12,231 research outputs found

    A Proximal Algorithm for Sampling

    Full text link
    We study sampling problems associated with potentials that lack smoothness. The potentials can be either convex or non-convex. Departing from the standard smooth setting, the potentials are only assumed to be weakly smooth or non-smooth, or the summation of multiple such functions. We develop a sampling algorithm that resembles proximal algorithms in optimization for this challenging sampling task. Our algorithm is based on a special case of Gibbs sampling known as the alternating sampling framework (ASF). The key contribution of this work is a practical realization of the ASF based on rejection sampling for both non-convex and convex potentials that are not necessarily smooth. In almost all the cases of sampling considered in this work, our proximal sampling algorithm achieves better complexity than all existing methods.Comment: 26 page

    Colloquium: Trapped ions as quantum bits -- essential numerical tools

    Full text link
    Trapped, laser-cooled atoms and ions are quantum systems which can be experimentally controlled with an as yet unmatched degree of precision. Due to the control of the motion and the internal degrees of freedom, these quantum systems can be adequately described by a well known Hamiltonian. In this colloquium, we present powerful numerical tools for the optimization of the external control of the motional and internal states of trapped neutral atoms, explicitly applied to the case of trapped laser-cooled ions in a segmented ion-trap. We then delve into solving inverse problems, when optimizing trapping potentials for ions. Our presentation is complemented by a quantum mechanical treatment of the wavepacket dynamics of a trapped ion. Efficient numerical solvers for both time-independent and time-dependent problems are provided. Shaping the motional wavefunctions and optimizing a quantum gate is realized by the application of quantum optimal control techniques. The numerical methods presented can also be used to gain an intuitive understanding of quantum experiments with trapped ions by performing virtual simulated experiments on a personal computer. Code and executables are supplied as supplementary online material (http://kilian-singer.de/ent).Comment: accepted for publication in Review of Modern Physics 201

    Efficient computation of highly oscillatory integrals by using QTT tensor approximation

    Full text link
    We propose a new method for the efficient approximation of a class of highly oscillatory weighted integrals where the oscillatory function depends on the frequency parameter ω≥0\omega \geq 0, typically varying in a large interval. Our approach is based, for fixed but arbitrary oscillator, on the pre-computation and low-parametric approximation of certain ω\omega-dependent prototype functions whose evaluation leads in a straightforward way to recover the target integral. The difficulty that arises is that these prototype functions consist of oscillatory integrals and are itself oscillatory which makes them both difficult to evaluate and to approximate. Here we use the quantized-tensor train (QTT) approximation method for functional mm-vectors of logarithmic complexity in mm in combination with a cross-approximation scheme for TT tensors. This allows the accurate approximation and efficient storage of these functions in the wide range of grid and frequency parameters. Numerical examples illustrate the efficiency of the QTT-based numerical integration scheme on various examples in one and several spatial dimensions.Comment: 20 page

    High-order, Dispersionless "Fast-Hybrid" Wave Equation Solver. Part I: O(1)\mathcal{O}(1) Sampling Cost via Incident-Field Windowing and Recentering

    Get PDF
    This paper proposes a frequency/time hybrid integral-equation method for the time dependent wave equation in two and three-dimensional spatial domains. Relying on Fourier Transformation in time, the method utilizes a fixed (time-independent) number of frequency-domain integral-equation solutions to evaluate, with superalgebraically-small errors, time domain solutions for arbitrarily long times. The approach relies on two main elements, namely, 1) A smooth time-windowing methodology that enables accurate band-limited representations for arbitrarily-long time signals, and 2) A novel Fourier transform approach which, in a time-parallel manner and without causing spurious periodicity effects, delivers numerically dispersionless spectrally-accurate solutions. A similar hybrid technique can be obtained on the basis of Laplace transforms instead of Fourier transforms, but we do not consider the Laplace-based method in the present contribution. The algorithm can handle dispersive media, it can tackle complex physical structures, it enables parallelization in time in a straightforward manner, and it allows for time leaping---that is, solution sampling at any given time TT at O(1)\mathcal{O}(1)-bounded sampling cost, for arbitrarily large values of TT, and without requirement of evaluation of the solution at intermediate times. The proposed frequency-time hybridization strategy, which generalizes to any linear partial differential equation in the time domain for which frequency-domain solutions can be obtained (including e.g. the time-domain Maxwell equations), and which is applicable in a wide range of scientific and engineering contexts, provides significant advantages over other available alternatives such as volumetric discretization, time-domain integral equations, and convolution-quadrature approaches.Comment: 33 pages, 8 figures, revised and extended manuscript (and now including direct comparisons to existing CQ and TDIE solver implementations) (Part I of II

    A conjugate gradient minimisation approach to generating holographic traps for ultracold atoms

    Get PDF
    Direct minimisation of a cost function can in principle provide a versatile and highly controllable route to computational hologram generation. However, to date iterative Fourier transform algorithms have been predominantly used. Here we show that the careful design of cost functions, combined with numerically efficient conjugate gradient minimisation, establishes a practical method for the generation of holograms for a wide range of target light distributions. This results in a guided optimisation process, with a crucial advantage illustrated by the ability to circumvent optical vortex formation during hologram calculation. We demonstrate the implementation of the conjugate gradient method for both discrete and continuous intensity distributions and discuss its applicability to optical trapping of ultracold atoms.Comment: 11 pages, 4 figure

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Nesterov smoothing for sampling without smoothness

    Full text link
    We study the problem of sampling from a target distribution in Rd\mathbb{R}^d whose potential is not smooth. Compared with the sampling problem with smooth potentials, this problem is much less well-understood due to the lack of smoothness. In this paper, we propose a novel sampling algorithm for a class of non-smooth potentials by first approximating them by smooth potentials using a technique that is akin to Nesterov smoothing. We then utilize sampling algorithms on the smooth potentials to generate approximate samples from the original non-smooth potentials. We select an appropriate smoothing intensity to ensure that the distance between the smoothed and un-smoothed distributions is minimal, thereby guaranteeing the algorithm's accuracy. Hence we obtain non-asymptotic convergence results based on existing analysis of smooth sampling. We verify our convergence result on a synthetic example and apply our method to improve the worst-case performance of Bayesian inference on a real-world example
    • …
    corecore