6,044 research outputs found

    A hierarchical key pre-distribution scheme for fog networks

    Get PDF
    Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices. KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks

    A hierarchical key pre-distribution scheme for fog networks

    Get PDF
    Security in fog computing is multi-faceted, and one particular challenge is establishing a secure communication channel between fog nodes and end devices. This emphasizes the importance of designing efficient and secret key distribution scheme to facilitate fog nodes and end devices to establish secure communication channels. Existing secure key distribution schemes designed for hierarchical networks may be deployable in fog computing, but they incur high computational and communication overheads and thus consume significant memory. In this paper, we propose a novel hierarchical key pre-distribution scheme based on “Residual Design” for fog networks. The proposed key distribution scheme is designed to minimize storage overhead and memory consumption, while increasing network scalability. The scheme is also designed to be secure against node capture attacks. We demonstrate that in an equal-size network, our scheme achieves around 84% improvement in terms of node storage overhead, and around 96% improvement in terms of network scalability. Our research paves the way for building an efficient key management framework for secure communication within the hierarchical network of fog nodes and end devices. KEYWORDS: Fog Computing, Key distribution, Hierarchical Networks

    Energy-Efficient Hybrid Key Management Protocol for Wireless Sensor Networks

    Get PDF
    In this paper, we propose a subnetwork key management strategy in which the heterogeneous security requirements of a wireless sensor network are considered to provide differing levels of security with minimum communication overhead. Additionally, it allows the dynamic creation of high security subnetworks within the wireless sensor network and provides subnetworks with a mechanism for dynamically creating a secure key using a novel and dynamic group key management protocol. The proposed energy-efficient protocol utilizes a combination of pre-deployed group keys and initial trustworthiness of nodes to create a level of trust between neighbors in the network. This trust is later used to allow secure communication between neighbors when creating a dynamic, high security subnetwork within the sensor network. Results of simulations of the protocol in Ns2 are presented and the complexity of the protocol is analyzed. The proposed protocol reduces delay by 50% and energy consumption by 70% over the existing dynamic group key management (DGKM) scheme

    Security in 5G-Enabled Internet of Things Communication: Issues: Challenges, and Future Research Roadmap

    Get PDF
    5G mobile communication systems promote the mobile network to not only interconnect people, but also interconnect and control the machine and other devices. 5G-enabled Internet of Things (IoT) communication environment supports a wide-variety of applications, such as remote surgery, self-driving car, virtual reality, flying IoT drones, security and surveillance and many more. These applications help and assist the routine works of the community. In such communication environment, all the devices and users communicate through the Internet. Therefore, this communication agonizes from different types of security and privacy issues. It is also vulnerable to different types of possible attacks (for example, replay, impersonation, password reckoning, physical device stealing, session key computation, privileged-insider, malware, man-in-the-middle, malicious routing, and so on). It is then very crucial to protect the infrastructure of 5G-enabled IoT communication environment against these attacks. This necessitates the researchers working in this domain to propose various types of security protocols under different types of categories, like key management, user authentication/device authentication, access control/user access control and intrusion detection. In this survey paper, the details of various system models (i.e., network model and threat model) required for 5G-enabled IoT communication environment are provided. The details of security requirements and attacks possible in this communication environment are further added. The different types of security protocols are also provided. The analysis and comparison of the existing security protocols in 5G-enabled IoT communication environment are conducted. Some of the future research challenges and directions in the security of 5G-enabled IoT environment are displayed. The motivation of this work is to bring the details of different types of security protocols in 5G-enabled IoT under one roof so that the future researchers will be benefited with the conducted work

    Securing the Internet of Things Infrastructure - Standards and Techniques

    Get PDF
    The Internet of Things (IoT) infrastructure is a conglomerate of electronic devices interconnected through the Internet, with the purpose of providing prompt and effective service to end-users. Applications running on an IoT infrastructure generally handle sensitive information such as a patient’s healthcare record, the position of a logistic vehicle, or the temperature readings obtained through wireless sensor nodes deployed in a bushland. The protection of such information from unlawful disclosure, tampering or modification, as well as the unscathed presence of IoT devices, in adversarial environments, is of prime concern. In this paper, a descriptive analysis of the security of standards and technologies for protecting the IoT communication channel from adversarial threats is provided. In addition, two paradigms for securing the IoT infrastructure, namely, common key based and paired key based, are proposed

    Efficient And Secure Key Distribution Protocol For Wireless Sensor Networks

    Get PDF
    Modern wireless sensor networks have adopted the IEEE 802.15.4 standard. This standard defines the first two layers, the physical and medium access control layers; determines the radio wave used for communication, and defines the 128-bit advanced encryption standard (AES-128) for encrypting and validating transmitted data. However, the standard does not specify how to manage, store, or distribute encryption keys. Many solutions have been proposed to address this problem, but the majority are impractical in resource-constrained devices such as wireless sensor nodes or cause degradation of other metrics. Therefore, we propose an efficient and secure key distribution protocol that is simple, practical, and feasible to implement on resource-constrained wireless sensor nodes. We conduct simulations and hardware implementations to analyze our work and compare it to existing solutions based on different metrics, such as energy consumption, storage overhead, key connectivity, replay attack, man-in-the-middle attack, and resiliency to node capture attack. Our findings show that the proposed protocol is secure and more efficient than other solutions

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    Data Aggregation and Packet Bundling of Uplink Small Packets for Monitoring Applications in LTE

    Full text link
    In cellular massive Machine-Type Communications (MTC), a device can transmit directly to the base station (BS) or through an aggregator (intermediate node). While direct device-BS communication has recently been in the focus of 5G/3GPP research and standardization efforts, the use of aggregators remains a less explored topic. In this paper we analyze the deployment scenarios in which aggregators can perform cellular access on behalf of multiple MTC devices. We study the effect of packet bundling at the aggregator, which alleviates overhead and resource waste when sending small packets. The aggregators give rise to a tradeoff between access congestion and resource starvation and we show that packet bundling can minimize resource starvation, especially for smaller numbers of aggregators. Under the limitations of the considered model, we investigate the optimal settings of the network parameters, in terms of number of aggregators and packet-bundle size. Our results show that, in general, data aggregation can benefit the uplink massive MTC in LTE, by reducing the signalling overhead.Comment: to appear in IEEE Networ

    Seamless key agreement framework for mobile-sink in IoT based cloud-centric secured public safety sensor networks

    Get PDF
    Recently, the Internet of Things (IoT) has emerged as a significant advancement for Internet and mobile networks with various public safety network applications. An important use of IoT-based solutions is its application in post-disaster management, where the traditional telecommunication systems may be either completely or partially damaged. Since enabling technologies have restricted authentication privileges for mobile users, in this paper, a strategy of mobile-sink is introduced for the extension of user authentication over cloud-based environments. A seamless secure authentication and key agreement (S-SAKA) approach using bilinear pairing and elliptic-curve cryptosystems is presented. It is shown that the proposed S-SAKA approach satisfies the security properties, and as well as being resilient to nodecapture attacks, it also resists significant numbers of other well-known potential attacks related with data confidentiality, mutual authentication, session-key agreement, user anonymity, password guessing, and key impersonation. Moreover, the proposed approach can provide a seamless connectivity through authentication over wireless sensor networks to alleviate the computation and communication cost constraints in the system. In addition, using Burrows–Abadi–Needham logic, it is demonstrated that the proposed S-SAKA framework offers proper mutual authentication and session key agreement between the mobile-sink and the base statio
    • 

    corecore