299 research outputs found

    An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks

    Full text link
    The automotive industry is rapidly evolving towards connected and autonomous vehicles, whose ever more stringent data traffic requirements might exceed the capacity of traditional technologies for vehicular networks. In this scenario, densely deploying millimeter wave (mmWave) base stations is a promising approach to provide very high transmission speeds to the vehicles. However, mmWave signals suffer from high path and penetration losses which might render the communication unreliable and discontinuous. Coexistence between mmWave and Long Term Evolution (LTE) communication systems has therefore been considered to guarantee increased capacity and robustness through heterogeneous networking. Following this rationale, we face the challenge of designing fair and efficient attachment policies in heterogeneous vehicular networks. Traditional methods based on received signal quality criteria lack consideration of the vehicle's individual requirements and traffic demands, and lead to suboptimal resource allocation across the network. In this paper we propose a Quality-of-Service (QoS) aware attachment scheme which biases the cell selection as a function of the vehicular service requirements, preventing the overload of transmission links. Our simulations demonstrate that the proposed strategy significantly improves the percentage of vehicles satisfying application requirements and delivers efficient and fair association compared to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent Vehicles Symposiu

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    Reinforcement Learning-based User-centric Handover Decision-making in 5G Vehicular Networks

    Get PDF
    The advancement of 5G technologies and Vehicular Networks open a new paradigm for Intelligent Transportation Systems (ITS) in safety and infotainment services in urban and highway scenarios. Connected vehicles are vital for enabling massive data sharing and supporting such services. Consequently, a stable connection is compulsory to transmit data across the network successfully. The new 5G technology introduces more bandwidth, stability, and reliability, but it faces a low communication range, suffering from more frequent handovers and connection drops. The shift from the base station-centric view to the user-centric view helps to cope with the smaller communication range and ultra-density of 5G networks. In this thesis, we propose a series of strategies to improve connection stability through efficient handover decision-making. First, a modified probabilistic approach, M-FiVH, aimed at reducing 5G handovers and enhancing network stability. Later, an adaptive learning approach employed Connectivity-oriented SARSA Reinforcement Learning (CO-SRL) for user-centric Virtual Cell (VC) management to enable efficient handover (HO) decisions. Following that, a user-centric Factor-distinct SARSA Reinforcement Learning (FD-SRL) approach combines time series data-oriented LSTM and adaptive SRL for VC and HO management by considering both historical and real-time data. The random direction of vehicular movement, high mobility, network load, uncertain road traffic situation, and signal strength from cellular transmission towers vary from time to time and cannot always be predicted. Our proposed approaches maintain stable connections by reducing the number of HOs by selecting the appropriate size of VCs and HO management. A series of improvements demonstrated through realistic simulations showed that M-FiVH, CO-SRL, and FD-SRL were successful in reducing the number of HOs and the average cumulative HO time. We provide an analysis and comparison of several approaches and demonstrate our proposed approaches perform better in terms of network connectivity

    Improved handover decision scheme for 5g mm-wave communication: optimum base station selection using machine learning approach.

    Get PDF
    A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Information and Communication Science and Engineering of the Nelson Mandela African Institution of Science and TechnologyThe rapid growth in mobile and wireless devices has led to an exponential demand for data traf fic and exacerbated the burden on conventional wireless networks. Fifth generation (5G) and beyond networks are expected to not only accommodate this growth in data demand but also provide additional services beyond the capability of existing wireless networks, while main taining a high quality-of-experience (QoE) for users. The need for several orders of magnitude increase in system capacity has necessitated the use of millimetre wave (mm-wave) frequencies as well as the proliferation of low-power small cells overlaying the existing macro-cell layer. These approaches offer a potential increase in throughput in magnitudes of several gigabits per second and a reduction in transmission latency, but they also present new challenges. For exam ple, mm-wave frequencies have higher propagation losses and a limited coverage area, thereby escalating mobility challenges such as more frequent handovers (HOs). In addition, the ad vent of low-power small cells with smaller footprints also causes signal fluctuations across the network, resulting in repeated HOs (ping-pong) from one small cell (SC) to another. Therefore, efficient HO management is very critical in future cellular networks since frequent HOs pose multiple threats to the quality-of-service (QoS), such as a reduction in the system throughput as well as service interruptions, which results in a poor QoE for the user. How ever, HO management is a significant challenge in 5G networks due to the use of mm-wave frequencies which have much smaller footprints. To address these challenges, this work in vestigates the HO performance of 5G mm-wave networks and proposes a novel method for achieving seamless user mobility in dense networks. The proposed model is based on a double deep reinforcement learning (DDRL) algorithm. To test the performance of the model, a com parative study was made between the proposed approach and benchmark solutions, including a benchmark developed as part of this thesis. The evaluation metrics considered include system throughput, execution time, ping-pong, and the scalability of the solutions. The results reveal that the developed DDRL-based solution vastly outperforms not only conventional methods but also other machine-learning-based benchmark techniques. The main contribution of this thesis is to provide an intelligent framework for mobility man agement in the connected state (i.e HO management) in 5G. Though primarily developed for mm-wave links between UEs and BSs in ultra-dense heterogeneous networks (UDHNs), the proposed framework can also be applied to sub-6 GHz frequencies

    Automotive Cognitive Access: Towards customized vehicular communication system

    Get PDF
    The evolution of Software Defined Networking (SDN) and Virtualization of mobile Network Functions (NFV) have enabled the new ways of managing mobile access systems and are seen as a major technological foundation of the Fifth Generation (5G) of mobile networks. With the appearance of 5G specifications, the mobile system architecture has the transition from a network of entities to a network of functions. This paradigm shift led to new possibilities and challenges. Existing mobile communication systems rely on closed and inflexible hardware-based architectures both at the access and core network. It implies significant challenges in implementing new techniques to maximize the network capacity, scalability and increasing performance for diverse data services. This work focuses preliminary on the architectural evolutions needed to solve challenges perceived for the next generation of mobile networks. I consider Software defined plus Virtualization featured Mobile Network (S+ MN) architecture as a baseline reference model, aiming at the further improvements to support the access requirements for diverse user groups. I consider an important class of things, vehicles, which needs efficient mobile internet access at both the system and application levels. I identify and describe key requirements of emerging vehicular communications and assess existing standards to determine their limitations. To provide optimized wireless communications for the specific user group, the 5G systems come up with network slicing as a potential solution to create customized networks. Network slicing has the capability to facilitates dynamic and efficient allocation of network resources and support diverse service scenarios and services. A network slice can be broadly defined as an end-to-end logically isolated network that includes end devices as well as access and core network functions. To this effect, I describe the enhanced behaviour of S+ MN architecture for the collection of network resources and details the potential functional grouping provided by S+ MN architecture that paves the way to support automotive slicing. The proposed enhancements support seamless connection mobility addressing the automotive access use case highly mobile environment. I follow the distribution of gateway functions to solve the problem of unnecessary long routes and delays. Exploiting the open SDN capabilities, the proposed S+ NC is able to parallelize the execution of certain control plane messages thus enabling the signalling optimisation. Furthermore, it enables the (Re)selection of efficient data plane paths with implied upper-layer service continuity mechanisms that remove the chains of IP address preservation for session continuity during IP anchor relocation. An implementation setup validates the proposed evolutions, including its core functionalities implemented using the ns-3 network simulator. The proposed slicing scheme has been evaluated through a number of scenarios such as numbers of signalling messages processed by control entities for an intersystem handover procedure relative to current mobile network architecture. I also perform the performance improvement analysis based on simulation results. Furthermore, I experimentally prove the feasibility of using Multipath TCP for connection mobility in intersystem handover scenario. The experiments run over the Linux Kernel implementation of Multipath TCP developed over the last years. I extend the Multipath TCP path management to delegates the management of the data paths according to the application needs. The implementation results have shown that the proposed S+ MN slicing architecture and enhancements achieve benefits in multiple areas, for example improving the mobility control and management, maintaining QoS, smooth handover, session continuity and efficient slice management and orchestration

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed
    • 

    corecore