earlier
LSOD definitions from the literature.

Our implementation can handle full Java with an arbi-
trary number of threads. It was applied to several small
examples from the literature; preliminary experience in-
dicates high precision and scalability for medium-sized
programs. It is planned to increase precision even more
by using lock-sensitive MHP analysis algorithms.

Our current work is part of a long-standing project
which aims to exploit modern program analysis for soft-
ware security. We believe that precision, scalability, and
usability of many security analyses can be greatly im-
proved by applying recent achievements in program anal-
ysis algorithms. The current article demonstrates that
IFC analysis of concurrent programs can indeed be im-
proved by applying PDGs and MHP analysis; resulting
in flow-sensitive, object-sensitive, context-sensitive, and
time-sensitive algorithms.

Acknowledgements. We thank Andreas Lochbihler
and Joachim Breitner for careful proofreading and discus-
sions of this work.

References
[1] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld,

and David Sands. Termination-insensitive nonin-
terference leaks more than just a bit. In Proc.
ESORICS, volume 5283 of LNCS, pages 333–348,
2008.

[2] David Binkley, Mark Harman, and Jens Krinke. Em-
pirical study of optimization techniques for massive
slicing. ACM Trans. Program. Lang. Syst., 30(1):3,
2007.

[3] Ahmed Bouajjani, Markus Müller-Olm, and Tayssir
Touili. Regular symbolic analysis of dynamic net-

works of pushdown systems. In Concurrency The-
ory (CONCUR 2005), pages 473–487. Springer Ver-
lag, LNCS 3653, 2005.

[4] Thomas Martin Gawlitza, Peter Lammich, Markus
Müller-Olm, Helmut Seidl, and Alexander Wenner.
Join-lock-sensitive forward reachability analysis for
concurrent programs with dynamic process creation.
In VMCAI, pages 199–213, 2011.

[5] Dennis Giffhorn. Advanced chopping of sequential
and concurrent programs. Software Quality Journal,
19(2):239–294, 2011.

[6] Dennis Giffhorn. Slicing of Concurrent Programs
and its Application to Information Flow Control.
PhD thesis, Karlsruher Institut für Technologie,
Fakultät für Informatik, May 2012.

[7] Dennis Giffhorn and Christian Hammer. Precise
slicing of concurrent programs – an evaluation
of precise slicing algorithms for concurrent pro-
grams. Journal of Automated Software Engineering,
16(2):197–234, June 2009.

[8] Jürgen Graf. Speeding up context-, object- and field-
sensitive sdg generation. In Proc. 9th SCAM, pages
105–114, September 2010.

[9] Christian Hammer. Information Flow Control for
Java. PhD thesis, Universität Karlsruhe (TH), 2009.

[10] Christian Hammer. Experiences with PDG-based
IFC. In F. Massacci, D. Wallach, and N. Zannone,
editors, Proc. ESSoS’10, volume 5965 of LNCS,
pages 44–60. Springer-Verlag, February 2010.

[11] Christian Hammer and Gregor Snelting. Flow-
sensitive, context-sensitive, and object-sensitive in-
formation flow control based on program depen-
dence graphs. International Journal of Information
Security, 8(6), December 2009.

[12] S. Horwitz, J. Prins, and T. Reps. On the adequacy
of program dependence graphs for representing pro-
grams. In Proc. POPL ’88, pages 146–157, New
York, NY, USA, 1988. ACM.

22

[13] Susan Horwitz, Thomas Reps, and David Binkley.
Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst., 12(1):26–60,
1990.

[14] Marieke Huisman, Pratik Worah, and Kim Sunesen.
A temporal logic characterisation of observational
determinism. In Proc. 19th CSFW, page 3. IEEE,
2006.

[15] Jens Krinke. Context-sensitive slicing of concurrent
programs. In Proc. ESEC/FSE-11, pages 178–187,
New York, NY, USA, 2003. ACM.

[16] Lin Li and Clark Verbrugge. A practical MHP infor-
mation analysis for concurrent Java programs. In
Proc. 17th International Workshop on Languages
and Compilers for Parallel Computing (LCPC’04),
volume 3602 of LNCS, pages 194–208. Springer,
2004.

[17] Andreas Lochbihler. Java and the Java memory
model – a unified, machine-checked formalisation.
In Helmut Seidl, editor, Proc. ESOP ’12, volume
7211 of LNCS, pages 497–517, March 2012.

[18] Jeremy Manson, William Pugh, and Sarita V. Adve.
The Java memory model. In POPL, pages 378–391,
2005.

[19] Heiko Mantel and Henning Sudbrock. Flexible
scheduler-independent security. In Proc. ESORICS,
volume 6345 of LNCS, pages 116–133, 2010.

[20] Heiko Mantel, Henning Sudbrock, and Tina
Kraußer. Combining different proof techniques for
verifying information flow security. In Proc. LOP-
STR, volume 4407 of LNCS, pages 94–110, 2006.

[21] John McLean. Proving noninterference and func-
tional correctness using traces. Journal of Computer
Security, 1(1):37–58, 1992.

[22] Mangala Gowri Nanda and S. Ramesh. Interproce-
dural slicing of multithreaded programs with appli-
cations to Java. ACM Trans. Program. Lang. Syst.,
28(6):1088–1144, 2006.

[23] Gleb Naumovich, George S. Avrunin, and Lori A.
Clarke. An efficient algorithm for computing MHP
information for concurrent Java programs. In Proc.
ESEC/FSE-7, volume 1687 of LNCS, pages 338–
354, London, UK, 1999.

[24] Venkatesh Prasad Ranganath, Torben Amtoft,
Anindya Banerjee, John Hatcliff, and Matthew B.
Dwyer. A new foundation for control dependence
and slicing for modern program structures. ACM
Trans. Program. Lang. Syst., 29(5):27, 2007.

[25] Thomas Reps, Susan Horwitz, Mooly Sagiv, and
Genevieve Rosay. Speeding up slicing. In Proc.
FSE ’94, pages 11–20, New York, NY, USA, 1994.
ACM.

[26] Thomas Reps and Wuu Yang. The semantics of
program slicing. Technical Report 777, Computer
Sciences Department, University of Wisconsin-
Madison, 1988.

[27] A. W. Roscoe, Jim Woodcock, and L. Wulf. Non-
interference through determinism. In ESORICS, vol-
ume 875 of LNCS, pages 33–53, 1994.

[28] A. Sabelfeld and A. Myers. Language-based
information-flow security. IEEE Journal on Se-
lected Areas in Communications, 21(1):5–19, Jan-
uary 2003.

[29] Andrei Sabelfeld. Confidentiality for multithreaded
programs via bisimulation. In Proc. 5th Interna-
tional Andrei Ershov Memorial Conference, volume
2890 of LNCS, Akademgorodok, Novosibirsk, Rus-
sia, July 2003.

[30] Andrei Sabelfeld and David Sands. Probabilistic
noninterference for multi-threaded programs. In
Proc. CSFW ’00, page 200, Washington, DC, USA,
2000. IEEE Computer Society.

[31] Geoffrey Smith. Improved typings for probabilistic
noninterference in a multi-threaded language. Jour-
nal of Computer Security, 14(6):591–623, 2006.

[32] Geoffrey Smith and Dennis Volpano. Secure in-
formation flow in a multi-threaded imperative lan-
guage. In Proc. POPL ’98, pages 355–364. ACM,
January 1998.

23

[33] Gregor Snelting, Torsten Robschink, and Jens
Krinke. Efficient path conditions in dependence
graphs for software safety analysis. ACM Trans.
Softw. Eng. Methodol., 15(4):410–457, 2006.

[34] Tachio Terauchi and Alex Aiken. A capability cal-
culus for concurrency and determinism. ACM Trans.
Program. Lang. Syst., 30:27:1–27:30, September
2008.

[35] Dennis M. Volpano and Geoffrey Smith. Probabilis-
tic noninterference in a concurrent language. Jour-
nal of Computer Security, 7(1), 1999.

[36] Daniel Wasserrab. From Formal Semantics to Ver-
ified Slicing - A Modular Framework with Applica-
tions in Language Based Security. PhD thesis, Karl-
sruher Institut für Technologie, Fakultät für Infor-
matik, October 2010.

[37] Daniel Wasserrab. Information flow noninterference
via slicing. Archive of Formal Proofs, 2010, 2010.

[38] Daniel Wasserrab, Denis Lohner, and Gregor Snelt-
ing. On PDG-based noninterference and its modular
proof. In Proc. PLAS ’09. ACM, June 2009.

[39] Bin Xin and Xiangyu Zhang. Efficient online detec-
tion of dynamic control dependence. In Proc. ISSTA,
pages 185–195. ACM, 2007.

[40] Steve Zdancewic and Andrew C. Myers. Observa-
tional determinism for concurrent program security.
In Proc. CSFW, pages 29–. IEEE, 2003.

Appendix A: Proof Sketch for Theo-
rem 1
In the following, we describe the central steps in the proof
of theorem 1. All details can be found in [6].

Theorem 1. A program is low-security observational
deterministic if

1. no low-observable operation o is potentially influ-
enced by an operation reading high input,

2. no low-observable operation o is potentially influ-
enced by a data conflict, and

3. there is no order conflict between any two low-
observable operations.

Proof. Let two low-equivalent inputs be given. We
have to demonstrate that, under conditions 1. – 3., all pos-
sible traces resulting from these inputs are low equivalent.
The proof proceeds in a sequence of steps.

1. Definition. For a trace T and operation o, the trace
slice S(o,T) consists of all operations and dependences
in T which form a path from start to o (see figure 6).
S(o,T) is thus similar to a dynamic backward slice for
o. Similarly D(o,T) is the data slice which considers
only dynamic data dependencies, but not control depen-
dencies. Trace and data slices are cycle free. Note that
every operation in S(o,T) has exactly one predecessor on
which it is control dependent, the start operation being
the only exception. Note also that S(o,T) can be soundly
approximated by a static slice on stmt(o), the source code
statement containing o.

2. Lemma. Let q and r be two different operations
of the same thread, and let T and U be two traces which
both execute q and r. Further, let T execute q before r.
Then U also executes q before r. This is a consequence
of the fact that any dynamic branching point b imposes a
total execution order on all operations∈DCD(b), because
according to 1., all operations have at most one control
predecessor.

3. Lemma. Let q and r be two operations which cannot
happen in parallel, and let T and U be two traces which
both execute q and r. Further, let T execute q before r.
Then U also executes q before r. Note that if q,r are in
the same thread, this is just the last lemma. Otherwise,
MHP guarantees q executes before r’s thread is forked, or
r executes after q’s thread has joined. Hence U executes
q before r.

4. Lemma. Let (m,o,m) be a configuration in trace
T . To = m|use(o) denotes the part of memory m that con-
tains the variables used by o, and To = m|def (o) denotes
the part of memory m that contains the variables defined
by o. Now let T and U be two traces with low-equivalent
inputs. Let o be an operation. If D(o,T) = D(o,U) and
no operation in these data slices reads high input, then
To =Uo and To =Uo. This lemma is proved by induction
on the structure of D(o,T) (remember D(o,T) is acyclic).

5. Corollary. Let T,U be two traces of a program p
with low-equivalent inputs. Let o be an operation. If

24

S(o,T) = S(o,U) and no operation in these trace-slices
reads high values, then To = Uo and To = Uo. That is,
the low memory parts in both traces are identical for low-
equivalent inputs, if all operations do not depend on high
values.

6. Lemma. Let T and U be two finite traces of p with
low-equivalent inputs. T and U are low-equivalent if for
every low-observable operation o, S(o,T) = S(o,U) holds
and no operation in the trace-slices depends on high val-
ues, and T and U execute the same low-observable opera-
tions in the same relative order. This lemma, which seems
quite natural, gives us an instrument for finite traces to
prove the low-equivalence of traces resulting from low-
equivalent input, which is necesasary for theorem 1. The
infinite cases are treated in the next two lemmata.

7. Lemma. Let T and U be two infinite traces of p
with low-equivalent inputs such that obslow(T) is of equal
length or longer than obslow(U) (switch the names if nec-
essary). T and U are low-equivalent if

• they execute the shared low-observable operations in
the same relative order,

• for every low-observable operation o ∈U S(o,T) =
S(o,U) holds and no operation in the trace-slices
reads high input

• and for every low-observable operation o ∈ T and
o /∈U U infinitely delays an operation b ∈ DCD(o).

8. Lemma. Let T and U be two traces of p with low-
equivalent inputs, such that T is finite and U is infinite. T
and U are low-equivalent if

• obslow(T) is of equal length or longer than
obslow(U),

• T and U execute the shared low-observable opera-
tions in the same relative order,

• for every low-observable operation o ∈U S(o,T) =
S(o,U) holds and no operation in the trace-slices
reads high input

• and for every low-observable operation o ∈ T and
o /∈U U infinitely delays an operation b ∈ DCD(o).

9. Corollary. Traces T,U are low-equivalent if one of
the last three lemmata can be applied. What remains to

be shown is that the preconditions of the lemmata are a
consequence of the conditions 1. – 3. in theorem 1.

10. Lemma. If operation o is not potentially influenced
by a data conflict, then S(o,T) = S(o,U) holds for all
traces T and U which execute o. Note that only at this
point, data resp. order conflicts are exploited. This lemma
needs an induction over the length of T . The base case is
trivial, because both T,U consist only of the start opera-
tion, and trivially S(start,T) = S(start,U). For the induc-
tion step, let q be the next operation in T . If o 6∈ Pot(q),
then q 6∈ S(o,T), and the induction step trivially holds.
Otherwise, one can show that every dynamic data or con-

trol dependence r
v
99K q and r

dcd
99K q in S(q,T) is also in

S(q,U). Furthermore, q does not depend on additional op-
erations in U . Thus q has the same incoming dependences
in T and U . By induction hypothesis, S(r,T) = S(r,U)
for every r on which q is dependent in T and U . Hence
S(q,T) = S(r,T).

11. Lemma (see section 3.2, lemma 1). Let o be
an operation that is not potentially influenced by a data
conflict or an operation reading high input. Let T be a
trace and Θ be the set of possible traces whose inputs
are low-equivalent to the one of T . If o ∈ T , then every
U ∈ Θ either executes o or infinitely delays an operation
in DCD(o).

12. Lemma. Let T and U be two traces with low-
equivalent inputs. If there are no order conflicts be-
tween any two low-observable operations, then all low-
observable operations executed by both T and U are exe-
cuted in the same relative order.

13. Theorem 1 holds. Lemma 12 guarantees that T
and U execute the shared low-observable operations in the
same relative order. Lemma 11 can be applied to all low-
observable operations o executed by both T and U , hence
S(o,T) = S(o,U). Since the potential influence of a low-
observable operation o does not contain operations read-
ing high input, this also holds for the operations in S(o,T)
and S(o,U). To prove low-equivalence of T and U , we
apply one of the lemmata 6,7, or 8, depending whether T
resp. U are finite or infinite.

Remember that the three conditions for theorem 1 can
naturally be checked using PDGs and slicing. This fact
justifies our definition of low-equivalent traces, and our
PDG-based approach.

25

	Introduction
	Dependence Graphs and Noninterference
	PDG Basics
	Noninterference and PDGs
	PDGs and Slicing for Multi-Threaded Programs

	Formalising LSOD
	Low-equivalent traces
	Formalizing low-equivalent traces and LSOD

	A Slicing-based LSOD Check
	Evaluation
	Analysis of literature examples
	Runtime Behavior

	Discussion and Related Work
	Weak Probabilistic Noninterference
	Strong Security
	LSOD by Zdancevic and Myers
	LSOD by Huisman et al.

	Future Work
	Time sensitivity
	Lock sensitivity
	Termination channels
	Declassification
	Machine-checked proofs
	Case studies

	Conclusion

