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Abstract

The advancement of 5G technologies and Vehicular Networks open a new paradigm

for Intelligent Transportation Systems (ITS) in safety and infotainment services in

urban and highway scenarios. Connected vehicles are vital for enabling massive data

sharing and supporting such services. Consequently, a stable connection is com-

pulsory to transmit data across the network successfully. The new 5G technology

introduces more bandwidth, stability, and reliability, but it faces a low communica-

tion range, suffering from more frequent handovers and connection drops. The shift

from the base station-centric view to the user-centric view helps to cope with the

smaller communication range and ultra-density of 5G networks. In this thesis, we

propose a series of strategies to improve connection stability through efficient han-

dover decision-making. First, a modified probabilistic approach, M-FiVH, aimed at

reducing 5G handovers and enhancing network stability. Later, an adaptive learning

approach employed Connectivity-oriented SARSA Reinforcement Learning (CO-SRL)

for user-centric Virtual Cell (VC) management to enable efficient handover (HO) deci-

sions. Following that, a user-centric Factor-distinct SARSA Reinforcement Learning

(FD-SRL) approach combines time series data-oriented LSTM and adaptive SRL for

VC and HO management by considering both historical and real-time data. The

random direction of vehicular movement, high mobility, network load, uncertain road

traffic situation, and signal strength from cellular transmission towers vary from time

to time and cannot always be predicted. Our proposed approaches maintain stable

connections by reducing the number of HOs by selecting the appropriate size of VCs

and HO management. A series of improvements demonstrated through realistic sim-

ulations showed that M-FiVH, CO-SRL, and FD-SRL were successful in reducing the

number of HOs and the average cumulative HO time. We provide an analysis and

comparison of several approaches and demonstrate our proposed approaches perform

better in terms of network connectivity.
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Chapter 1

Introduction

Intelligent Transportation Systems (ITS) in urban and highway scenarios aims to im-

prove vehicular safety, and mobility, as well as to provide comfort services [9]. Vehicu-

lar Network (VN) is reached a new era of communication where vehicles communicate

with each other, infrastructures, devices, and people. They share various ranges of

data and information including safety, traffic, comfort, and entertainment [16] [11].

Connected vehicles are an important component of the ITS. ITS have an important

aspect to build a successful smart city. Vehicles produce large amounts of data with

their On Board Unit (OBU) and exchange information with other vehicles, traffic

signals, and smart devices within or outside of the vehicles. With the advancement

of technologies, it becomes a basic need to have more reliability, high bandwidth, and

low latency connection to provide services [4].

The movement and mobility of vehicles on various road segments are dynamic [7].

Maintaining stable connections for this type of dynamic behaviour of vehicles is an

open area for research. Vehicles need to switch between transmission points to remain

connected. This event is called Handover (HO). User experience can be influenced

by the frequent number of HOs. Moreover, unnecessary HO, frequent HO, and HO

time have a massive impact on a reliable connection. When vehicles share safety

services, connection loss is not tolerable [12] [6]. HO leads to failure in sharing

high-priority safety data. Additionally, in our technological age, entertainment has

surpassed services as one of the fundamental needs. An unnecessary HO that results

in a connection loss might have an impact on the user’s experience.

Connected vehicles transmit enormous quantities of data which could be utilized

to build better technologies that result in higher efficiency, improved safety, and a

better driving experience along with stable connection [16]. The 5G technology is a

promising solution for vehicular networks to deal with the challenges with its high

1



CHAPTER 1. INTRODUCTION 2

scalability, ultra-low latency, reduced energy consumption, and ultra-dense network.

VN has a broad area of communication, including Vehicle to Vehicle (V2V), Vehi-

cle to Infrastructure (V2I), Vehicle to Pedestrian (V2P), and Vehicle to Everything

(V2X) [16]. Together with VN and 5G technologies provide enormous improvement

in the field of vehicular connectivity, which leads to better user experience and im-

provement in ITS [4].

Many works have dealt with connection stability. Several techniques, such as Het-

Net, SDN, Fog, Hybrid, and Virtual Cell (VC), contribute to reducing HOs and better

connection stability [4] [31] [28] [23]. However, there is still a need for optimization

for ensuring stable connections in 5G networks, particularly exploring user-centric

networks and VC technologies. Previous works have handled HOs in 5G with a prob-

abilistic estimation-based approach. In this thesis, we introduce an adaptive learning

approach to cope with highly dynamic vehicular environments. We thus propose a

user-centric approach for virtual cell management using adaptive learning to ensure

stable connection by reducing handovers in the 5G vehicular networks. Vehicles con-

tinuously communicate with cellular towers while running on different road segments

to learn and adjust the adaptive learning model with real-time parameters. Our pro-

posed algorithm determines suitable towers for VC and selects a serving tower to get

service.

1.1 Motivation

The high mobility and dynamic behavior of vehicles often result in lost connections,

negatively impacting the user experience and compromising the safety services offered

by the vehicular network, which is intolerable. Additionally, connection dropouts are

brought on by the cellular management’s delayed decision-making. In metropolitan

settings, network ultra-density is fairly prevalent.

The 5G mmWave (millimeter wave) frequencies in the range of 30GHz to 300GHz,

provide more bandwidth and higher data transfer rates compared to traditional net-

works [20]. The higher frequencies allow for multiple cellular towers or antennas to be

used in both the transmitter and receiver, leading to more robust data transmission

and higher capacities. However, the higher frequency also leads to greater signal loss

due to absorption and scattering by atmospheric gases and obstacles such as build-

ings, trees, and people. As a result, mmWave signals have a limited range, which

leads to a smaller coverage area compared to traditional networks.

The 5G network has several benefits including high bandwidth, ultra-low latency,
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and increased energy consumption [20]. User nodes need to perform frequent HO to

remain connected to the cellular towers for the low coverage range of 5G mmWave.

Frequent and unnecessary HO affect connection stability for dynamic high mobility

vehicles [4] [28]. The limited coverage area of 5G networks operating at mmWave

frequencies creates a new field of research, such as the merging of multiple cells [23].

Efficient decision-making for HO is essential for a better user experience.

Network virtualization helps to deal with connection stability problems due to the

low coverage range of 5G networks [28] [23]. A user-centric virtual cell (VC) strategy

enhances network stability, addressing the challenge posed by the limited coverage

range of 5G networks. A user-centric network performs network and decision-making

operations on the user’s side rather than the base station, to deal with the high mobil-

ity of vehicles and ultra density, reducing decision-making costs and complexity. By

the definition of the user-centric VC, a vehicle remains connected to multiple trans-

mission points or cellular towers and virtually forms a cell to get service [28] [23]. It

helps to maintain stable connections because a vehicle redundantly is aware of the

multiple in-range cellular towers, minimizing network instability under sudden drops

in signal quality or connection. In addition, by applying adaptive learning techniques

to VC and HO management, the network can dynamically adjust to changes in user

behavior and network conditions in real-time, by improving network stability. More-

over, time series data-oriented learning can provide a highly personalized and efficient

experience for users, while also maintaining stable network connections.

1.2 Objectives

Summarily, the primary goal of this work consists of efficiently reducing the number

of handovers and overall handover time for 5G communication in a highly dynamic

vehicular environment. This reduction promotes less communication management

overhead and less impact on data service delivery. Also, we adopt a virtual cell

management strategy, which eases the handover decision-making. In order for us to

achieve our goal, we have the following sub-objectives:

• Investigating and developing methodologies for selecting the optimal virtual cell

configurations based on connection connectivity requirements and constraints.

• Adaptive decision-making that can be efficiently applied to the dynamic vehic-

ular environment, including factors such as mobility, network congestion, and
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signal measurements, to improve network performance and ensure optimal use

of resources.

• Efficient HO management based on the current status of the network, by con-

sidering real-time scenarios.

• Considered 5G ultra-dense networks and high mobility of vehicles. The 5G

network’s constraints are taken into account including low coverage range.

• Vehicular trajectory prediction for determining the direction of vehicles to en-

sure future connectivity.

1.3 Contribution

The main contribution of our work consists of successfully introducing adaptability to

the communication management of vehicles in dynamic urban ultra-dense vehicular

networks. Our contributions are described as follows:

• We devised an improved static VC and HO management based on FiVH [28].

This improved approach has considered additional mobility and communication

parameters and an algorithmic redesign.

• We introduced an adaptive learning-based approach with SARSA RL for effi-

ciently managing VC and HO to reduce the number of HOs and HO time. The

approach learns online and is on-policy, which brings flexibility and adaptability

to an urban setup. This contribution has been accepted and recognized as an

excellent contribution by reviewers in IEEE International Conference on

Communications.

• We enhanced our learning approach by incorporating time series data-oriented

LSTM with adaptive SARSA RL for better performance on VC management

and HO operations. This enhanced version allows more stable connections by

reducing the number of HO and HO times.

• We conducted extensive performance analyses with diverse 5G tower deploy-

ments, vehicular densities, and vehicular mobility in realistic, real-time simu-

lation scenarios. The analyses proved the adaption efficiently reduced the HO

management overhead in 5G vehicular networks.
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1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 contains the background

of our work. Chapter 3 presents related works for connection stability problems.

Chapter 4 defines the problem formulation. Chapter 5 contains our proposed modified

probabilistic approach. In the beginning, we start implementing the work in [28],

then add parameters and modify the algorithm. Chapter 6 presents our proposed

adaptive approach using SARSA RL. Chapter 7 discusses our extended version of

the adaptive approach, where we introduce both time series data-oriented LSTM

and adaptive SARSA RL on the same page. By altering the settings and method, we

stick to the majority of the concepts from the adaptive approach. Chapter 8 discusses

performance analysis of several approaches. Finally, Chapter 9 concludes the thesis,

summarizing it and providing future work directions.



Chapter 2

Background

Technological advancement in vehicular networks shows us a new paradigm of re-

search. Though several novel strategies for communication, such as DSRC, 4G, and

5G have been introduced and many research can be found that deal with highly dy-

namic environments, many shortcomings of these paradigms have already been iden-

tified [4]. Most works have been done for considering a subset of the area and did not

consider real-world road traffic scenarios. Moreover, 5G networks have a lower cov-

erage range compared to previous generations of mobile networks due to the higher

frequency bands they use to transmit data. However, 5G technology offers many

benefits over previous generations, such as higher speeds, lower latency, and lower

energy consumption. There is an open research direction of continuing to work on

improving the technology to increase coverage. There are some solutions for handling

low communication range are introduced, such as small cell deployment, repeaters,

directional antenna placement, and network virtualization. Network virtualization is

proving to be a particularly promising solution among them due to its benefits [23].

It is important to study and investigate the architecture of such technologies like

Vehicular Networks, 5G New Radio, Virtual Cell, and Adaptive Learning techniques.

It is valuable to discuss the main aspects and technological advancements in support

of the research paradigm.

2.1 Vehicular Networks

Vehicular Network (VN) is a type of wireless network that is used for communication

between vehicles, infrastructure, and other connected devices [13]. VN is designed

to support safety-critical and non-safety-critical applications in the transportation

sector, such as ITS, connected vehicles, and autonomous vehicles. It provides a

6
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Figure 2.1: Scenario of Vehicular Network.

platform for exchanging information between vehicles, infrastructure, and other con-

nected devices. By sharing information, VN has the potential to increase road safety,

alleviate traffic congestion, and improve the overall driving experience. Vehicular

Ad-hoc Network (VANET) is the spontaneous version of the VN for the domain

of vehicles [9]. It focuses Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),

Vehicle-to-Pedestrian (V2P), and Vehicle-to-Everything (V2X) communications ar-

chitectures to provide roadside services.

With the increasing demand of users and technological advancement, VANET

directs to a new paradigm, where vehicles equipped with sensors, software, and tech-

nologies that communicate with other vehicles, roadside infrastructures, pedestrians,

machines, and devices with the aim of connecting and exchanging data over the net-

work [5]. Vehicular Network is improving in such a way that soon it will be one of the

enablers for autonomous, connected, and smart vehicles. Figure 2.1 is the scenario of

a vehicular network, where vehicles are connected to cellular towers and get different

services.

2.2 5G New Radio

The communication era is directed to a new world with 5G New Radio network [1].

It is the new generation mobile network that shows the world a new direction which

comes to global wireless standards after 4G networks. 5G networks enable a new

paradigm of the network that is designed to connect a very large amount of users

including machines, objects, and devices. It has features like high data speeds, re-

liability, ultra-low latency, increased availability, massive network capacity, and a
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uniform user experience. 5G opens a new window for vehicular networks in terms of

ultra-dense network, ultra-reliability, and low latency for safety and comfort services

experienced in vehicles.

Though 5G New Radio has lots of advancements, it faces some shortcomings in-

cluding communication range. 5G millimeter waves use frequencies from 30 − 300

gigahertz and frequency waves are able to travel a short distance. Moreover, 5G fre-

quency can be interrupted by physical obstructions such as trees, towers, walls, and

buildings. Extending the number of existing cell towers to increase the communica-

tion range could be a solution and but it increases cost. To counter this drawback,

researchers are working to direct a solution to overcome this limitation by ensuring

other prospects.

2.3 User-centric Network

In the traditional communication network system, nodes are connected to base sta-

tions or transmission towers. The decision-making and computation are done on the

base station side. The base station-centric network can face computational overload

for ultra-density of user nodes. This network paradigm has some issues such as high

latency, connection drop for unbalanced network load, etc. Authors in [21] and [39]

show the benefit of the user-centric network over the base station-centric network.

User-centric Network is a network architecture where users are the center of the

network [23]. It is the opposite of the base station-centric network. It is an emerging

concept that can overcome all the drawbacks of the base station-centric network. In

the user-centric network, nodes are responsible for decision-making and computational

operations [40]. A personalized network experience offers by the user-centric network

where users have greater convenience in making decisions. It is useful for unbalanced

network loads by shifting network decisions to nodes. It has lots of advantages for

throughput and latency for 5G vehicular networks.

2.4 Handover

Handover (HO) is a process in wireless communication networks where a user node

switches from one network connection to another while maintaining its network ses-

sion. This enables the device to maintain its communication without interruption

as it moves from one coverage area to another. In cellular communication, cellular

towers have a limited communication range. For high mobility of user nodes, it is not
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Figure 2.2: Scenario of Intra-Handover and Inter-Handover.

possible to get connected with the same cellular tower. The procedure of transferring

data and services from one tower is necessary to ensure connection stability. Though

the HO procedure takes time to execute, it plays a core element in planning and

deploying cellular networks.

HOs can be classified into several types. There are two types of HO, vertical

and horizontal in terms of networks. Horizontal HO occurs when a node moves

within the same type of network technology. On the other hand, vertical HO is

the HO between different network technologies. Horizontal HO and vertical HO are

also defined as intra-HO and inter-HO, respectively. There is another kind of HO

classification based on link establishment, soft-HO, and hard-HO. Soft-HO makes

a connection establishment before disconnecting with the previous cellular tower.

Hard-HO drops the connection to connect with another tower. These classifications

vary from network requirements. A scenario of intra-HO and inter-HO is provided in

Figure 2.2.

2.5 Virtual Cell

Virtual Cell (VC) is a new concept that shifts the base station-centric point of view to

the user-centric for Vehicular Networks [23]. In VC, vehicles are connected to multiple

transmission cellular tower(s) to form a virtual cell [23] [39]. When a vehicle moves to

a certain direction, it updates the VC by adding and releasing the appropriate trans-



CHAPTER 2. BACKGROUND 10

Figure 2.3: Scenario of Virtual Cell.

mission cellular tower(s). This helps to enlarge the communication range of 5G New

Radio [28]. As vehicles are connected to multiple transmission cellular tower(s), they

can get relief from frequent HOs. In this way, stable connections can be maintained

in the dynamic high mobility vehicular environment. Moreover, vehicle is responsible

to compare and compute its performance parameters, so there is less time required to

perform the HO operation. The limitations of ultra-dense networks can be overcome

using VC [23]. The scenario in Figure 2.3 illustrates VC, where multiple vehicles form

VCs with multiple cellular tower(s). In VC, the size of the VC cell is determined by

the combined communication range of all cellular tower(s) that are within the VC of

a vehicle.

2.6 State-Action-Reward-State-Action Reinforce-

ment Learning

Reinforcement Learning (RL) is the subdomain of machine learning where agents

learn and take actions to the environment [30]. The goal is to maximize the cumulative

reward by learning based on agent faces from the environment. RL focuses to find

a balance between current knowledge and the goal of what agents learn from the

environment.

State-Action-Reward-State-Action (SARSA) Reinforcement Learning algorithm is

a variation of the Q-Learning algorithm. In SARSA Reinforcement Learning (SRL)

algorithm, the learning agent learns the value function according to the current ac-

tion derived from the current policy. On each step of interaction, the learning agent

receives input from the environment as a form of indication of the state of the envi-
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ronment, therefore deciding on an action to get as output. The action changes the

state of the environment depending on the reward for the action. The main function

for updating the Q-value depends on the current state and action of the agent. For

choosing an action it gets a reward. The agent enters the next state after taking that

action and determines the next action.

SRL is suitable for decision-making cellular network connectivity because of its

ability to handle complex and dynamic environments. It updates the value of an

action based on the expected future reward for that action given the current state

and the next state and action. This makes it suitable for modeling the behavior of

cellular networks, which are subject to constantly changing conditions and require

real-time decision-making. Additionally, SRL can handle large state spaces, making

it well-suited for optimizing network connectivity in large-scale cellular networks.

SRL state: describe the current situation of a system for a given environmental

condition; action: next state is obtained by applying an action on available actions on

the present state; policy: set of rules that are followed by the RL agent to determine

the action for the current state; reward: a return value that is given by the environ-

ment for changing the state of the system. In SRL, when an agent is in a state sk, an

action ak is taken for policy π with reward rk+1, taking it to the next state sk+1 [30].

An action ak+1 is taken in the state sk+1 with policy π. SRL works on the current

policy, defined through the tuple (sk, ak, rk+1, sk+1, ak+1), where Q-values are updated

with state-action transitions following α learning rate and γ discount factor [38]. The

Q-value is updated using Equation 2.1 with the state-action transitions. Figure 2.4

presents the architecture of the SRL algorithm.

Q(sk, ak)← Q(sk, ak) + α[rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)] (2.1)

2.7 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)

architecture used for processing sequential time series data [26]. It has been de-

signed in a such way that it completely solves the vanishing gradient problem while

maintaining the integrity of the training model. LSTM networks are well-suited to

classifying, processing, and making predictions based on time series data, since there

can be lags of unknown duration between important events in a time series. In some

situations, long-time delays are overcome using LSTMs, which can also handle noise,

dispersed representations, and continuous input. The large range of parameters of-
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Figure 2.4: Architecture of SARSA RL.

fered by LSTMs includes learning rates, and input and output biases. Thus, there is

no need for precise modifications. There is an advantage in that the complexity of

the LSTM is decreased to O(1) for updating each weight. LSTM is composed of a

cell, an input gate, an output gate, and a forget gate. The cell remembers values over

arbitrary time intervals and the three gates regulate the flow of information into and

out of the cell.

Bidirectional Long Short-Term Memory (BLSTM) is a type of LSTM where the

processing of input data is in two directions: forwards and backward [36]. The forward

processing captures information from past events in the sequence, while the backward

processing captures information from future events. This bidirectional processing

allows BLSTM to capture information from both the past and future context, leading

to improved performance compared to traditional LSTM. BLSTM has the ability to

remember important information from earlier time steps, making them suitable for

tasks where the order of the input data matters and a change in the network state at

one-time step can have an impact on the network state at later time steps.

BLSTM can be chosen for cellular network connectivity prediction tasks because

of its ability to handle sequential data effectively. In such tasks, the network needs to

consider past and future inputs in order to make accurate predictions. The bidirec-

tional aspect of the BLSTM allows it to capture both past and future context, while

the LSTM component provides the ability to capture long-term dependencies in the

data. This makes BLSTM well-suited for tasks such as predicting cellular network

connectivity, where the network needs to consider both past and future data in order

to make accurate predictions.



Chapter 3

Related Works

Connection stability is an ongoing concern in vehicular networks where several works

have attempted to support HOs efficiently [31]. In such works, more stable connec-

tions can be achieved by reducing the number of HOs, decreasing HO times, and

managing communication cells. Although not all works deal with HO and VC man-

agement directly, they have also contributed in terms of connection stability.

SDN, HetNet, Fog, Hybrid based approaches are well-explored areas to deal with

HO [31]. There is not a lot of research that addressed situations of 5G networks in the

actual world. Some of them performed effectively in a variety of situations, but not

every situation was looked at once. In order to guarantee a steady connection in actual

urban and highway traffic scenarios, improvements are required. Research with 5G

networks’ high mobility and ultra-density simultaneously is difficult. High vehicular

mobility was overlooked in certain works that addressed ultra-dense networks, whereas

the contrary was true in others. Additionally, not all real-world V2X scenarios are

thoroughly addressed.

In our study, we have discovered that the majority of earlier works are base station-

centric. There are several studies that utilize probabilistic methods, but compara-

tively fewer studies employ adaptive learning mechanisms for connection stability.

3.1 Heterogeneous Network

HetNet is a heterogeneous network that integrates cellular networks with different

types of wireless communication technologies. It is considered as a potential solu-

tion for stable communication and mobility management in vehicular networks. It

combines two or more network technologies together to overcome network stability

issues.

13
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In [37], authors proposed a HetNet-based solution to deal with HO for connection

stability. They used Reward-based Markov Decision Process in 5G networks to re-

duce frequent HO by using parameters, such as connection signal, power, bandwidth,

location, and velocity. They optimized the overall service delivery to user nodes by

avoiding excessive HOs while maintaining the stability of connections. Their works

ignored intolerable HOs compared to other benchmark schemes.

Wu et al. in [34] proposed a dynamic fuzzy Q-Learning method for small cell

networks for mobility management. They simulated by considering a UE movement

with an average speed of 10km/h which is not high mobility. HetNet provides direc-

tion to many problems, but the mostly seen issue of HetNet is the deployment and

transition between different cells and ping-pong events.

Tuysuz et al. in [32] proposed a probability analysis by considering parameters

such as HO cost, channel busy times, and traffic class. They aim to reduce the number

of cells, HO, and reduce scanning overhead. They considered fixed assumptions of

network measurements which is not efficient for dynamic scenarios.

3.2 Software Defined Network

Software Defined Networks (SDN) is a network architecture where it is divided into

control and data planes. The data plane is responsible for forwarding packets to con-

nected wireless or wired networks and the control plane is responsible for determining

the path as SDN controllers. In the SDN-based method, each controller has an open

Application Programming Interface (API) to support the programming capability

of network infrastructure. The API enables administrators to control the data and

control plane rules and policies remotely.

Authors in [24] proposed an SDN-based MEC-enabled approach to a service-aware

HO management phase in 5G vehicular networks. Their work focused on continuous

service and seamless coverage by reducing the number of HO.

Similarly, SDN has been used in a multi-level view for handover management to

optimize the HO times of vehicular networks by separating its support into core and

edges [10].

Sharma et al. in [25] proposed an SDN-based method using utilized Unmanned

Aerial Vehicles (UAVs) as an on-demand forwarding scheme, where UE’s act as ter-

minals to UAVs. They proposed two approaches, a centralized approach, and dis-

tributed approach. The RSSI, RSRP, RSRQ, and channel quality indicators are used

as measurement reports and signaling overhead. They used HO latency and delay as
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performance evaluation matrices.

3.3 Fog-based Network

The fog-based network shifts network functions closer to end-users. It reduces latency

and improves the Quality of Service. Fog uses macro-cell base stations and WiFi

access points as fog servers. It shifts necessary control methods to the Fog Access

point.

Authors in [16] presented a machine learning model for HO scheme using vehicular

fog to minimize the disruption time during the HO process. They used a feed-forward

neural network to determine an optimal fog node and distance between fog and ve-

hicle and time as parameters. However, their work was limited to HO between fogs.

Moreover, it was not tested on heterogeneous networks and was built on the assump-

tion of known vehicle trajectories. The most common issues the Fog-based method

faces are when and where to offload high and low-speed vehicles in different coverage

areas.

Machine learning has also been used for HO management. A two-tier Machine

Learning-based scheme was introduced for HO management in intelligent vehicular

networks [3]. This work predicted signal strength using a recurrent neural network

model to predict the receiving signal strength for a handover decision, and a new AP

was determined with a stochastic Markov model.

3.4 Virtual Cell

The majority of earlier studies on connection stability focus on base station-centric

networks. [4]. Road safety and traffic monitoring messages are high-priority messages

which do not allow connection loss and latency. In the base station-centric approach,

the network selection procedure could face latency issues as it needs to be served from

a remote base station [18]. A user-centric approach can perform the network selection

by itself, it does not face latency problems. Moreover, the user-centric approach is

useful in highly congested networks by migrating computational tasks to the user end.

Decision-making does not face latency issues in user-centric networks.

Researchers have recently become aware of the user-centric strategy for reliable

connections. Another promising solution for connection stability issues is network

virtualization. Researchers’ attention has turned to Virtual Cell (VC) technologies
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as a solution to 5G networks’ ultra-density and limited coverage range [28]. Research

is ongoing, although there aren’t many works that deal with virtual cells.

Several works have explored VC management for maintaining stable connections in

5G networks. VCs have served to constrain effective data dissemination for a group of

vehicles called hotspots (HSs) to maximize the number of served HSs and minimize

the total power radiated in 5G vehicular networks [23]. The approach consists of

three main stages, including VC-admission control which is responsible for balancing

network load, and intra-VC optimization, inter-VC power control.

An approach for V2X communications in 5G networks focused on forming a VC

with low energy consumption and high reliability by sharing the same channel [22].

A probabilistic approach has been proposed to deal with VC formation and up-

date [29]. The approach follows a user-centric perspective to facilitate VC manage-

ment, allowing more decentralized decision-making and lowering the network com-

plexity. Probabilities represented the status of the network – base station degree,

betweenness, and distances – where these parameters are used to determine virtual

cell size. Similarly, the VC paradigm also helped to deal with handovers in 5G V2X

networks, using similar probabilities and parameters to make handover decisions [28].

However, these probabilistic approaches cannot guarantee efficient HO management

in highly dynamic vehicular environments.

Focusing on an individual device, a method has been introduced to determine

the optimal radius of a virtual cell to maximize the system downlink capacity using

distance and Remote Radio Head (RRH) density [39].

VC helped support a scheme that selects a static cluster of small cells with local

mobility to serve as an anchor in high-density scenarios, attempting to enable stable

connections [17].

A dynamic user-centric scheme allowed updating VCs through the mobile tracking

of the vehicles, and use a max-min fair problem for resource management in V2X

communication [35].

3.5 Remarks

A summary of our findings from previous works is presented in Table 3.1.

In our study, we have discovered that the majority of earlier works were base

station-centric and often failed to deliver stable connections. In addition, there are

problems with power consumption, network complexity, dealing with ultra-dense net-

works, failure in HO, and HO time. A user-centric strategy may be more effective in
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Table 3.1: Summary of Previous Works.

Work HO V2X 5G UC Conn HM Approach Target Process

[37] ✓ ✓ ✓ ✓ HetNet Reducing HO Markov Decision Process
[34] ✓ ✓ HetNet Mobility Mng Dynamic Fuzzy Q-Learning
[32] ✓ ✓ ✓ ✓ HetNet HO, Overhead Probabilistic Analysis
[24] ✓ ✓ ✓ SDN Mobility Mng Multi-access Edge Comp
[25] ✓ ✓ ✓ SDN Reducing Handover UAV, On-demand forwarding
[16] ✓ ✓ ✓ Fog Minimize HO time Feed Forward NN
[29] ✓ ✓ ✓ ✓ VC VC formation Probabilistic Estimate
[23] ✓ ✓ ✓ ✓ VC Limit broadcasting Probabilistic Estimate
[28] ✓ ✓ ✓ ✓ ✓ ✓ VC VC formation, HO Probabilistic Estimate
[39] ✓ ✓ ✓ ✓ ✓ VC Optimal VC radius Scheduling Algorithm
[17] ✓ ✓ ✓ ✓ VC Reducing HO Local Anchor Cell Control
[22] ✓ ✓ ✓ ✓ ✓ VC Minimize broadcasting Probabilistic
[3] ✓ ✓ ✓ ✓ ✓ ML Handover Decision Stochastic Markov model
This ✓ ✓ ✓ ✓ ✓ ✓ VC VC & HO mng RL & HML based Policy-oriented

HO: Handover; UC: User-centric; Connectivity: Conn; HM: High Mobility; VC: Virtual Cell; NN: Neural Network,
Machine Learning: ML; Reinforcement Learning: RL; Historical Model Learning: HML

addressing stable connections, which would address all of the issues. Furthermore, it

is found that the user-centric virtual cell did not include HO management. Despite

the fact that certain studies have addressed user-centric Virtual Cell, these works are

based on a straightforward probabilistic equation-based methodology. They do not

guarantee appropriate HO management and VC formation in real-time circumstances.

Previous studies didn’t adjust HO in 5G networks for instances with dynamic vehic-

ular environments. A learning-based VC formation technique is required since it will

improve HO performance and guarantee reliable connection by minimizing HO. In

addition, previous studies often relied heavily on numerical analysis, providing math-

ematical accuracy and predefined assumptions about the network scenario. Moreover,

it may not always align with real-world conditions. A study using simulation tech-

niques to model the behavior of the system in a virtual environment that closely

resembles real-world conditions, leading to a more comprehensive examination of the

system.



Chapter 4

Problem Formulation

Numerous studies that aim to guarantee stable connections have been addressed thus

far. They reduce HO by using a variety of technologies for HO management. Only

urban or highway settings are taken into account in certain studies. Instead of simu-

lating scenarios, the majority of them do numerical analysis.

Roads are segmented in the real-world traffic scenario, and vehicle movement is

dynamic within each section of the road. Additionally, the speed limit differs from

road to road. In an urban setting, there is a high volume of traffic that is unpredictable

due to time constraints. The congested traffic on roads causes ultra-dense network

and unbalanced traffic load among transmission towers. Because of the high mobility

of vehicles on the highway, frequent connection losses are experienced when changing

serving towers. Due to excessive traffic congestion, accidents, and roadblocks, there

are also uncertain traffic situations or changes in the way that vehicles travel. Simple

probabilistic calculations, historical statistical data, or predefined models cannot be

used to address these dynamic circumstances.

Assume a dynamic vehicular environment where vehicles traverse an urban region

following the topology of road segments. There exists a finite number of vehicles in

that transportation scenario, denoted as V = {v1, v2, ..., vi}. The network scenario

consists of several 5G cellular towers (gNodeB) denoted as TCT = {tct1, tct2, ..., tctj}.
Towers TCTj are randomly distributed in the scenario and are connected to each

other. Tower has a fixed communication range. TCT has all features of 5G networks,

including high bandwidth, low latency, and low coverage range. When vehicle vi

comes to the communication range of cellular towers of TCT at time k, this set of in-

range towers, denoted as CT = {ct1, ct2, ..., ctj}, where CT ⊂ TCT . vi can exchange

beacon messages with cellular towers ctj ∈ CT in the range.

Our approach is a user-centric approach. vehicles are responsible for taking deci-
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(a) Position-2 of vehicle v2. (b) Position-1 of vehicle v2.

Figure 4.1: Simplistic scenario of Virtual Cell formation of two vehicles.

sions and performing operations. Vehicles need to communicate with cellular towers

and depend on cellular towers for the calculation of connectivity parameters. Every

vehicle vi has a high computational On-Board-Unit (OBU) installed and is able to

communicate with transmission towers.

In the network cellular communication technology, vehicles switch their serving

towers to get connected and services, in another word, perform handover operations.

The low-coverage range is the most concerning issue for 5G networks. Installing many

transmission towers may be a solution, but it is costly and can occur other issues.

These facts lead to frequent handovers, connection drops, ping-pong effects, and

unnecessary handovers. Virtual cellular technology can be a potential revolutionary

solution [28].

By the definition of cellular network virtualization, the communication range of a

vehicle is dependent on the communication range of the connected cellular towers. A

vehicle can be connected to multiple cellular towers to form a virtual cell. The cell

moves with vehicles. In Figure 4.1, a simplistic scenario of updating the virtual cells

for two vehicles is given. We can see that the vehicle of black color is in a position-

1 in Figure 4.1b. There are four cellular towers connected to the black vehicle.

In Figure 4.1a, the position of the black vehicle changes to position-2 and also its

connected towers, which are five. The position and connected cellular towers are in

the same position for the blue vehicle in Figure 4.1b and 4.1a. It should be noted

that the virtual is not necessary to be a circle, it can be different shapes according to

the communication range of a vehicle and connected cellular towers. We draw it as

a circle to make it easily understandable. Figure 2.3 can be used as a reference VC

size.



CHAPTER 4. PROBLEM FORMULATION 20

Although there have been several studies on problems with connection stability.

They adhere to simple procedures or are based on predetermined models. It is in-

effective to rely on a predetermined model when taking into account the dynamic

real-world circumstance. Additionally, there are a number of factors that affect vir-

tual cells and handover management, including signal parameters, time, speed, and

network load. A way to deal with the dynamic, high-mobility nature of vehicular

environments is through adaptive learning from real-time scenarios.

To guarantee reliable connections, an appropriate virtual cell (VC) construction

is required. Computational complexity can be raised by adding cellular towers or

making VCs overly large. On the other hand, VC with a smaller size could struggle

to keep connections solid.

We use an adaptive learning technique to solve the connection stability problem by

taking into account every scenario. We employ the SARSA RL algorithm because it

adapts its behavior relying on the situation and learns from the current policy. In this

work, we break down the connection stability problem into two parts: (1) virtual cell

management and (2) handover management. We develop several distinct approaches.

In the first approach, we modified a probabilistic approach. Then in the following

approach, we rely on adaptive SARSA RL to update the VC dynamically and act to

handover. Real-time learning is vital for this method, as is a back-and-forth strategy

for sustaining stable connections. We combine time series data-oriented learning with

adaptive learning in the third approach. Because cell management occurs less often,

virtual cell management is carried out using time series data-oriented learning, while

handover management is carried out using adaptive SARSA because it depends on

real-time circumstances. As parameters for our methods, we take signal measurement,

mobility, and density into consideration. In the approaches we propose, virtual cells

are formed in a way that ensures appropriate virtual cell management and prevents

connection dropouts. In order to improve user experience and connection stability,

handover decision–making involves choosing the best cellular tower.



Chapter 5

Modified Probabilistic Approach

Connection stability relies on different parameters including signal measurement re-

ports, distance, and speed. Parameters impact differently in terms of connection sta-

bility. We propose a modified version of the probabilistic approach named FiVH [28],

to reduce the number of handovers by determining the appropriate size of the vir-

tual cell (VC) and handover operation. We apply the concept of FiVH to form VC

but modify the parameters settings and design of the algorithm. We try additional

parameters to the FiVH to make it more effective for the dynamic changes of the

environment. Moreover, we adjust the design of the algorithm to be more suitable to

the dynamic behavior of different road segments. Our modified proposed version of

FiVH named Modified-FiVH (M-FiVH) is discussed in this chapter.

In our proposed M-FiVH approach, we focus to determine VC with appropriate

cellular towers and handover operation. An appropriate size of VC helps to balance

network load and better stable connectivity by ensuring less number of handovers.

Moreover, a proper number of cellular towers in VC helps to maintain stable connec-

tions with minimal computation cost.

5.1 Virtual Cell

The virtual cell (VC) adoption is a user-centric approach where vehicle vi creates

and updates its vci. We consider the 5G network technology in this work. We

assume, 5G network performs like SDN, so there is no need for an additional SDN

controller in this work [23]. Every vehicle vi is traversing on different road segments

of a scenario where there are several transmission cellular towers. When vi comes to

the transmission range of a cellular tower ctj ∈ CT , they exchange beacon messages

to share connectivity information. High vehicular mobility and ultra-dense networks

21



CHAPTER 5. MODIFIED PROBABILISTIC APPROACH 22

are taken into account in this work.

In M-FiVH, we define the speed thresholds by following 3GPP Technical Report

(TR) 38.913 which are adequate by cell type (pico, micro, and macro) as in [28].

We define the threshold of speeds for the selection of VC size by considering real-

world traffic scenarios [28]. vi with a speed 0 − 30km/h selects pico-cell; micro-cell

is selected when speed is 31− 120km/h; and macro-cell with a speed >= 121km/h.

This threshold is to determine the size of VC, which means discount tolerance while

selecting towers.

5.2 Connectivity Metrics

In our M-FiVH, we consider all metrics as in FiVH, such as BS degree, betweenness,

and distance. In addition to these matrices, we consider the signal measurement

metric RSSI. We have discovered via our study and experiment, that signal measure-

ment affects connection stability [8]. We use the same method as FiVH to calculate

metrics. The difference is in how we employ them in the algorithm, which improves

connection stability by reducing the number of handovers.

5.2.1 BS degree

We consider the probability of BS degree in this approach. The probability of BS

degree XpBSdeg is the information regarding to the load of a cellular tower. The XpBSdeg

describes the information related to the number of vehicles connected to a particular

cellular tower. With this information, we can determine how effectively a cellular

tower serves a vehicle. Because a cellular tower with a heavy load leads to network

traffic congestion, connection drops. The cellular tower has a high degree means that

more vehicles are connected to that tower, and it is the most active cellular tower in

the network. The tower with a higher degree has a lower probability to be chosen for

VC vci of vi.

The vertex degree of a cellular tower and all of its neighboring cellular towers,

and connected vehicles to that cellular tower are considered for the calculation of

XpBSdeg. We calculate XpBSdeg with the same formula in [28], that is 1 (one) minus

the division between its vertex degree (vDeg) and the sum of the vertex degrees of its

neighboring towers(NvDeg). vDeg is obtained by counting the number of vehicles

and towers reachable from a particular cellular tower and NvDeg is the count of

neighbouring vehicles and towers reachable. The XpBSdeg is calculated by following
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the Equation in 5.1.

XpBSdeg = 1− vDeg

NvDeg
(5.1)

In our user-centric approach, when vi comes to the communication range of ctj ∈
CT , it receives the XpBSdeg with the exchanged beacon messages. The matrices are

stored in the OBU of vi for later computation and decision-making.

5.2.2 Betweenness

Betweenness is the centrality of inter-mediation. The most influential nodes within

the network are indicated using betweenness. The strength of a connection and its

stability can be measured with betweenness. The higher betweenness of a tower

decreases the probability to be chosen as a candidate cellular tower for vci.

We calculate the probability of betweenness XpBetw which helps to measure the

importance of a cellular tower. The probability of betweenness XpBetw is calculated

using Equation 5.2 [28]. In equation 5.2, gpq is the shortest path from source (p) to

destination (q), and hupq is the shortest path from p to q passing through u.

XpBetw =
1

(N−1)(N−2)
2

∑
p ̸=q ̸=h

hu
pq

gpq
(5.2)

In our user-centric approach, vi receives h
upq when it comes to the range ctj ∈ CT .

It is stored in the OBU of vi for later computation. The gpq is calculated on the OBU

of vi. The XpBetw is calculated for all towers ctj ∈ CT that come to the communication

range of vi.

5.2.3 Vehicle Distance to Tower

The position of a vehicle is one of the main factors to choose as a potential cellular

tower. The smaller distance makes the higher possibility of a tower being chosen for

VC.

vi traverses on different road segments. It stores the coordinates (x, y) of its

traversing path. We assume every towers of TCT share their location coordinates

among themselves. When vi comes to the range of ctj ∈ CT , it receives the location

coordinates of ctj with the exchanges beacon messages. Vehicle vi calculates the

distance with its coordinates and location coordinates of ctj ∈ CT .
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5.2.4 Received Signal Strength Indicator

Received Signal Strength Indicator (RSSI) is an estimated measure of the power level

that a vehicle receives from a tower. The signal strength is increased proportionally

to the RSSI.

vi exchanges beacon messages with ctj ∈ CT . The beacon messages contain RSSI

for every tower in CT . Vehicle-tower pair calculates XRssictj
using Equation 5.3, where

n is signal propagation constant or exponent, d is the distance from sender to receiver

and A is received signal strength at a defined distance.

XRssictj
= 10n log10(d) + A (5.3)

The cellular tower ctj with a higher value of XRssictj
is selected for the vci. This

metric has an impact on VC formation for connection stability along with other

metrics. Adding this metric to our proposed approach, makes M-FiVH dynamically

behave in the vehicular environment. RSSI provides a reliable and simple method to

determine the strength of the signal being received by a user node. It can be affected

by obstacles, interference, and weather. By considering the reasons behind connection

stability depending on signal measurement, adding RSSI to the connectivity metrics

improve handover decision-making.

5.3 M-FiVH

Our proposed approach M-FiVH is designed in such a way that it decreases the

number of handovers by adding-releasing appropriate cellular tower(s) of the virtual

cell. Moreover, it takes the decision on the handover operation. Connectivity metrics,

such as BS degree, betweenness, distance of the vehicle to a cellular tower, and RSSI

are fatal to VC and HO decisions. We consider the individual probability of these

metrics.

Our proposed user-centric M-FiVH selects towers ctj ∈ CT from the network with

towers that have the best probability of BS degree, betweenness, and best value of

the vehicle to cellular tower’s distance and RSSI. For minimizing the computation

complexity of our proposed approach, we determine a threshold for all connectivity

metrics, threshold of the probability of BS degree XpBSdegth , threshold of the proba-

bility of betweenness XpBetwth
, threshold of the distance XDistth , and threshold of the

RSSI XRssith . These thresholds are calculated with their average values using Equa-

tions 5.4, Equations 5.5, Equations 5.6, Equations 5.7 in each time interval k′ − k.
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XBSdegth =
XpBSdeg1 ,XpBSdeg2 , ...,XpBSdegK

k
(5.4)

XBetwth
=
XBetw1 ,XBetw2 , ...,XBetwK

k
(5.5)

XDistth =
XDist1 ,XDist2 , ...,XDistK

k
(5.6)

XRssith =
XRssictj1

,XRssictj2
,...,XRssictjk

k
(5.7)

Vehicle vi exchanges beacon messages to every tower ctj ∈ CT , that comes to its

communication range. When the connectivity metrics XpBSdeg, XpBetw, XDist, XRssictj

of ctj ∈ CT satisfy the thresholds, i.e. XpBSdeg <= XBSdegth , XpBetw <= XBetwth
,

XDist <= XDistth and XRssictj
>= XRssith , that subset of ctj ∈ CT is selected for

later computation. Later, it selects the best four cellular towers having the best

connectivity metrics. From the selected cellular towers from four connectivity metrics,

a maximum of four cellular towers is selected for an initial virtual cell vc′i, which has

the best probability. In other words, for each metric, a cellular tower can be selected

and same cellular tower(s) can be selected by different connectivity metrics with a max

size of four. After selecting cellular towers for vc′i, our proposed M-FiVH calculates the

distance between the vehicle vi and the selected four towers ctj ∈ vc′i. The maximum

distance ZmaxDist among vehicle vi to cellular towers ctj ∈ vc′i is selected as the radius

of vci. M-FiVH adds all cellular towers ctj ∈ CT within the radius ZmaxDist, to the

vci of vi. For handover operation, vi selects its serving tower from the towers of vci.

vi calculates a threshold ZRssictj
with the average RSSI of ctj ∈ vci. When XRssictj

of tower ctj ∈ vci greater than ZRssictj
, ctj is selected for intra-VC HO. Whenever a

cellular tower has max RSSI rather than vci, it performs inter-VC HO. The algorithm

of the proposed user-centric approach M-FiVH is provided in Algorithm 1.

This algorithm runs for the management of the virtual cell at every time step

k. vi uses connectivity metrics as input and the formation of the virtual cell as

output. Four loops on line 1...12 of the algorithm execute for each tower in the

communication range. Four towers have been selected with respected operations.

The last loop in line 13...14 works four times for calculating the maximum distance

among the selected tower(s) from connectivity metrics. All of the towers in between

this maximum distance, are included in the virtual cell as in line 15. In line 16, an

average value of RSSI ZRssictj
is calculated with the RSSI of all towers in vci. The
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Algorithm 1: Algorithm M-FiVH

Data: XBSdeg, XBetw, XDist, XRssictj
, Xspeedi

Result: vci
1 for ctj ∈ CT do
2 ZpBSdeg = min(XpBSdeg);
3 τ1 = ZpBSdeg;

4 for ctj ∈ CT do
5 ZpBetw = min(XpBetw);
6 τ2 = ZpBetw;

7 for ctj ∈ CT do
8 ZDist = min(XDist);
9 τ3 = ZDist;

10 for ctj ∈ CT do
11 ZRssictj

= max(XRssictj
);

12 τ4 = ZRssictj
;

13 for i = 1; i <= 4; i++ do
14 ZmaxDist = calculateMaxDistance((vi, τ1), (vi, τ2), (vi, τ3), (vi, τ4));

15 vci ← getTowers(ZmaxDist);

16 ZRssictj
← avg(XRssictj

∈ vci);

17 if (XRssictj
> ZRssictj

) then

18 performHO;

handover operation is carried out on lines 17...18 when a cellular tower has a greater

RSSI value than ZRssictj
in ctj ∈ vci.

The time complexity for M-FiVH relates to the number ctj that comes to the

range of vi. M-FiVH calculates ZpBSdeg, ZpBetw, ZDist and ZRssictj
for every tower

ctj ∈ CT . The algorithm runs in each time k. The overall time complexity of M-FiVH

is O(ctj ∈ CT ∗ k).



Chapter 6

Adaptive Connectivity-oriented

VC Decision-making

We propose a Connectivity-oriented virtual cell decision-making mechanism for ensur-

ing stable connection in 5G networks using SARSA Reinforcement Learning (SRL).

Our user-centric approach, Connectivity-oriented SARSA Reinforcement Learning

(CO-SRL), runs in the OBU of each vehicle. CO-SRL works in two phases: (i) Con-

nectivity Factor (CF) adjustment and (ii) Virtual Cell and handover decision-making.

The decision-making is adapted through the SRL algorithm. Every vehicle computes

and generates a measurement report that includes CFs. The architecture of CO-SRL

is given in Figure 6.1

Figure 6.1: Architecture of CO-SRL.

The measurement reports are used as the input of phase (i) and for further neces-

sary computation related to CFs. The output of phase (i) is a set of cellular towers.

Connectivity Factor (CF) adjustment, which is used to form a virtual cell, provides a

27
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set of cellular towers used as the input of phase (ii). In the second phase, the output

is the selection and switching of the serving cellular tower among the set of cellular

towers selected for a virtual cell using CO-SRL. Other than that, it updates the hys-

teresis value for CFs, which makes virtual cell selection dynamic with the execution

of the adaptive learning approach. We compute a hysteresis for every CF, which

describes the dynamic suitable value of CF for the formation of VCs and connections.

This behaviour enhances the adaptivity to the dynamic environment of our proposed.

Initially, CO-SRL chooses predefined default values for CFs and hystereses. With

time, CO-SRL updates them dynamically.

6.1 Connectivity Factors

Virtual cell management and intra-VC and inter-VC handover decision depend on

the Connectivity Factors (CFs). CO-SRL considers the Received Signal Strength

Indicator (RSSI), Signal to Interference & Noise Ratio (SINR) and Reference Sig-

nal Received Power (RSRP), distance, tower load, movement direction, and vehicle

speed as CF. When a vehicle comes to the communication range of a cellular tower,

it exchanges beacon messages with the tower. The beacon messages contain param-

eters related to the computation of CFs. We consider all the factors that have an

impact on network connectivity because they may affect and impact connectivity

differently [8] [25]. Considering several signal measurements in CFs allows dealing

with more diversity of environments that have an impact on the stable network con-

nection [8]. We use a dynamic hysteresis value for adjusting signal measurements

according to highly mobile vehicles.

6.1.1 Vehicle Direction Prediction

We assume that vehicle mobility is random and dynamic on different road segments,

leading to frequent HO. Knowing the direction of a vehicle allows us to identify

cellular towers it might be in range in the near future and update its VC with those

towers, which helps to reduce the number of hard HO. We assume every tower in

TCT shares coordinates with them and vi. Each vehicle vi stores the coordinates of

its traversed path. With the readings for a certain time period, a vehicle calculates

its recent movement direction and estimates the next position it may visit in the near

future. We use a simple Linear Regression (LR) model to predict a vehicle’s future

direction using a list of its traversed coordinates.
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In our user-centric approach, every vehicle vi has its own LR model to predict the

tower ctvdpj , to which vi is heading. LR is a lightweight model with low computation

cost. We select a time interval k′ − k to update the LR so that it can be best fitted

where its update frequency follows the dynamic mobility of vehicles. We assume that

the future location of a vehicle is related to a tower location. So, we need to predict

the future coordinate of the vehicle and need to determine which tower is nearer to

the predicted coordinates for a vehicle.

Let the initial coordinate of a vehicle vi be (x0, y0). Vehicle vi traverses a sequence

of road segments for a time interval (k0, k1, ..., k), building a series of position record-

ings on a two-dimensional space P(x,y) = {(x1, y1), (x2, y2), ..., (xn, yn)}, where n is the

number of readings kept in the vehicle’s recording history. Our approach’s LR model

is described in Equations 6.1, 6.2 and 6.3.

y = mx+ c (6.1)

m =
n
∑

(xnyn)−
∑

(xn)
∑

(yn)

n
∑

(x2
n)− (

∑
(xn))2

(6.2)

c =

∑
(yn)

∑
(xn)

2 −
∑

(xn)
∑

(xnyn)

n
∑

(x2
n)− (

∑
(xn))2

(6.3)

In Equation 6.1, x and y are the coordinates, and m and c are slope and intercept

respectively. We obtain slope m and intercept c through Equation 6.2 and 6.3, where

xn and yn are the nth (x, y) coordinate of vehicle vi for a time interval of k′ − k.

The calculation of
∑

(xiyi,
∑

(xi),
∑

(yi),
∑

(xi)
2,

∑
(xn),

∑
(yn) support the LR

minimum squares.

Thus, each vehicle vi ∈ V searches the closest ctcj ∈ TCT based on its direction.

According to Equation 6.1, it predicts y′ctcj in a time interval of k′ − k for every

tower in CT and its neighbouring towers, CT c ∈ TCT . Then, the smallest difference

vci ∪ argminx(|y′ctcj − yvi |) : ctcj ∈ CT c is selected as a possible tower ctvdpj to serve the

vehicle in the future based on its mobility, adding ctvdpj to vci.

6.1.2 Speed

We consider speed as a CF. Vehicular speed is independent of each other. Every

vehicle store its speed history on the OBU for further processing.

When vi traverses on different road segments, signal parameters may vary due

to the speed changes. A low-speed vehicle can maintain a certain signal measure-

ment more than a high-speed vehicle. Moreover, adaptive learning has an impact on

different ranges of speed.
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We consider speed to determine the size of the virtual cell [28]. Different sizes

of cells are formed for different speed ranges. Cell size impacts on adaptive learning

mechanism which is described later in this chapter.

6.1.3 Signal to Interference & Noise Ratio

Signal to Interference & Noise Ratio (SINR) is the ratio of the signal level to the

noise level. It is used to determine the signal quality. The SINR value is measured

in dB, the higher the value, the better the signal quality. In the dynamic vehicular

environment, it is not efficient to use a constant range of signal levels to determine

the good quality of signals.

The equally spaced time intervals k1, k2, ..., kn are followed for calculating SINR

sinrctj . In each time k, vehicle vi receive beacon messages from ctj ∈ CT . The beacon

messages contain the SINR of the vehicle-tower pairs. sinrctj of vehicle vi for each

towers ctj is stored in its computing area.

The SINR for each vehicle is calculated using Equation 6.4, where P is the power

of the incoming signal of interest, I is the interference power of the interfering signals

and N is noise term.

sinrctj =
P

I +N
(6.4)

We use a dynamic hysteresis to maintain stable connections in a real-time environ-

ment. Our proposed CO-SRL adjusts hysteresis dynamically from phase (ii) where

adaptive learning is used to learn from real-time scenarios.

Vehicle vi uses equally spaced time intervals k1, k2, ..., kn to exchange the gener-

ated SINR through beacon messages with their respective parameters of CT . The

generated measurements of SINR are stored in OBU of vi. The measurement values

of the signals are later used for the calculation hysteresis of CFs.

χi
sinrk

=
sinrctj
χi
sinrk−1

+ βi
sinr (6.5)

A vehicle determines the hysteresis χi
sinrk

for SINR using Equation 6.5. Here,

sinrctj is the SINR of CT , and βi
sinr is computed from the phase (ii) of CO-SRL.

The hysteresis χi
sinrk

is used for adjusting SINR at each time period k to find

which towers are suitable to be in vci for better connection stability.
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6.1.4 Received Signal Strength Indicator

Received Signal Strength Indicator (RSSI) is an estimated measure of the power level

that a vehicle is receiving from a tower. A lower RSSI value means that the signal is

weak. We need to find a standard threshold for RSSI to maintain a stable connection.

In our approach, RSSI is calculated at each time k for every vehicle. The beacon

messages received by vehicle vi from towers ctj ∈ CT contain RSSI. These values of

RSSI are stored in the vehicular computing area of vehicle vi. Vehicle vi calculates

RSSI rssictj for each tower ctj ∈ CT . RSSI is calculated using Equation 6.6, where n

is signal propagation constant or exponent, d is the distance from sender to receiver

and A is received signal strength at a defined distance.

rssictj = 10n log10(d) + A (6.6)

CO-SRL calculates hysteresis dynamically from phase (ii) where adaptive learning

is used to learn from real-time scenarios.

Vehicle vi exchanges the generated RSSI through beacon messages with their

respective parameters of CT using equally spaced time intervals k1, k2, ..., kn.

χi
rssik

=
rssictj
χi
rssik−1

+ βi
rssi (6.7)

The measurement values of rssictj are later used for the calculation hysteresis

of CFs. The hysteresis of RSSI χi
rssik

is generated using Equation 6.7 at each time

period k, where βi
rssi is computed from the phase (ii) of CO-SRL.

6.1.5 Reference Signal Received Power

Reference Signal Received Power (RSRP) is the average power of the received signals

or the level of the received signal from a transmission tower. The RSRP value is

measured in dBm. The RSRP value closer to -100 dBm, is considered as a poor signal,

and a signal more than -90 dBm to -80 dBm is considered good signal strength. In

our adaptive approach, we do not consider a predefined range of RSRP as good or

poor signal strength. Our system updates this signal strength range according to the

real-world scenario.

Vehicle vi uses equally spaced time intervals k1, k2, ..., kn to exchange the generated

RSRP through beacon messages. RSRP is calculated using Equation 6.9 in each time

k, where rsrpctj is calculated from the Equation 6.6 and N is the number of resource

blocks.
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rsrpctj = rssictj − 10 log(12N) (6.8)

It is not efficient to use a constant range of RSRP signal levels to determine

the good quality of signals. CO-SRL generates a dynamic hysteresis value χi
rsrpk

for

RSRP according to highly mobile vehicles. CO-SRL adjusts χi
rsrpk

dynamically from

phase (ii).

The generated measurements are stored in OBU of vi. The measurement values

of the signals are later used for the calculation hysteresis of CFs.

χi
rsrpk

=
rsrpctj
χi
rsrpk−1

+ βi
rsrp (6.9)

In Equation 6.9, χi
rsrpk

is generated from RSRP rsrpctj of time k and hysteresis

of χi
rsrpk−1

of time k − 1 of CT . The phase (ii) of CO-SRL generates βi
rssp to make

the measurement adaptive to the environment.

6.1.6 Distance

The distance of a vehicle to cellular towers is an important factor for connection

stability. We use hysteresis χi
distk

to update the suitable distance for maintaining

connections between vehicle and cellular towers. We assume that the locations of

cellular towers are shared with all vehicles in the scenario. Vehicle vi calculates its

distance to tctj ∈ TCT using their coordinates at time k.

In our user-centric approach, every vehicle vi calculates its hysteresis χ
i
distk

using

Equation 6.10, where the minimum distance dist(vi, tctj) between vi and any tower

in TCT is divided by the previous hysteresis χi
distk−1

, and βi
dist is determined from

the adaptive learning in phase (ii).

χi
distk

=
minj∈TCT (dist(vi, tctj))

χi
distk−1

+ βi
dist (6.10)

6.1.7 Tower Load

Tower load describes the number of vehicles connected to a cellular tower where

heavy load hampers network stability. In our user-centric approach, each vi receives

the load of ctj ∈ CT through beacon messages. We also assume all towers in TCT

share information related to tower load among themselves.

Vehicle vi estimates a ratio (Rctj) of a tower’s load using Equation 6.11, where lctj
is the number of vehicles associated with tower ctj, and

∑
ltctn∈TCT

(ltctn) is the sum



CHAPTER 6. ADAPTIVE CONNECTIVITY-ORIENTED VCDECISION-MAKING33

of the number of associated vehicles with towers in TCT in the scenario. This ratio

provides a relative load related to the density of a singular cellular tower. The higher

the ratio of Rctj , the higher the density of the cellular tower and the less chance is to

select ctj for vci of vi. The calculated Rctj is used to determine a hysteresis χi
loadk

in

each time k.

Rctj =
lctj∑

ltctn∈TCT
(ltctn)

(6.11)

Equation 6.12 describes hysteresis χi
loadt

which is calculated using the load ratio

of tower load Rctj divided by hysteresis of previous time period χi
loadk−1

, which is

summed with adaptive learning output’s βi
load.

χi
loadk

=
Rctj

χi
loadk−1

+ βi
load (6.12)

6.2 SARSA Reinforcement Learning Algorithm

We use SARSA Reinforcement Learning (SRL) which is a model-free RL approach in

this work. In our user-centric approach, each vehicle has its own OBU unit. Vehicle

communicates with towers of its communication range, and collects and computes

information such as SINR, RSSI, RSRP, distance, tower load, speed. These data

exchanged between vehicle and towers with beacon messages, and are used as the

connectivity factors to behave adaptivity to the real-world traffic scenario.

The State-Action-Reward-State-Action Reinforcement Learning (SRL) algorithm

is a model-free, online TD learning technique that updates Q-values using the current

policy’s actions [38]. The algorithm operates in the following manner. When the agent

is in state sk, it takes action ak following policy π and receives reward rk+1, leading

to the next state sk+1. The agent then takes action ak+1 in state sk+1 following

policy π. SRL operates based on the current policy. SRL is represented as the tuple

(sk, ak, rk+1, sk+1, ak+1). It updates Q-values using the state-action transitions with a

learning rate of α and discount factor of γ using Equation 6.13.

Q(sk, ak)← Q(sk, ak) + α[rk+1 + γQ(sk+1, ak+1)−Q(sk, ak)] (6.13)

We use the SRL algorithm for adaptive learning in the dynamic vehicular envi-

ronment. We have figured out some of the advantages to select this algorithm in our

work. SRL is considered to be well-suited for network handover management due to

its many advantages [30]. SRL can handle online learning, which is crucial for real-

time network handover decision-making. SRL updates its policy based on the current
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state and the next state, which allows it to consider the immediate consequences of

its actions, making it well-suited for scenarios with fast-changing conditions, such as

network handovers. It is an on-policy algorithm, which means that it updates its

policy based on the actions taken by the current policy, rather than an estimated

value function. This makes it more suitable for virtual cell and handover manage-

ment, where the goal is to optimize a specific policy rather than to find an optimal

value function. Moreover, SRL does not need any predefined dataset, training, or

testing, which makes it effective for the dynamic vehicular network. Decisions on the

high dynamic behaviour of vehicles are hard to achieve efficiently with pre-defined

and static models.

6.3 Connectivity-oriented SARSA RL Algorithm

In the phase (ii), our proposed CO-SRL identifies the best-suited cellular tower ctϑj to

serve the vehicle vi among the towers ctj ∈ vci, and it decides intra-VC or inter-VC

handover. It also adjusts CF’s values so that they are updated dynamically from the

adaptive learning.

We define our proposed CO-SRL model components as vehicular connectivity

requirements to ensure network stability in dynamic and high-mobility vehicular net-

works. CO-SLR performs its phase (ii) operation each time k.

State

The state sk is the cellular tower that serves vi at time k. It is similar to the current

serving tower ctϑj . The state sk+1 can be any cellular tower from vci.

Action

There are several possible actions ak ∈ {ak1 , ak2 , ..., akm} in a state sk - same number

as tower in vci. Action ak,p is the possible available migrations from the serving

cellular tower to available cellular towers in vci at time k. In a state sk, available

actions are ak,pct
ϑ
j → ctj ∈ vci. After taking an action ak,m, the state changes to sk+1

– the serving tower ctϑj changes as the cellular tower of state sk+1.

Reward

The reward rk+1 is obtained by taking action ak of transition sk to sk+1. The scalar

combination of the CFs of ctϑj is used as the reward rk+1.
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6.3.1 Policy Gained - Connectivity Factors

We use a known ϵ-greedy policy of RL in our approach, which handles trade-off

between exploration and exploitation [30]. At time k, ϵk is calculated from the scalar

combination of CF averages (CTrssi, CTrsrp, CTsinr, CTdist, CTload) of a time interval

among the towers in vci. An action is initially taken randomly, so at time k, the

probability of exploration is ϵk. After iterations, the action that has the best reward

is selected with the exploitation probability (1− ϵk).

6.3.2 Intra-VC Switching Tower and Inter-VC Handover

Initially, when vi registers in a network, vci is assigned with predefined values of CFs,

which is suitable for 5G network connectivity. It chooses state, action, and reward

according to the first tower that comes to its range. As time progresses, the Q-value

of CO-SRL is measured by applying an action in a state and with its corresponding

reward.

We consider Reference Signal Received Quality (RSRQ) as Q-value. RSRQ is

calculated using RSRP and RSSI. It demonstrates the overall performance of a con-

nection and provides additional information when other decision parameters are not

sufficient to take a crucial decision for connectivity management [14]. The higher the

RSRQ is, the better the signal. Thus, the higher Q-value indicates a cellular tower

is better for connection stability. However, we use the scalar combination of CFs as

the reward, so CO-SRL maintains the diversity of factors that have an impact on

connectivity.

CO-SRL calculates Q-value for every tower in vci; in other words, the number of

Q-values is equal to the number of available actions in a state. We define the update

of Q-value calculation as in Equation 6.14.

Q(sk, ak)← Q(sk, ak)
ϑ + α[CFscalark+1

+ γrsrqmbr
ctj
− rsrqsrvctj

] (6.14)

Assume at time k, the switching of serving cellular tower – intra-VC handover

– has occurred. At that time period, the updated Q-value of the newly determined

served cellular tower is Q(sk, ak)
ϑ. Let the Q-value of a cellular tower in vci be

represented as Qi
j(sk+1, ak+1) – the same as the Q-value of the next state. Thus, the

Q-value of all available towers ctj ∈ vci is defined as Qi
j(sk+1, ak+1) = rsrqmbr

ctj
. In

Equation 6.14, rsrqmbr
ctj

is the RSRQ of a cellular tower in VC and rsrqsrvctj
is the RSRQ

of the serving tower in vci. These values are updated in every time period k. Note

that, the rsrqsrvctj
is the updated RSRQ at each time k, and Q(sk, ak)

ϑ is the RSRQ
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during the last switching of the serving tower or intra-VC HO.

There are |vci| number of possible actions at a time k. For every available action

ak, vi updates its respective Q-value considering state transition sk to sk+1, storing all

updated Q-values in a local table. Thus, the number of computed Q-values is equal

to the number of available cellular towers in vci. The ak related to the maximum

Q-value gained among the actions at time k within vci, i.e. ctϑj , is selected as the

serving tower. Thus, the cellular tower in vci gains the maximum Q-value selected as

the new serving tower ctϑj , and the value of Q(sk, ak)
ϑ is updated accordingly. Since

the Q-value is updated based on the RSRQ and CFs of CT , the selected serving tower

provides the best connection strength in CT . The βi
rssi, β

i
sinr, β

i
rsrp, β

i
dist, β

i
load are

also updated for the CFs as the new serving tower ctϑj . This phenomenon ensures

better performance as all the parameters related to connectivity are considered while

calculating Q-value, and a high Q-value specifies better connectivity performance.

Moreover, our proposed CO-SRL updates CFs according to the output of CO-SRL,

which ensures CFs dynamically match the environment.

The Algorithm 2 describes our proposed approach CO-SRL. CFs are the input of

the algorithm which leads to the serving tower as the output, along with adaptive

learning values for phase (i). The algorithm works till there is tower(s) in VC. From

line 3...9, the algorithm starts with the calculation of the values for every hysteresis

and predicts the future direction of the vehicle. These executions determine VC.

Then action, reward, policy, learning rates, and discount factors of SARSA RL are

assigned in line 11...14. The Q-value generation is done in line 14. The switching of

serving cellular tower or intra-VC HO and update of CFs are done from line 15...18

when Q-value gets max for a cellular tower. Connection drop leads to inter-VC HO

and redirects to the initial condition which is followed as mentioned at the end.

We analyze the overall time complexity of CO-SRL. CO-SRL runs each time k,

and updates CFs, performs direction prediction of vehicle, and SRL operation. Every

vehicle is independent in our proposed user-centric CO-SRL. vi runs CO-SRL in each

time k and the operation needs to be performed for every tower in vci. So, the overall

complexity of CO-SRL is O(ctj ∈ vci). We provide the time complexity of SRL, as

in specific, in CO-SRL, we are focusing on SRL. The time complexity of the SRL

algorithm depends on the number of states, actions, and updates performed during

the learning process [30]. In CO-SRL, the number of states is always 1 as there is

always one serving tower, action is the number of towers in vci, and the update is

performed in each time period k. We can say the time complexity of SRL of CO-SRL

is O(ctj ∈ vci ∗ k).
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Algorithm 2: Algorithm CO-SRL for adaptive learning

Data : rssij, sinrj, rsrpj, (x, y), dist, loadj, speedi
Result: ctϑj , β

i
rssi, β

i
sinr, β

i
rsrp, β

i
dist, β

i
load

1 InitializeCondition;
2 while vci ̸= ∅ do
3 calculate χi

rssik
, χi

sinrk
, χi

rsrpk
, χi

distk
, χi

loadk
;

4 computeDirectionPrediction();
5 if ctj satisfies χi then
6 vci ← ctj;

7 if timeInterval k′ − k then

8 determine ctvdpj ;

9 vci ← vci ∪ ctvdpj ;

10 ak ← vci;
11 rk+1 ← assignReward();
12 ϵk ← computePolicy();
13 set α, γ; //depending on speed
14 Q(sk, ak)← Q(sk, ak)

ϑ + α[CFscalark+1
+ γrsrqmbr

ctj
− rsrqsrvctj

];

15 if (argmaxctj(Q(sk, ak)) then
16 execute switching serving tower to new ctϑj ;

17 Q(sk, ak)
ϑ ← argmaxctj(Q(sk, ak));

18 update βi
rssi, β

i
sinr, β

i
rsrp, β

i
dist, β

i
load;

19 if (connectionDrop in vci) then
20 execute inter-VC HO to neighbouring cellular tower;
21 break;

6.3.3 Cell Size Selection:

We have considered pico (small), micro (medium), and macro (large) size cells in our

approach [28]. Speed is used as the triggering factor for selecting cell size. Because

a high-speed vehicle needs more frequent learning than a vehicle with a lower speed,

the learning rate α and discount factor γ are adjusted depending on the speed of a

vehicle. We consider three categories of speeds: faster (121km/h to 180km/h), fast

(61km/h to 120km/h), and medium (0km/h to 60km/h). In our CO-SRL, when a

vehicle moves at a faster speed, the macro cell is chosen with a slightly lower value of

α and γ. Accordingly, the fast- and medium-speed vehicles choose a micro cell and

pico cell with comparatively higher values of α and γ than faster speed as given in

Table 8.1. This mechanism is applied in a time interval k′ − k.
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Factor-distinct Adaptive VC

Decision-making

Vehicular mobility and movement depend on both historic data and real-time data

about the environment. Vehicular mobility and directions are quite uncertain depend-

ing on different road segments, time, weather, and road-side events. Vehicle direction,

speed, and value of signal measurement parameters vary due to the dynamic vehicu-

lar movement. Sometimes, only adaptive learning or a historical data-based learning

model may not be efficient for a dynamic environment. Time series data-oriented

learning for historical model-based learning is an effective approach for dynamic en-

vironments. It is also true that a pre-defined model is not efficient for predicting

with an old dataset, and requires high computational performance and time, which

is not suitable for vehicles running on the road. By considering all of the challenges,

we propose a user-centric approach FD-SRL which consists of both lightweight time-

series data-oriented learning and adaptive learning. FD-SRL is an improvement of

CO-SRL, where we introduce adaptive learning along with time-series data-oriented

learning to make it more efficient in terms of decision-making.

FD-SRL consists of two parts (i) time-series data-oriented Virtual Cell (VC) man-

agement and (ii) adaptive learning-based handover (HO) management. In part (i), a

virtual cell is formed using time series data-oriented Bidirectional LSTM (BLSTM)

and HO decision is performed in part (ii) using SARSA Reinforcement Learning

(SRL). We use time series-historical data for VC management because VC consists of

multiple towers, and they are updated less frequently. Moreover, a predefined model

based on its traversing path and historic signal values can help to find suitable towers

to provide services [2]. For this reason, we are using time-series data-oriented learn-

ing for VC management. On the other hand, HO management is mostly dependent

38
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Figure 7.1: Architecture of FD-SRL.

on real-time data and situations, which is efficient in dealing with adaptive learning.

To enhance performance in dynamic scenarios by taking into account the dynamic

behaviour, we propose a blend of model-based and model-free learning methods. The

output of part (i) time-series data-oriented VC management, is a set of cellular tow-

ers for virtual cell, which is used as the input of part (ii) adaptive learning-based

handover management. The outcome of part (ii) is the selection of a serving tower

or intra-VC inter-VC HO. The architecture of FD-SRL is given in Figure 7.1

7.1 Learning Factors

We use Bidirectional LSTM (BLSTM) for Virtual Cell (VC) management. BLSTM

uses time series data to predict future value [26] [36]. BLSTM is composed of a cell,

an input gate, an output gate and a forget gate. The cell remembers values over

arbitrary time intervals, and the three gates regulate the flow of information into and

out of the cell. BLSTM has two sequence processing models, one taking the input

in the forward direction, and the other in the backward direction. Though BLSTM

is not that kind of lightweight model, we design the simple-lightweight structure of

BLSTM and the training and testing data to run faster within the timeframe.

Assuming a region of the plane with TCT number of cellular towers. Vehicle vi

receives beacon messages from cellular towers CT when they come in the transmission

range. The beacon message consists of connectivity parameters.

Connectivity Parameters

We consider RSSI, SINR, RSRP, distance, tower load, and speed as the connectivity

parameters of FD-SRL. These connectivity parameters are calculated in the same

way as described in Section 6.1.3 - 6.1.7. In our user-centric FD-SRL approach, we

combine RSSI, SINR, RSRP, distance, and tower load to a scalar value ϱj. This scalar

value ϱj is used as the feeding value of time-series data-oriented BLSTM. We use speed

for determining the cell size, which is discussed in Section 7.3 of this chapter.
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ϱj = (rssictj + sinrctj + rsrpctj + dist+ loadctj)/p (7.1)

In Equation 7.1, we take the sum of all of the connectivity parameters and divide

them with the total number of connectivity parameters p to calculate the scalar value

ϱj.

Execution of BLSTM

We design the BLSTM model according to the context of vehicular networks. The

input layer of BLSTM contains the input vector of scalar value ϱj at time k. The

feeding values ϱj = ϱj1, ϱ
j
2, ..., ϱ

j
k are propagated to the hidden layer. The hidden

layer updates its hidden layers status h1, h2, ..., hn at each time k. The output gk is

computed based on the input ϱj.

A BLSTM process the data in both forward and backward direction with two

separate hidden layers. An input sequence ϱj = ϱj1, ϱ
j
2, ..., ϱ

j
k, computes the hidden

vector sequence h = h1, h2, ..., hk and output vector sequence g = g1, g2, ..., gk [36].

The hidden layer function H of BLSTM is implemented using a logistic sigmoid

function, input gate, forget gate, output gate, and cell activation vectors, all of which

are the same size as the hidden vector h. This later feeds forward to the same output

layer. A BLSTM computes the forward hidden sequence
−→
h , the backward hidden

sequence
←−
h and the output sequence g by iterating the backward and forward layer

and then updating the output layer with W terms (denote weight matrices), the b

terms denote bias vectors by following the equations 7.2 7.3 and 7.4.

−→
h = H(W

ϱ
−→
h
ϱk +W−→

h
−→
h

−→
h k+1 + b−→

h
) (7.2)

←−
h = H(W

ϱ
←−
h
ϱk +W←−

h
←−
h

←−
h k+1 + b←−

h
) (7.3)

g = W−→
h g

−→
h k +W←−

h g

←−
h k + bg (7.4)

We experiment on a single-layer BLSTM. The input layer is fully connected to

the hidden layer, and the hidden layer is fully connected to the output layer. BLSTM

blocks use the logistic sigmoid for the input and output squashing functions of the

cell. We modify the traditional BLSTM to make it lightweight, and by following

the requirement of network connectivity parameters. We use 50 neurons, activation

function ReLU , optimizer Adam, and 100 epochs in the training and test process.
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Dataset

The real-time captured data is used to determine the size of VC to ensure stable

connectivity. To remain updated with the dynamic environment, we do not store

data or enrich datasets for a long time period. Because in the high dynamic mobility

scenario, a pre-defined model using an old dataset of a long time period might lead

to a wrong result. However, our proposed user-centric FD-SRL performs its training

and testing operations in the OBU of each vi frequently to be updated with time.

We assume that vehicle vi receives a sequence of the scalar values of parameters

ϱj from towers CT . We train our BLSTM model in an offline manner and use the

saved model to predict a new scalar value sequence ζ i. We define a time period

k1, k2, ..., k
′
t to perform training and testing of BLSTM. A window size k′ is defined

for the prediction of ζ i where the size of the input vector of ϱjk′ .

Vehicle vi generates and captures RSSI, SINR, RSRP, distance, and tower load,

and stores the data in its storage area by converting them to a scalar value ϱj. vi

maintains a timeframe k′ − k to store data in a dataset Di for training purposes and

testing purposes. In this timeframe, the stored scalar value reached the window size.

The timeframe k′ − k is determined in such a way that is efficient for training and

testing. The generated and captured data is divided into 70% and 30% for training

data DT N i and testing data DT i purposes, respectively.

Prediction of Scalar Value

At each time interval k′−k, the BLSTM modelMi is generated with the training data

DT N i and testing data DT i. After generatingMi, FD-SRL generates the predicted

scalar value ζ i for vci. This predicted scalar value ζ i is used for the next time interval

k′ − k for selecting towers of vci. If the scalar value ϱj for a tower ctj is greater than

the predicted scalar value ζ i, that tower is selected for the vci of vehicle vi. In every

time interval k′ − k, this process repeats to update VC.

It is noted that Mean Square Error (MSE) is employed to evaluate the performance

of BLSTM. MSE provides a quantitative measure of the model’s accuracy in making

predictions by measuring the average difference between the actual and predicted

values. We use a predefined maximum error rate to identify the performance of the

model. The time interval k′ − k is selected by focusing on the error measurement

report. In a time interval k′ − k, Mi is generated. When the MSE of Mi is less

than our predefined maximum error rate, Mi is considered for performing further

operations. WheneverMi MSE is greater than the predefined maximum error rate,
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Algorithm 3: Algorithm FD-SRL - Part (i)

Data : rssij, sinrj, rsrpj, (x, y), dist, loadctj
Result: vci, ζ

i, ctϑj
1 ϱj ← rssij, sinrj, rsrpj, (x, y), dist, loadctj ;
2 for k1 to k′t−1 do
3 Di ← ϱj;
4 if k == k′t+1 then
5 forget Di at (k′ − k)0;

6 if k == k′t−1 then
7 DT N i, DT i ← split Di into 70% and 30%;

8 if k == k′t then
9 Mi ← seqBiDirectional;

10 ζ i ←Mi.predict();

11 if ϱj >= ζ i then
12 vci ← ctj;

13 ctϑj ← AlHoMgmt(vci);

Mi is discarded and trained again. by increasing the time interval k′−k. The previous
Mi performs operations till newMi has less MSE than the predefined maximum error

rate.

Algorithm 3 describes the part (ii) of VC management. Connectivity parameters

are stored and updated in a dataset as train and test data from line 2...7. Then

BLSTM model is trained, and prediction is made in each time interval k′ − k, which

is mentioned in line 8...10. The scalar value is compared with the predicted scalar

value to form VC in line 11...12. In the end, in line 13, adaptive HO management is

called for handover decision-making.

The time complexity of part (i) of our proposed FD-SRL relates to the number of

towers in vci. We ignore the time complexity of generating BLSTM because we focus

on the time the algorithm executes. FD-SRL generates the BLSTM model after each

time interval k′−k. The connectivity metrics calculation, scalar value calculation, and

update of the dataset are performed each time k. We can say, the overall complexity

of FD-SRL is O(ctj ∈ vci ∗ k).

7.2 Factor-distinct SARSA RL Algorithm

In part (ii) of FD-SRL, vehicle vi takes the decision about the HO management. vi

selects a suitable tower ctϑj for getting service among ctj ∈ vci. FD-SLR decides
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the HO decision, i.e. intra-VC or inter-VC handover decision, to maintain stable

connections using the SRL algorithm.

We define our proposed FD-SRL model components as vehicular connectivity

requirements to ensure network stability in dynamic and high-mobility vehicular net-

works. FD-SLR performs its part (ii) operation each time k. We have modified the

CO-SRL. In most cases, FD-SRL is the same as CO-SRL, but we have the design of

FD-SRL.

7.2.1 Intra-VC Switching Tower and Inter-VC Handover

The part (i) of FD-SRL provides a set of towers for vci, which is used as the input

of part (ii). Initially, when vi registers in a network, vci is determined with a default

value of ζ i, which is suitable for 5G network connectivity. It chooses the state, action,

and reward of the part (ii) according to ctj ∈ vci with max ϱj. With the progress in

time, the FD-SRL measures the Q-value of FD-SRL by applying an action in a state

with its corresponding reward.

We consider Reference Signal Received Quality (RSRQ) as the Q-value of FD-SRL.

RSRQ is calculated using RSRP and RSSI in the same way described in CO-SRL.

The higher the RSRQ is, the better the signal. Thus, the higher Q-value indicates a

cellular tower is better for connection stability. After learning for a certain time of

initialization, FD-SRL starts taking HO decisions using the adaptive SRL algorithm.

7.2.2 State-Action

We define state-action according to the serving tower and available actions in vci.

Every vehicle vi calculates its state and actions. The state-action is independent of

each vi in our proposed user-centric FD-SRL.

State

The state sk is the cellular tower that serves vi at time k. It is similar to the current

serving tower ctϑj . The state sk+1 can be any cellular tower with max ϱj at time k+1

from vci.

Action

There are several possible actions ak ∈ {ak1 , ak2 , ..., akm} in a state sk. The number of

available actions is the same as the tower in vci. Each vi has |vci| number of available
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actions. The possible available migrations from the serving cellular tower to available

cellular towers in vci at time k are defined as action ak,p. In a state sk, available

actions are ak,pct
ϑ
j → ctj ∈ vci. After taking an action ak,m, the state changes to sk+1.

So, the serving tower ctϑj changes as the cellular tower of state sk+1.

7.2.3 Reward

In SRL, the reward rk+1 is obtained by taking action ak of transition sk to sk+1. Re-

ward impacts on selecting the best action. The scalar combination of the connectivity

parameters of rssictj , sinrctj , rsrpctj , dist, loadctj , speedi of ctj ∈ vci is used as the

reward rk+1.

We take the sum of rssictj , sinrctj , rsrpctj , dist, loadctj , and speedi, and divide

them with their number to calculate the scalar combination Rk+1 to calculate reward

rk+1 using Equation 7.5.

Rk+1 = (rssictj + sinrctj + rsrpctj + dist+ loadctj + speedi)/6 (7.5)

7.2.4 Policy Function

In our proposed FD-SRL, we use well known ϵ-greedy policy of RL [30]. It handles

trade-offs between exploration and exploitation.

At time k, ϵk is calculated from the predicted scalar value ζ i of a time interval

among the towers in vci. Initially, an action is taken randomly. So, at time k, the

probability of exploration is ϵk. After iterations, the action that has the best reward

is selected with the exploitation probability (1− ϵk).

Execution of SRL

FO-SRL calculates Q-value for every tower in vci. The number of Q-values is equal to

the number of available towers in vci. It ensures SRL does not consume a large amount

of computation time and resources. We define the update of Q-value calculation as

in Equation 7.6.

Q(sk, ak)← Q(sk, ak)
ϑ + α[Rk+1 + γrsrqmbr

ctj
− rsrqsrvctj

] (7.6)

Assume at time k, intra-VC handover has occurred, which is the switching of

the serving cellular tower. At that time period, the updated Q-value of the newly

determined served cellular tower is Q(sk, ak)
ϑ. Let the Q-value of a cellular tower in
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vci be represented as Qi
j(sk+1, ak+1). It is the same as the Q-value of the next state.

Thus, the Q-value of all available towers ctj ∈ vci is defined as Qi
1(sk+1, ak+1) =

rsrqmbr1
ct1 , Qi

2(sk+1, ak+1) = rsrqmbr2
ct2 , ..., Qi

j(sk+1, ak+1) = rsrqmbr
ctj

.

In Equation 7.6, rsrqmbr
ctj

is the RSRQ of a cellular tower in VC and rsrqsrvctj
is the

RSRQ of the serving tower in vci. These values are updated in every time period k.

Note that, the rsrqsrvctj
is the updated RSRQ at each time k, and Q(sk, ak)

ϑ is the

RSRQ during the last switching of the serving tower or intra-VC HO. Whenever a

Q-value gets to max than the previous for an action ak, i.e. ctj, is selected as the

serving tower and the value of Q(sk, ak)
ϑ is updated.

There are |vci| number of possible actions at a time k. For every available action

ak, vi updates its respective Q-value considering state transition sk to sk+1, storing all

updated Q-values in a local table. Thus, the number of computed Q-values equals the

number of available cellular towers in vci. The ak related to the maximum Q-value

gained among the actions at time k within vci, i.e. ctϑj , is selected as the serving

tower.

The part (ii) of FD-SRL is discussed in Algorithm 4. The algorithm starts working

from the calling of the function AlHoMgmt(vci) in Algorithm 4. In line 3, the

algorithm assigns towers of VC to the action of SRL. Then reward, policy, learning

rates, and discount factors of SARSA RL are assigned in line 4...6. The Q-value

generation and intra-VC HO from line 7...10. Connection drop leads to inter-VC HO

and redirects to the initial condition, which is followed as mentioned at the end.

The overall time complexity of part (ii) of FD-SRL is the same as CO-SRL. FD-

SRL in each time k, and the operation needs to be performed for every tower in vci.

Thus, the overall complexity of CO-SRL is O(ctj ∈ vci). The time complexity for

SRL operation is O(ctj ∈ vci ∗ k).

7.3 Cell Size Selection

We use speed as another connectivity parameter to determine the size of the virtual

cell. We have considered pico (small), micro (medium), and macro (large) size cells in

our approach [28]. Speed has an impact on determining virtual cell size. We consider

three categories of speeds: faster (121km/h to 180km/h), fast (61km/h to 120km/h),

and medium (0km/h to 60km/h).

The time interval k′ − k in the FD-SRL is calibrated based on the speed of the

vehicles. Vehicles traveling at higher speeds have a larger time interval compared

to those traveling at lower speeds. This calibration is performed to guarantee that
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Algorithm 4: Algorithm FD-SRL - Part (ii)

Data : vci, rssij, sinrj, rsrpj, (x, y), dist, loadj, speedi
Result: ctϑj

1 InitializeCondition;
2 while vci ̸= ∅ do
3 ak ← vci;
4 Rk+1 ← (rssictj + sinrctj + rsrpctj + dist+ loadctj + speedi)/6;
5 ϵk ← computePolicy();
6 set α, γ; //depending on speedi
7 Q(sk, ak)← Q(sk, ak)

ϑ + α[Rk+1 + γrsrqmbr
ctj
− rsrqsrvctj

];

8 if (argmaxctj(Q(sk, ak)) then
9 execute switching serving tower to new ctϑj ;

10 Q(sk, ak)
ϑ ← argmaxctj(Q(sk, ak));

11 if (connectionDrop in vci) then
12 execute inter-VC HO to neighbouring cellular tower;
13 break;

sufficient data is collected for training the BLSTM model of FD-SRL.

Moreover, when a vehicle moves at a faster speed, the macro cell is chosen with

a slightly lower value of α and γ. Accordingly, the fast- and medium-speed vehicles

choose a micro cell and pico cell with comparatively higher values of α and γ than

faster speed as given in Table 8.1. This adjustment is for learning according to the

dynamic behaviour of a vehicle.



Chapter 8

Performance Analysis

8.1 Simulation Scenario

We have extensively simulated our proposed approaches utilizing VEINS, OMNet++,

SUMO, and Simu5G. VEINS is an open source framework for simulating vehicu-

lar networks [27]. It is included with a simulation program for vehicular network-

ing. OMNet++ is capable of supporting and running VEINS models [33]. We

have used VEINS-5.1.0 for this experiment. The simulation is built on top of VEINS.

We use Simu5G for the implementation of 5G network scenarios [19]. It combines the

vehicle network and the 5G network. The Simu5G models are executed along with

VEINS in OMNet++. We have used Simu5G-1.2.0. Simulation of Urban Mobility

(SUMO) is an open-source, highly portable road traffic simulator that can handle

extensive networks of roads [15]. SUMO-1.8.0 is the simulation engine we have used

in this work. Modules that exchange messages to communicate are the basis of OM-

Net++ models. Programming in C++ is used to create the models’ functional ele-

ments. In this simulation, OMNet++-6.0 (pre11) has been used. It uses TCP sockets

to talk to SUMO. The beacon messages follow the 5G communication protocol for

communicating in the ITS scenario.

8.2 Network Topology

We use the Cologne, Germany map in our simulations. It projects real-world traffic

movement into traffic data. The selected region is a dense urban area with standard

roads layout as well as highways allowing variable mobility patterns across the whole

region. We have conducted simulations in two different parameter setting with five

47
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Figure 8.1: Simulation Scenario of Cologne, Germany.

and ten 5G gNodeB cellular towers. They are randomly placed on the simulation

playground. We have positioned the cellular towers to mimic real-world conditions,

such as (i) covering the majority of the region, (ii) having some areas outside the

coverage of cellular towers, and (iii) having some areas where many cellular towers

overlap. Figure 8.1 depicts the situation of our network map.

In our simulation scenario, each vehicle vi has an independent traversing route

from a starting point A to a destination D. Vehicles follow traffic rules, speed limits,

priority, and patterns of a specific zone as our selected region. There are multiple

routes for each vi, source A and destination D can be different. In each seed of our

batch run for the simulation, vi follows different routes.

8.3 Simulation Parameters

Our proposed approaches are evaluated using a combination of parameter settings

defined in Table 8.1. The results are averages obtained from 30+ runs with different
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Table 8.1: Simulation Parameters.

Parameter Value Range

Simulation Area 5 ∗ 5km2

Vehicle Density 100− 3100
Vehicle Speed 0km/h− 180km/h
Num of Cellular Tower 5 and 10
Distribution of Cellular Tower Random
Comm. Range of Cellular Tower 1000km
PHY Model 5G
Transmission Power (gNodeB) 46dbm
Transmission Power (Vehicle) 26dbm
Pico, Micro, Macro (α) 0.8, 0.5, 0.3
Pico, Micro, Macro (γ) 0.8, 0.5, 0.1

seeds, with confidence intervals of 95%. We evaluate our work in different vehicle

densities (100..3100) and have conducted an analysis observing different speed ranges

in intervals of 20km/h (min-max km/h): 0 − 20km/h to 160 − 180km/h. We run

each simulation for 100s of simulation time. The different densities of vehicles and

speeds impact the HO in terms of connectivity.

We have devised two separate parts of performance analyses. In our first part of

the performance analysis, five 5G cellular towers (gNodeB) are placed randomly, and

a finite number of vehicles traverse the map. In the second part of the performance

analysis, ten 5G cellular towers (gNodeB) are employed with the same number of

vehicles. The number of vehicles is the same in both analyses. We have defined the

routes of vehicles and scenarios in such a way that, the second part is an extensive

scenario that prompts more connection stability issues than the regular scenario of

the first part. The green dots in Figure 8.1 represent the approximate location of

the simulation with five 5G cellular towers (gNodeB), while the red dots indicate the

approximate location of the simulation with ten 5G cellular towers (gNodeB).

8.4 Performance Metrics

In order to improve network stability, our research reduces the overall number of

HO and average cumulative HO duration. The computing costs using virtual cell

size of various approaches have also been taken into account. The effectiveness of our

technique has been tested using a variety of performance parameters on vehicles with

various densities and ranges of mobility.



CHAPTER 8. PERFORMANCE ANALYSIS 50

Number of Intra-VC HO

The number of switching serving towers or intra-VC HO estimates the total number

of switching of the serving tower within VC. As per the definition of VC, the vehicle

already has information related to the switched tower in its VC, so there is no hard

HO or connection loss, and connection stability is still maintained [28] [23].

Though the number of intra-VC HO does not directly affect connection stability,

a lower number of HOs provides more stable service delivery. It is also true that a

decent number of intra-VC of HO is necessary to have a better user experience.

Number of Inter-VC HO

The number of hard-HO or inter-VC HO represents the total number of HO per-

formed outside VC. This is the HO event that a vehicle faces while traversing on road

segments. This type of HO requires the same amount of time as standard HO. [28].

The lower the number, the better the network stability.

Average Cumulative HO Time for Intra-VC HO

The average cumulative HO time for intra-VC HO describes the time used for intra-

VC HO. The cumulative HO time includes HO time inside VC and a latency including

HO attachment-detachment time. This time is very short comparatively because

every necessary information is already in the OBU of the vehicle. It is calculated by

dividing the cumulative HO time by the total number of HO for intra-VC HO.

Average Cumulative HO Time for Inter-VC HO

The average cumulative HO time for inter-VC HO describes the time used for inter-

VC HO. It is calculated by dividing the cumulative HO time by the total number

of HO for inter-VC HO. In this case, the cumulative HO time consists of latency

which includes HO decision-making, attachment-detachment time, and a time for

exchanging beacon messages. The latency for beacon messages and packet loss might

be another reason. In contrast to intra-VC HO, the vehicle cannot complete the HO

operation in a smaller time because it lacks sufficient information for inter-VC HO.

The metric average cumulative HO time for intra-VC and inter-VC HO show the

network stability by providing a lower average cumulative time required for intra-VC

than inter-VC HO.
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Percentage of Intra-VC

We calculate the percentage of intra-VC HO for different speeds. The percentages

are obtained from the total number of intra-VC HO divided by the total number of

vehicles that reached a defined speed range. This metric describes the variation of

HO occurrence in different speed ranges. The lower the percentage of intra-VC HO,

the better the performance.

Percentage of Inter-VC HO

For different speeds, we determine the percentage of inter-VC HO. The percentages

are calculated by dividing the total number of vehicles that reached a specified speed

range by the total number of inter-VC HO. This measure explains how inter-VC HO

recurrence varies throughout speed ranges. Performance improves with a decreased

inter-VC HO proportion.

The smaller proportion of intra-VC HO than inter-VC HO proofs approaches

performs well in terms of maintaining stable connection by occurring HO inside VC.

In order to deliver better results in terms of speed ranges, the percentages of intra-VC

and inter-VC HO should retain stability.

Size of VC

We consider the size of VC as a performance metric. It gives a picture of the compu-

tational cost of networks. By dividing the average number of cellular towers in VC

for a number of randomly chosen vehicles by the total number of vehicles, the size of

VC is determined.

Increasing the number of cellular towers in a virtual cell will increase the number of

connections that need to be managed by the network, which will, in turn, increase the

computation required to maintain the network. This means that a larger virtual cell

size can lead to more computation in the network that requires more computational

resources to manage.

8.5 Compared Approaches

We have thoroughly examined numerous approaches in this thesis. The probabilis-

tic approach, known as FiVH from the work in [28], has been implemented for the

comparison. We have presented a performance study and comparison of the following

approaches to demonstrate the improvement of our suggested methodologies.
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• FiVH: Probabilistic approach of a previous work [28]

• M-FiVH: A modified probabilistic approach of FiVH [28]

• CO-SRL: Connectivity-oriented adaptive learning approach using SRL

• FD-SRL: Time series data-oriented adaptive learning approach using BLSTM

and SRL

8.6 Results

We have conducted the performance analysis in two distinct parts. The first part

involves a comparison of CO-SRL, M-FiVH, and FiVH using five 5G cellular towers

(gNodeB). The second part involves a comparison of CO-SRL and FD-SRL using ten

5G cellular towers (gNodeB).

8.6.1 Connectivity-oriented SARSA RL

In the beginning, the performance of CO-SRL is compared with a previous work

FiVH [28] and M-FiVH. The results are the average values along with 95% confidence

intervals, obtained from conducting over 30 experiments with different seeds. We

evaluate our work in different vehicle densities (100..3100).

Figure 8.2 represents the total number of intra-VC HO, which increases with the

density of vehicles. The number of intra-VC HO for CO-SRL is 10...400 while M-

FiVH and FiVH are 55...1300 and 76...1600, respectively. The graph increases almost

linearly over the increasing number of densities. The slope is lower for CO-SRL

than others, which shows that CO-SRL outperforms M-FiVH and FiVH in terms of

reducing the number of intra-VC HO.

Figure 8.3 shows the total number of inter-VC HO, which increases linearly with

the vehicle density, as expected. For CO-SRL, the increase remains almost flat for

different densities, demonstrating that our designed CO-SRL handles stable connec-

tions from space to dense scenarios. The number of inter-VC HO for CO-SRL is 5...70

while 40...450 and 60...800 for M-FiVH and FiVH, respectively.

Figure 8.4 and 8.5 describes the average cumulative time required for intra-VC

and inter-VC HO. Intra-VC HO requires at most 0.05ms, 0.23ms and 0.30ms for

CO-SRL, M-FiVH and FiVH, respectively. The average cumulative time increases

sharply for M-FiVH and FiVH with the increasing number of densities and slightly

increases for CO-SRL. The average cumulative time of inter-VC HO for high-density
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Figure 8.2: Number of intra-VC HO over the different densities of vehicles.
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Figure 8.3: Number of inter-VC HO over the different densities of vehicles.

3100 vehicles is 7ms, 45ms and 60ms for CO-SRL, M-FiVH and FiVH, respectively.

CO-SRL requires less time than M-FiVH and FiVH for inter-VC HO. Moreover,

Figure 8.4 and 8.5 also show that intra-VC HO requires less amount of time than

inter-VC HO.

It should be noted that the average cumulative time for intra-VC and inter-VC

HO increase with densities. We have identified some reasons behind this. With the

increasing densities, there are more potential handover candidates. Higher densities
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Figure 8.4: Average Cumulative intra-VC HO Time vs vehicle density.
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Figure 8.5: Average Cumulative inter-VC HO Time vs vehicle density.

thus lead to growth in network congestion, which directly increases latency, extend-

ing delay in completing the handover process. Additionally, more nodes can lead to

increased interference, which can also slow down the handover process. This time re-

quires more for inter-VC HO than intra-VC HO because some additional time requires

for inter-VC HO as the HO occurs outside VC.

Moreover, M-FiVH showed better performance than FiVH. We can understand

from Figure 8.2, 8.3, 8.4 and 8.5 that adding signal measurement RSSI as a parameter
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Figure 8.6: Percentages of intra-VC HO vs speed.

to FiVH improved the VC and HO management performance. Adding real-time

adaption, CO-SRL, allowed the best HO decision-making compared to M-FiVH and

FiVH.

Speed impacts HO decision-making, so we conducted an analysis observing dif-

ferent speed ranges in intervals of 20km/h (min-max km/h): 0 − 20km/h to 160 −
180km/h. Figure 8.6 presents the percentage of the number of intra-VC HO for dif-

ferent speed ranges. CO-SRL has a slightly increasing pattern with respect to speed.

It is expected because high-mobility vehicles need to perform more intra-VC HO to

maintain stable connections. M-FiVH and FiVH have fluctuations in the percentage

of the intra-VC HO, but it still has a huge difference from CO-SRL. Since we are

considering the maximum value of RSSI for the formation of VC in M-FiVH, the

increases in speed lead to frequent intra-VC HO. It helps to reduce the number of

inter-VC. On the other hand, FiVH remains stable as no signal parameter is con-

sidered, which affects the increasing number of inter-VC HO for FiVH rather than

M-FiVH.

CO-SRL remains below 0.1 for every speed range while M-FiVH and FiVH have

0.65−0.85. The percentage of the number of inter-VC HO is shown in Figure 8.7. CO-

SRL remains close to 0.1, and M-FiVH and FiVH have linearly increasing percentages

of the number of intra-VC HO, showing that CO-SRL outperforms M-FiVH and

FiVH, where high mobility does not affect the number of HOs.

The VC size serves as a measurement of the computational costs of the employed
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Figure 8.7: Percentages of inter-VC HO vs speed.

60 120 180

Speed of Vehicles

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

V
C

 S
iz

e

CO-SRL

M-FiVH

FiVH

Figure 8.8: The size of VC over speed.

approaches. A hundred vehicles were monitored at three different speeds in order to

determine the VC size. In Figure 8.8, it can be found that CO-SRL has a smaller VC

size of 2.5...2.7 while M-FiVH and FiVH have a larger size of 3.1...3.8 and 3.3...4.1.

This is because CO-SRL maintains a lower computational cost than M-FiVH and

FiVH since it installs a little bit fewer towers.
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Figure 8.9: Number of intra-VC HO over the different densities of vehicles.

8.6.2 Factor-distinct SARSA RL

We have evaluated our proposed CO-SRL with our other contribution, FD-SRL, in

this study. We consider a new, more complex scenario in which more HO may occur.

The vehicle densities in which we assess our work range from (100..3100). The findings

are averages with 95% confidence intervals that were acquired from more than 30 runs

using various seeds.

The total number of intra-VC HO, which rises with vehicle density, is shown in Fig-

ure 8.9. For FD-SRL, there are 2000...36000 intra-VC HO, compared to 12000...57000

for CO-SRL. As the number of densities increases, the graph climbs approximately

linearly. Since FD-SRL has a slightly smaller slope than the others, it works better

in lowering the number of intra-VC HO than CO-SRL.

The total number of inter-VC HO is shown in Figure 8.10. The increase for

FD-SRL and CO-SRL is linear over the increase of vehicle density. Despite growing

linearly, they continue to exist in smaller quantities. There are situations when per-

forming HO is necessary for improved user experience. While the number of inter-VC

HO for CO-SRL is 1800...12000, for FD-SRL is 200...8300 HOs.

Figure 8.11 and 8.12 provide a summary of the average cumulative time needed

for intra-VC and inter-VC HO. Intra-VC HO fluctuates between 0.160...0.200ms for

FD-SRL. The average cumulative time increases slightly 0.275...0.350ms for CO-SRL

with the increasing number of densities. The average cumulative time of inter-VC

HO is 0.50...0.55ms for CO-SRL, while FD-SRL requires less time, 0.05...0.40ms.
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Figure 8.10: Number of inter-VC HO over the different densities of vehicles.

Moreover, Figure 8.11 and 8.12 also show that intra-VC HO requires less amount of

time than inter-VC HO. The average cumulative time for CO-SRL varies from our

previous analysis. The cause is due to altered simulation parameter settings and

environmental variations. Although it differs from the previous analysis, the change

is the same.

It should be noted that the average cumulative time for intra-VC and inter-VC

HO increase with densities. We have identified some reasons behind this. With the

increasing densities, there are more potential handover candidates. Higher densities

thus lead to growth in network congestion, which directly increases latency, extend-

ing delay in completing the handover process. Additionally, more nodes can lead to

increased interference, which can also slow down the handover process. This time re-

quires more for inter-VC HO than intra-VC HO because some additional time requires

for inter-VC HO as the HO occurs outside VC.

For various speed ranges, the percentage of the number of intra-VC HO is shown in

Figure 8.13. In terms of speed, FD-SRL and CO-SRL exhibit an increasing pattern. It

is expected because high-mobility vehicles must carry out more intra-VC HO in order

to keep connections steady. The FD-SRL varies slightly more since the situations in

which it learns might change. In spite of this, FD-SRL outperforms CO-SRL.

The percentage of the number of inter-VC HO is shown in Figure 8.14. FD-

SRL remains close to 0.28...0.32ms, and CO-SRL increases with fluctuations between

0.36...0.45ms percentages of the number of intra-VC HO. It proves that FD-SRL



CHAPTER 8. PERFORMANCE ANALYSIS 59

100 400 700 1000 1300 1600 1900 2200 2500 2800 3100

Density of Vehicles

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

A
v
e
ra

g
e
 C

u
m

u
la

ti
v
e
 T

im
e
 o

f 
In

tr
a
-V

C
 H

O

CO-SRL

FD-SRL

Figure 8.11: Average Cumulative intra-VC HO Time vs vehicle density.
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Figure 8.12: Average Cumulative inter-VC HO Time vs vehicle density.

performs better than CO-SRL, where high mobility does not affect the number of

HOs.

We can see that though FD-SRL performs better than CO-SRL, there are more

fluctuations in FD-SRL than CO-SRL. The LSTM model in FD-SRL is designed

to learn long-term dependencies in sequences of data while the SRL algorithm in

CO-SRL is designed to learn a policy for making decisions. Moreover, LSTMs are

sensitive to the amount of data, with the variation of captured data the LSTM model
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Figure 8.13: Percentages of intra-VC HO vs speed.
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Figure 8.14: Percentages of inter-VC HO vs speed.

can perform differently and fluctuate more than SRL.

The computational cost of the implemented techniques is measured by the VC size.

To determine the VC size, a hundred vehicles were observed at three different ranges

of speed. Figure 8.15 shows that CO-SRL is discovered to have a smaller VC size of

3.2...4 than FD-SRL of 4.2...5.1. This is because CO-SRL adds slightly fewer towers

with policy-based learning, but FD-SRL adds more towers by combining time-series

data-oriented learning with adaptive learning. According to the definition, FD-SRL
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Figure 8.15: The size of VC over speed.

requires more computation cost than CO-SRL.

8.7 Remarks

Our proposed approaches, M-FiVH, CO-SRL, and FD-SRL, outperform FiVH, ac-

cording to our analysis of the analysis of findings. With various tactics, the perfor-

mance gradually becomes better. It is noteworthy that FD-SRL and CO-SRL pro-

duce the greatest outcomes. In terms of the number of handovers, average cumulative

handover time, and percentages of handovers, FD-SRL outperforms CO-SRL, while

CO-SRL has a lower computational cost than FD-SRL. Our analysis demonstrates

that connection stability is maintained for high-mobility and ultra-density vehicular

networks in both highway and urban scenarios.



Chapter 9

Conclusion

9.1 Summary

This thesis addressed the vehicular network stability problem in 5G vehicular net-

works for ultra-dense networks and high mobility of vehicles. As our several contri-

butions to connection stability, we devised a number of strategies. We started our

contribution by modifying a previous work FiVH. We went through several studies

and experiments in terms of parameter settings and algorithm design. This version

of M-FiVH performed well by adding signal parameters.

Our second contribution is the introduction of CO-SRL, an adaptive SRL strategy

for lowering the number of HO and average cumulative HO duration. To predict

vehicle direction, we used an LR model, and to update CFs, we used a dynamic

adaptive learning technique based on SRL. A stable connection is ensured together

with the virtual cell and handover management using SRL.

By presenting a time-series data-oriented BLSTM learning with adaptive SRL,

we made another substantial contribution to this thesis. Time series data have been

applied for managing virtual cells. For handover management, we kept SRL. In this

section, we explored how the promise of connection stability is enhanced when time-

series data-oriented learning is combined with adaptive learning.

In a series of simulations, we examined several scenarios and offered insights. We

conducted simulations with different parameter settings. We considered extensive

scenarios for the analysis of our proposed approaches for the connection stability

problem.

The results of the conducted studies have shown that both CO-SRL and FD-SRL

ensured stable connectivity of networks while reducing HO overhead, outperforming

FiVH and M-FiVH approaches. In terms of reducing HO and average cumulative HO
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time, FD-SRL outperforms CO-SRL but increases computation cost. Our proposed

approaches enhance connection stability in each of the proposed strategies, M-FiVH,

CO-SRL, and FD-SRL.

Limitations

Even though the proposed approaches have produced encouraging outcomes for con-

nection stability, there are still a number of areas that we have identified as limitations

that need to be explored.

• We kept the Linear Regression (LR) model for predicting direction simple. We

did not consider model performance and analyze the behaviour of the algorithm

with wrong predictions.

• We did not examine alternative learning rates and discount factors for the SRL

algorithm. Varying these values may affect the results and lead to improved

performance.

• We did not evaluate the BLSTM model with various design configurations and

parameter settings. Furthermore, the generation of the BLSTM model is con-

tingent on a specific time interval. We did not consider the real-time parallel

generation of the BLSTM model alongside the simulation.

• We used Mean Squared Error (MSE) as a performance metric for the BLSTM

model. However, MSE alone does not provide a complete and accurate evalua-

tion of the model.

9.2 Future Discussion

Our proposed approaches demonstrate an improvement in the connection stability

issue. We have identified some limitations of our work and offer potential avenues

for overcoming them. Additionally, we suggest directions that can further enhance

performance.

Overall

• We will study our approach in multiple scenarios with different maps of several

different routes of vehicles.
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• We will analyze the simulation by placing 5G cellular towers in different places.

Moreover, we will explore more extensive scenarios with different numbers of

cellular towers.

• We will also study other time series data-oriented-based learning and adaptive

learning strategies. An analysis of computational cost will be taken into action

in our future studies.

CO-SRL

• We will investigate different learning rates and discount factors.

• The update of Connectivity Factors (CFs) will be examined with direct adaptive

learning.

• We will add a model evaluation for LR for error calculation and ensure better

performance.

FD-SRL

• The BLSTM model will be examined with different parameter settings, includ-

ing different epochs, number of neurons, and batch size.

• The BLSTM model will be generated in real-time at each time step, alongside

the simulation. We want to examine the result with such a design for improving

performance.

• Loss calculation will be taken into action more precisely in our future work.

We will evaluate our trained model with various error calculation methods to

ensure model performance.
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