8,229 research outputs found

    Efficient noninteractive certification of RSA moduli and beyond

    Get PDF
    In many applications, it is important to verify that an RSA public key (N; e) speci es a permutation over the entire space ZN, in order to prevent attacks due to adversarially-generated public keys. We design and implement a simple and e cient noninteractive zero-knowledge protocol (in the random oracle model) for this task. Applications concerned about adversarial key generation can just append our proof to the RSA public key without any other modi cations to existing code or cryptographic libraries. Users need only perform a one-time veri cation of the proof to ensure that raising to the power e is a permutation of the integers modulo N. For typical parameter settings, the proof consists of nine integers modulo N; generating the proof and verifying it both require about nine modular exponentiations. We extend our results beyond RSA keys and also provide e cient noninteractive zero- knowledge proofs for other properties of N, which can be used to certify that N is suitable for the Paillier cryptosystem, is a product of two primes, or is a Blum integer. As compared to the recent work of Auerbach and Poettering (PKC 2018), who provide two-message protocols for similar languages, our protocols are more e cient and do not require interaction, which enables a broader class of applications.https://eprint.iacr.org/2018/057First author draf

    Certifying RSA public keys with an efficient NIZK

    Full text link
    In many applications, it is important to verify that an RSA public key ( N,e ) specifies a permutation, in order to prevent attacks due to adversarially-generated public keys. We design and implement a simple and efficient noninteractive zero-knowledge protocol (in the random oracle model) for this task. The key feature of our protocol is compatibility with existing RSA implementations and standards. The protocol works for any choice of e. Applications concerned about adversarial key generation can just append our proof to the RSA public key without any other modifications to existing code or cryptographic libraries. Users need only perform a one- time verification of the proof to ensure that raising to the power e is a permutation of the integers modulo N . For typical parameter settings, the proof consists of nine integers modulo N; generating the proof and verifying it both require about nine modular exponentiations.https://eprint.iacr.org/2018/057.pdfFirst author draf

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Hashing Solutions Instead of Generating Problems:On the Interactive Certification of RSA Moduli

    Get PDF
    Certain RSA-based protocols, for instance in the domain of group signatures, require a prover to convince a verifier that a set of RSA parameters is well-structured (e.g., that the modulus is the product of two distinct primes and that the exponent is co-prime to the group order). Various corresponding proof systems have been proposed in the past, with different levels of generality, efficiency, and interactivity. This paper proposes two new proof systems for a wide set of properties that RSA and related moduli might have. The protocols are particularly efficient: The necessary computations are simple, the communication is restricted to only one round, and the exchanged messages are short. While the first protocol is based on prior work (improving on it by reducing the number of message passes from four to two), the second protocol is novel. Both protocols require a random oracle

    Zero-Knowledge Arguments for Subverted RSA Groups

    Get PDF
    This work investigates zero-knowledge protocols in subverted RSA groups where the prover can choose the modulus and where the verifier does not know the group order. We introduce a novel technique for extracting the witness from a general homomorphism over a group of unknown order that does not require parallel repetitions. We present a NIZK range proof for general homomorphisms such as Paillier encryptions in the designated verifier model that works under a subverted setup. The key ingredient of our proof is a constant sized NIZK proof of knowledge for a plaintext. Security is proven in the ROM assuming an IND-CPA additively homomorphic encryption scheme. The verifier\u27s public key is reusable, can be maliciously generated and is linear in the number of proofs to be verified

    Lattice-based zero-knowledge proofs of knowledge

    Get PDF
    (English) The main goal of this dissertation is to develop new lattice-based cryptographic schemes. Most of the cryptographic protocols that each and every one of us use on a daily basis are only secure under the assumption that two mathematical problems, namely the discrete logarithm on elliptic curves and the factorization of products of two primes, are computationally hard. That is believed to be true for classical computers, but quantum computers would be able to solve these problems much more efficiently, demolishing the foundations of plenty of cryptographic constructions. This reveals the importance of post-quantum alternatives, cryptographic schemes whose security relies on different problems intractable for both classical and quantum computers. The most promising family of problems widely believed to be hard for quantum computers are lattice-based problems. We increase the supply of lattice-based tools providing new Zero-Knowledge Proofs of Knowledge for the Ring Learning With Errors (RLWE) problem, perhaps the most popular lattice-based problem. Zero-knowledge proofs are protocols between a prover and a verifier where the prover convinces the verifier of the validity of certain statements without revealing any additional relevant information. Our proofs extend the literature of Stern-based proofs, following the techniques presented by Jacques Stern in 1994. His original idea involved a code-based problem, but it has been reiteratedly improved and generalized to be used with lattices. We illustrate our proposal defining a variant of the commitment scheme, a cryptographic primitive that allows us to ensure some message was already determined at some point without revealing it until a future time, defined by Benhamouda et al. in ESORICS 2015, and proving in zero-knowledge the knowledge of a valid opening. Most importantly we also show how to prove that the message committed in one commitment is a linear combination, with some public coefficients, of the committed messages from two other commitments, again without revealing any further information about the messages. Finally, we also present a zero-knowledge proof analogous to the previous one but for multiplicative relations, something much more involved that allows us to prove any arithmetic circuit. We give first an interactive version of these proofs and then show how to construct a non-interactive one. We diligently prove that both the commitment and the companion Zero-Knowledge Proofs of Knowledge are secure under the assumption of the hardness of the underlying lattice problems. Furthermore, we specifically develop such proofs so that the arising conditions can be directly used to compute parameters that satisfy them. This way we provide a general method to instantiate our commitment and proofs with any desired security level. Thanks to this practical approach we have been able to implement all the proposed schemes and benchmark the prototype im-plementation with actually secure parameters, which allows us to obtain meaningful results and compare its performance with the existing alternatives. Moreover, provided that multiplication of polynomials in the quotient ring ℤₚ[]/⟨ⁿ + 1⟩, with prime and a power of two, is the most basic operation when working with ideal lattices we comprehensively study what are the necessary and sufficient conditions needed for applying (a generalized version of) the Fast Fourier Transform (FFT) to obtain an efficient multiplication algorithm in quotient rings as ℤₘ[]/⟨ⁿ − ⟩ (where we consider any positive integer and generalize the quotient), as we think it is of independent interest. We believe such a theoretical analysis is fundamental to be able to determine when a given generalization can also be applied to design an efficient multiplication algorithm when the FFT is not defined for the ring we are considering. That is the case of the rings used for the commitment and proofs described before, where only a partial FFT is available.(Español) El objetivo principal de esta tesis es obtener nuevos esquemas criptográficos basados en retículos. La mayoría de los protocolos criptográficos que usamos a diario son únicamente seguros bajo la hipótesis de que el problema del logaritmo discreto en curvas elípticas y la factorización de productos de dos primos son computacionalmente difíciles. Se cree que esto es cierto para los ordenadores clásicos, pero los ordenadores cuánticos podrían resolver estos problemas de forma mucho más eficiente, acabando con las bases sobre las que se fundamenta una multitud de construcciones criptográficas. Esto evidencia la importancia de las alternativas poscuánticas, cuya seguridad se basa en problemas diferentes que sean inasumibles tanto para los ordenadores clásicos como los cuánticos. Los problemas de retículos son los candidatos más prometedores, puesto que se considera que son problemas difíciles para los ordenadores cuánticos. Presentamos nuevas herramientas basadas en retículos con unas Pruebas de Conocimiento Nulo para el problema Ring Learning With Errors (RLWE), seguramente el problema de retículos más popular. Las pruebas de Conocimiento Nulo son protocolos entre un probador y un verificador en los que el primero convence al segundo de la validez de una proposición, sin revelar ninguna información adicional relevante. Nuestras pruebas se basan en el protocolo de Stern, siguiendo sus técnicas presentadas en 1994. Su idea original involucraba un problema de códigos, pero se ha mejorado y generalizado reiteradamente para poder aplicarse a retículos. Ilustramos nuestra propuesta definiendo una variante del esquema de compromiso, una primitiva criptográfica que nos permite asegurar que un mensaje fue determinado en cierto momento sin revelarlo hasta pasado un tiempo, definido por Benhamouda et al. en ESORICS 2015, y probando que conocemos una apertura válida. Además mostramos cómo probar que el mensaje comprometido es una combinación lineal, con coeficientes públicos, de los mensajes comprometidos en otros dos compromisos. Finalmente también presentamos una prueba de Conocimiento Nulo análoga a la anterior pero para relaciones multiplicativas, algo mucho más laborioso que nos permite realizar circuitos aritméticos. Todo esto sin revelar ninguna información adicional sobre los mensajes. Mostramos tanto una versión interactiva como una no interactiva. Probamos que tanto el compromiso como las pruebas de Conocimiento Nulo que le acompañan son seguras bajo la hipótesis de que el problema de retículos subyacente sea difícil. Además planteamos estas pruebas específicamente con el objetivo de que las condiciones que surjan puedan ser utilizadas directamente para calcular los parámetros que las satisfagan. De esta forma proporcionamos un método genérico para instanciar nuestro compromiso y pruebas con cualquier nivel de seguridad. Gracias a este enfoque práctico hemos podido implementar todos los esquemas propuestos y evaluar el rendimiento con parámetros seguros, lo que nos permite obtener resultados relevantes que poder comparar con las alternativas existentes. Por otra parte, dado que la multiplicación de polinomios en el anillo cociente ℤₚ[]/⟨ⁿ + 1⟩, con primo y una potencia de 2, es la operación más utilizada al trabajar con retículos ideales, estudiamos de forma exhaustiva cuáles son las condiciones suficientes y necesarias para aplicar (una versión generalizada de) la Transformada Rápida de Fourier (FFT, por sus siglas en inglés) para obtener algoritmos de multiplicación eficientes en anillos cociente ℤₘ[]/⟨ⁿ − ⟩, (considerando cualquier positiva y generalizando el cociente), de interés por sí mismo. Creemos que este análisis teórico es fundamental para determinar cuándo puede diseñarse un algoritmo eficiente de multiplicación si la FFT no está definida para el anillo considerado. Es el caso de los anillos que utilizamos en el compromiso y las pruebas descritas anteriormente, donde solo es posible calcular una FFT parcial.DOCTORAT EN MATEMÀTICA APLICADA (Pla 2012

    On Efficient Zero-Knowledge Arguments

    Get PDF

    Cryptography in privacy-preserving applications.

    Get PDF
    Tsang Pak Kong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2005.Includes bibliographical references (leaves 95-107).Abstracts in English and Chinese.Abstract --- p.iiAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Privacy --- p.1Chapter 1.2 --- Cryptography --- p.5Chapter 1.2.1 --- History of Cryptography --- p.5Chapter 1.2.2 --- Cryptography Today --- p.6Chapter 1.2.3 --- Cryptography For Privacy --- p.7Chapter 1.3 --- Thesis Organization --- p.8Chapter 2 --- Background --- p.10Chapter 2.1 --- Notations --- p.10Chapter 2.2 --- Complexity Theory --- p.11Chapter 2.2.1 --- Order Notation --- p.11Chapter 2.2.2 --- Algorithms and Protocols --- p.11Chapter 2.2.3 --- Relations and Languages --- p.13Chapter 2.3 --- Algebra and Number Theory --- p.14Chapter 2.3.1 --- Groups --- p.14Chapter 2.3.2 --- Intractable Problems --- p.16Chapter 2.4 --- Cryptographic Primitives --- p.18Chapter 2.4.1 --- Public-Key Encryption --- p.18Chapter 2.4.2 --- Identification Protocols --- p.21Chapter 2.4.3 --- Digital Signatures --- p.22Chapter 2.4.4 --- Hash Functions --- p.24Chapter 2.4.5 --- Zero-Knowledge Proof of Knowledge --- p.26Chapter 2.4.6 --- Accumulators --- p.32Chapter 2.4.7 --- Public Key Infrastructure --- p.34Chapter 2.5 --- Zero Knowledge Proof of Knowledge Protocols in Groups of Unknown Order --- p.36Chapter 2.5.1 --- The Algebraic Setting --- p.36Chapter 2.5.2 --- Proving the Knowledge of Several Discrete Logarithms . --- p.37Chapter 2.5.3 --- Proving the Knowledge of a Representation --- p.38Chapter 2.5.4 --- Proving the Knowledge of d Out of n Equalities of Discrete Logarithms --- p.39Chapter 2.6 --- Conclusion --- p.42Chapter 3 --- Related Works --- p.43Chapter 3.1 --- Introduction --- p.43Chapter 3.2 --- Group-Oriented Signatures without Spontaneity and/or Anonymity --- p.44Chapter 3.3 --- SAG Signatures --- p.46Chapter 3.4 --- Conclusion --- p.49Chapter 4 --- Linkable Ring Signatures --- p.50Chapter 4.1 --- Introduction --- p.50Chapter 4.2 --- New Notions --- p.52Chapter 4.2.1 --- Accusatory Linking --- p.52Chapter 4.2.2 --- Non-slanderability --- p.53Chapter 4.2.3 --- Linkability in Threshold Ring Signatures --- p.54Chapter 4.2.4 --- Event-Oriented Linking --- p.55Chapter 4.3 --- Security Model --- p.56Chapter 4.3.1 --- Syntax --- p.56Chapter 4.3.2 --- Notions of Security --- p.58Chapter 4.4 --- Conclusion --- p.63Chapter 5 --- Short Linkable Ring Signatures --- p.64Chapter 5.1 --- Introduction --- p.64Chapter 5.2 --- The Construction --- p.65Chapter 5.3 --- Security Analysis --- p.68Chapter 5.3.1 --- Security Theorems --- p.68Chapter 5.3.2 --- Proofs --- p.68Chapter 5.4 --- Discussion --- p.70Chapter 5.5 --- Conclusion --- p.71Chapter 6 --- Separable Linkable Threshold Ring Signatures --- p.72Chapter 6.1 --- Introduction --- p.72Chapter 6.2 --- The Construction --- p.74Chapter 6.3 --- Security Analysis --- p.76Chapter 6.3.1 --- Security Theorems --- p.76Chapter 6.3.2 --- Proofs --- p.77Chapter 6.4 --- Discussion --- p.79Chapter 6.5 --- Conclusion --- p.80Chapter 7 --- Applications --- p.82Chapter 7.1 --- Offline Anonymous Electronic Cash --- p.83Chapter 7.1.1 --- Introduction --- p.83Chapter 7.1.2 --- Construction --- p.84Chapter 7.2 --- Electronic Voting --- p.85Chapter 7.2.1 --- Introduction --- p.85Chapter 7.2.2 --- Construction . --- p.87Chapter 7.2.3 --- Discussions --- p.88Chapter 7.3 --- Anonymous Attestation --- p.89Chapter 7.3.1 --- Introduction --- p.89Chapter 7.3.2 --- Construction --- p.90Chapter 7.4 --- Conclusion --- p.91Chapter 8 --- Conclusion --- p.92A Paper Derivation --- p.94Bibliography --- p.9

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    Efficient Perfectly Sound One-message Zero-Knowledge Proofs via Oracle-aided Simulation

    Get PDF
    In this paper we put forth new efficient one-message proof systems for several practical applications, like proving that an El Gamal ciphertext (over a multiplicative group) decrypts to a given value and correctness of a shuffle. Our proof systems are built from multiplicative groups of hidden order, are not based on any setup/trust assumption like the RO or the common reference string model and are perfectly sound, that is they are written proofs in the sense of mathematics. Our proof systems satisfy a generalization of zero-knowledge (ZK) that we call harmless zero-knowledge (HZK). The simulator of an OO-HZK proof for a relation over a language LL is given the additional capability of invoking an oracle OO relative to which LL is hard to decide. That is, the proof does not leak any knowledge that an adversary might not compute by itself interacting with an oracle OO that does not help to decide the language. Unlike ZK, non-interactivity and perfect soundness do not contradict HZK and HZK can replace ZK in any application in which, basically, the computational assumptions used in the application hold even against adversaries with access to OO. An OO-HZK proof is witness hiding (WH) for distributions hard against adversaries with access to OO, and strong-WI when quantifying over distributions that are indistinguishable by adversaries with access to OO. Moreover, an OO-HZK proof is witness indistinguishable (and the property does not depend on the oracle). We provide a specific oracle DHInvO that is enough powerful to make our main proof systems DHInvO-HZK but not trivial: indeed, we show concrete and practical cryptographic protocols that can be proven secure employing a DHInvO-HZK proof in the reduction and that are instead not achievable using traditional ZK (unless resorting to the CRS/RO models). Efficient one-message proof systems with perfect soundness were only known for relations over bilinear groups and were proven only witness indistinguishable. As byproduct, we also obtain a perfectly sound non-interactive ZAP, WH and HZK proof system for NPNP relations from number-theoretic assumptions over multiplicative groups of hidden order. No non-interactive WH proof system for NPNP (neither for simpler non-trivial relations) was previously known
    corecore