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Abstract. Certain RSA-based protocols, for instance in the domain of
group signatures, require a prover to convince a verifier that a set of
RSA parameters is well-structured (e.g., that the modulus is the prod-
uct of two distinct primes and that the exponent is co-prime to the group
order). Various corresponding proof systems have been proposed in the
past, with different levels of generality, efficiency, and interactivity.

This paper proposes two new proof systems for a wide set of prop-
erties that RSA and related moduli might have. The protocols are par-
ticularly efficient: The necessary computations are simple, the commu-
nication is restricted to only one round, and the exchanged messages are
short. While the first protocol is based on prior work (improving on it
by reducing the number of message passes from four to two), the second
protocol is novel. Both protocols require a random oracle.

1 Introduction

A common property of cryptographic primitives in the domain of public-key
cryptography (PKC) is that there is, in most cases, a natural distinction be-
tween a secret-key holder (SKH) and a public-key holder (PKH). For instance,
in the digital signature (DS) context the SKH is the signer, and in public-key
encryption (PKE) the SKH is the receiver; the verifier and the sender, respec-
tively, are PKHs. The security properties of such schemes are typically focused
on protecting primarily the SKH: In the signature context, unforgeability means
that the signer cannot be impersonated by an adversary, and security notions
for PKE require that messages encrypted to the receiver remain confidential.
Thus, naturally, the SKH has a vital interest in its keys being properly gener-
ated, i.e., in a way covered by the security model, while this is only of secondary
importance to the PKH.

In some PKC applications, however, also parties not holding the secret key
might require assurance about that the key material has been generated in a
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proper way. Typical examples arise in multi-party settings where the SKH man-
ages a set of mutually distrusting parties who require protection from each other.
For instance, in group signature schemes there is a group manager that issues
certificates to registered parties, allowing them to sign messages on behalf of
the whole group. While the resulting signatures should in principle be anony-
mous (cannot be linked to the particular signer), to prevent misuse there is often
a traceability feature that allows the group manager to revoke the anonymity
of a signer by creating a publicly-verifiable non-interactive proof that testifies
that an indicated signer created a particular signature. If such a tracing op-
tion exists, the group manager should however not be able to falsely accuse a
member of having signed some document. Many group signature schemes have
been proposed in the past, but some of them (e.g., [1]) provably provide the
latter property only if the group manager’s keys are properly formed.3 Other
settings where trust in the secret keys generated by other parties is required
include e-cash [13], cryptographic accumulators [9], undeniable signatures [18],
double-authentication preventing signatures [27,2].

If a cryptographic scheme is solely based on the discrete logarithm prob-
lem (DLP) in a prime-order group, checking that keys of the type X = gx are
well-formed is a trivial job (because all keys are well-formed). In the RSA set-
ting the situation is more subtle: Given parameters (N, e), before assuming the
security of the system the PKH might want to be convinced that the following
questions can be answered affirmatively: (1) does N have precisely two prime
divisors, (2) is N square-free, (3) is e coprime to ϕ(N), i.e., is the mapping
m 7→ me mod N a bijection (rather than lossy). Further, in some settings it
might be necessary to know (4) whether N = pq is a safe-prime modulus, i.e.,
whether (p−1)/2 and (q−1)/2 are primes by themselves. In settings specifically
based on the hardness of factoring an additional question might be (5) whether
squaring is a bijection on QR(N), more specifically (6) whether N is a Blum
integer, and even more specifically (7) whether N is a Rabin–Williams integer.4

What are known approaches for convincing participants of the validity of
predicates like the ones listed above? In some research papers corresponding
arguments are just missing [1], or they are side-stepped by explicitly assuming
honesty of key generation in the model [2]. Other papers refer to works like [10]
that propose non-interactive proof systems for convincing verifiers of the valid-
ity of such relations. Concretely, [10] provides a NIZK framework for showing
that an RSA number is the product of two safe primes. While powerful, the
NIZK technique turns out to be practically not usable: The argument is over the
intermediate results of four Miller–Rabin tests, a large number of range tests,
3 Concretely, the protocol from [1] is presented in the safe-prime-RSA setting where

N = pq with p = 2p′ + 1, q = 2q′ + 1 such that p, q, p′, q′ are all primes. Some of
the security properties of [1] hold in respect to the CDH problem in Z∗N . If N = pq
and thus Z∗N = Z∗p × Z∗q as it should, CDH is arguably hard. However, if the group
manager announces a malformed N that is made up of a large number of (small)
prime factors, solving CDH becomes easy.

4 An RSA modulus N = pq is a Blum integer if p ≡ q ≡ 3 (mod 4), and it is a
Rabin–Williams integer if p ≡ 3 (mod 8) and q ≡ 7 (mod 8).



etc., making the resulting proof string prohibitively long. Another approach is to
pick prime numbers, moduli, and exponents in a certain way such that showing
specific properties becomes feasible with number-theoretic techniques. Working
with restricted parameter classes might however remove standard conformance
and render implementations less efficient; for instance, the authors of [23] de-
velop tools for showing that the mapping m 7→ me is a permutation, but these
tools work only for fairly large values of e.

A third approach is tightly connected with the number-theoretic structures
that motivate the requirements for the conditions listed above. (It is less general
than the NIZK approach of [10] but usually does not require picking parameters
in a specific way.) For instance, if an application of RSA requires that e be
coprime to ϕ(N) then this is for a specific reason, namely that information shall
not be lost (but remain recoverable) when raising it to the power of e. Thus,
instead of abstractly checking the e | ϕ(N) relation, a corresponding check could
be centered precisely around the information-loss property of the exponentiation
operation. Our results are based on this strategy. Our techniques are inspired
by, and improving on, prior work that we describe in detail in the following.

1.1 Interactive Zero-Knowledge Testing of Certain Relations

We reproduce results of Gennaro, Micali, and Rabin [19]. As a running example,
consider the question of whether e | ϕ(N) holds, where N is an RSA modulus
and e a small prime exponent. The relation holds if and only if the mapping
x 7→ xe mod N is bijective, characterized by all y ∈ Z∗N having an eth root.
This motivates an (interactive) protocol in which a prover convinces a verifier
of relation e | ϕ(N) by first letting the verifier pick a random value y ∈ Z∗N
and send it to the prover, then letting the prover (who knows the factorization
of N) compute the eth root x ∈ Z∗N of y and return it to the verifier, and finally
letting the verifier accept if and only if xe = y mod N . Prover and verifier may
run multiple repetitions of this protocol, each time with a fresh challenge y. If
the prover is able to return a valid response for each challenge, then the verifier
is eventually convinced of the e | ϕ(N) claim. Indeed, if e - ϕ(N), then only
about one of e elements of Z∗N have an eth root, so the protocol would detect
this with high probability and a cheating prover would be caught.

Note that if the protocol would be deployed in precisely the way we described
it, it would be of limited use. The reason is that it is not zero-knowledge; in
particular, the prover would effectively implement an ‘eth root oracle’ for values y
arbitrarily picked by the verifier, and this would likely harm the security of
most applications. The proposal of [19] considers fixing this by making sure that
challenges y are picked in a sufficiently random way. Concretely, the full protocol
[19, Sect. 4.1] involves four message passes as follows: (1) the verifier picks y1 ∈
Z∗N and sends a commitment to this value to the prover, (2) the prover picks y2 ∈
Z∗N and sends this value to the verifier, (3) the verifier opens the commitment;
both parties now compute y ← y1y2, (4) the prover computes the eth root of y
and sends it to the verifier. Unfortunately, the security analysis of [19] does not



cover the full protocol; rather it restricts attention to only the last prover-to-
verifier message and shows that it is zero-knowledge under the assumption that
value y “can be thought as provided by a trusted third party” [19, Sect. 2.3]. We
stress that a proof for the full four-message protocol is not immediate: Proving
it zero-knowledge seems to require assuming an extractability property of the
commitment scheme (so that the simulator can find ‘the right’ y2 value), and the
increased interactiveness calls for a fresh analysis in a concurrent communication
setting anyway (if the protocol shall be of practical relevance). Neither of these
issues is mentioned, let alone resolved, in [19].

1.2 Our Results

We construct practical protocols for convincing a verifier that certain relevant
number-theoretic properties hold for RSA parameters. This includes statements
on the number of prime factors of the modulus, its square-freeness, etc. Con-
cretely, we propose two generic protocol frameworks that can be instantiated to
become proof systems for many different relations: The first framework is based
on [19] and effectively compresses the first three messages of the full protocols
into a single one by, intuitively speaking, using a random oracle to implement
the mentioned trusted third party. Precisely, continuing our running example,
we let the verifier only specify a random seed r and let both parties derive value
y as per y ← H(r) via a random oracle. The random oracle model turns out to
be strong enough to make the full protocol sound and zero-knowledge. Because
of the reduced number of message passes, concurrency is not an issue.

The second framework is similar in spirit but uses the random oracle in a
different and novel way. Here, the challenge y can be freely picked by the verifier
(no specific distribution is required), the prover again computes the eth root x
of it, but instead of sharing x with the verifier it only discloses the hash H(x)
of it. Note that, unless the verifier knows value x anyway, if H behaves like a
random oracle then the hash value does not leak anything.

We highlight that the second protocol has two important advantages over
the first: (1) The first protocol requires a random oracle that maps into the
‘problem space’ (here: challenge space Z∗N ). However, for some number-theoretic
tests, e.g., whether N is a Blum integer, the problem space we (and [19]) work
with is QR(N), i.e., the set of quadratic residues modulo N , and for such spaces
it is unclear how to construct a random oracle mapping into them. Note that, in
contrast, the second protocol does not require hashing into any particular set.
(2) Some number-theoretic relations allow for an easier check when the second
framework is used. For instance, identifying Blum integers involves the prover
computing the four square roots that quadratic residues always have. In the first
protocol framework, returning all four square roots is prohibitive as this would
immediately allow for factorizing N . In the second framework, however, hash
values of all square roots can be returned without doing harm to security.

Please consider Sect. 5 for the full list of number-theoretic properties for
which we provide a proof system.



1.3 Related Work

We note that techniques similar to ours appear implicitly or explicitly in a cou-
ple of prior works. For instance, the validation of RSA parameters is a common
challenge in password-based key agreement; in particular, adversaries might an-
nounce specially crafted parameters (N, e) that would lead to partial password
exposure. The work of Zhu et al. [34] addresses this, but without a formal analy-
sis, by pursuing approaches that are similar to our second protocol instantiated
with one particular number-theoretic relation. The work of [28] provides a se-
curity analysis of [34]. (It seems, however, that the analysis is incomplete: The
output length of the hash function does not appear in the theorem statement,
but for short output lengths the statement is obviously wrong.) We conclude by
noting that both [34] and [28], and also a sequence of follow-up works in the
domain of password-based key agreement, employ variants of our two protocols
in an ad-hoc fashion, and not at the generic level and for the large number of
number-theoretic problems as we do.

A higher level of abstraction, also in the domain of password-based key agree-
ment, can be found in the work of Catalano et al. [11]. Their work considers
exclusively our first approach. Further, while considering soundness and zero-
knowledge definitions for language problems, their constructions are not on that
level but directly targeting specific number-theoretic problems.

Considering proof systems not relying on random oracles, basically any de-
sired property of an RSA modulus can be proven by employing general zero-
knowledge proof systems for NP languages [8,20,21]. However, these protocols
are usually less efficient than proof systems designed to establish a particular
property. Thus a vast amount of papers provides systems of the latter type. Tar-
geted properties include that an RSA modulus N has factors of approximately
equal size [6,12,16,17,24] or is the product of two safe primes [10]. The approach
of having the prover provide solutions to number-theoretic problems is taken in
several proof systems. Concretely, there are protocols of this type proving that
N is square-free [7,19], has at most two prime factors [5,19,25,29], satisfies a
weakened definition of Blum integer [5,29], is the product of two almost strong
primes [19]. A shortcoming common to the protocols deciding whether N has
at most two prime factors is that they either have a two-sided error or have to
impose additional restrictions on N , the first leading to an increased number of
repetitions of the protocol in order to achieve security, the latter to artificially
restricted choices of N .

Bellare and Yung [3] show that any trapdoor permutation can be certified, i.e.
they provide a protocol to prove that a function is invertible on an overwhelming
fraction of its range. Kakvi et al. [23] show that given an RSA modulus N and an
exponent e such that e ≥ N1/4 Coppersmith’s method can be used to efficiently
determine whether the RSA function x 7→ xe defines a permutation on Z∗N .
However, their result does not apply to exponents of size smaller than N1/4. A
proof for RSA key generation with verifiable randomness is given in [22]. The
protocol makes use of the protocols of [7,29] as subroutines and relies on a trusted
third party. Benhamouda et al. [4] provide a protocol proving in the random



oracle model that at least two of the factors of a number N were generated
using a particular prime number generator. However, in order to achieve security
the construction requires N to be the product of many factors, which usually is
prohibitive in the RSA setting.

We note that a topic in cryptography somewhat connected to our work is the
fraudulent creation of parameters. More specifically, the works in [30,31,32,33]
consider Kleptography, i.e., the creation of asymmetric key pairs by an adversary-
modified generation algorithm such that, using a trapdoor, the adversary can
recover the secret key from the public key. Preventing such attacks is not the
goal of our work, and our protocols will indeed not succeed in catching properly
performed Kleptography.

By nothing-up-my-sleeves (NUMS) parameter generation one subsumes tech-
niques to propose parameters for cryptosystems in an explainable and publicly
reproducible way. For instance, the internal constants of the hash functions of
the SHA family are derived from the digits of the square and cube roots of
small prime numbers, making the existence of trapdoors (e.g., for finding col-
lisions) rather unlikely. While we do not advise against NUMS techniques, we
note that using them restricts freedom in parameter generation and thus might
break standard conformance and lead to less efficient systems. Moreover, and
more relevantly in the context of our work, NUMS techniques typically apply to
DL-based cryptosystems and not to RSA-based ones.

1.4 Organization

The overall focus of this work is on providing practical methods for proving
certain properties of RSA-like parameter sets. Our interactive proof systems,
however, follow novel design principles that promise finding application also
outside of the number-theoretic domain. We thus approach our goal in a layered
fashion, by first exposing our proof protocols such that they work for abstract
formulations of problems and corresponding solutions, and then showing how
these formalizations can be instantiated with the number-theoretic relations we
are interested in.

More concretely, the structure of this article is as follows: In Sect. 2 we fix
notation and recall some general results from number theory. In Sect. 3 we for-
mulate a variant of the is-word-in-language problem and connect it to problems
and solutions in some domain; we further introduce the concept of a challenge-
response protocol for proving solutions of the word problem. In Sect. 4 we study
two such protocols: Hash-then-Solve, which is inspired by the work of [19], and
Solve-then-Hash, which is novel. Finally, in Sect. 5 we show how RSA-related
properties can be expressed as instances of our general framework so that they
become accessible by our proof systems.

2 Preliminaries

We fix notation and recall basic facts from number theory.



2.1 Notation

Parts of this article involve the specification of program code. In such code
we use assignment operator ‘←’ when the assigned value results from a constant
expression (including from the output of a deterministic algorithm), and we write
‘←$’ when the value is either sampled uniformly at random from a finite set or is
the output of a randomized algorithm. In a security experiment, the event that
some algorithm A outputs the value v is denoted with A ⇒ v. In particular,
Pr[A ⇒ 1] denotes the probability, taken over the coins of A, that A outputs
value 1. We use bracket notation to denote associative arrays (a data structure
that implements a ‘dictionary’). For instance, for an associative array A the
instruction A[7] ← 3 assigns value 3 to memory position 7, and the expression
A[2] = 5 tests whether the value at position 2 is equal to 5. Associative arrays
can be indexed with elements from arbitrary sets. When assigning lists to each
other, with ‘ ’ we mark “don’t-care” positions. For instance, (a, ) ← (9, 4) is
equivalent to a ← 9 (value 4 is discarded). We use the ternary operator known
from the C programming language: If C is a Boolean condition and e1, e2 are
arbitrary expressions, the expression “C ? e1 : e2” evaluates to e1 if C holds,
and to e2 if C does not hold. We further use Iverson brackets to convert Booleans
to numerical values. That is, writing “[C]” is equivalent to writing “C ? 1 : 0”.
If A is a randomized algorithm we write [A(x)] for the set of outputs it produces
with non-zero probability if invoked on input x. If u, v are (row) vectors of values,
u‖v denotes their concatenation, i.e., the vector whose first elements are those
of u, followed by those of v. We use symbol ∪· to indicate when the union of two
sets is a disjoint union.

2.2 Number Theory

We write N = {1, 2, 3, . . .} and P ⊆ N for the set of natural numbers and prime
numbers, respectively. For every natural number N ∈ N we denote the set of
prime divisors of N with P(N). Thus, for any N ∈ N there exists a unique family
(νp)p∈P(N) of multiplicities νp ∈ N such that

N =
∏

p∈P(N)

pνp .

We denote with odd(N) the ‘odd part’ of N , i.e., what remains of N after all
factors 2 are removed; formally, odd(N) =

∏
p∈P(N),p6=2 p

νp .
Consider N ∈ N and the ring ZN = Z/NZ. The multiplicative group Z∗N of

ZN has order ϕ(N) =
∏
p∈P(N)(p− 1)pνp−1, where ϕ is Euler’s totient function.

By the Chinese Remainder Theorem (CRT) there exists a ring isomorphism

ψ : ZN ∼−→ ×
p∈P(N)

Zpνp .

ForN, e ∈ N consider the exponentiation mapping x 7→ xe mod N . This mapping
is 1-to-1 on Z∗N iff gcd(e, ϕ(N)) = 1. The general statement, that holds for all



N, e, is that the exponentiation mapping is L-to-1 for

L =
∏

p∈P(N)

gcd(e, ϕ(pνp)) . (1)

We write QR(N) for the (group of) quadratic residues (i.e., squares) modulo N .

3 Challenge-Response Protocols for Word Problems

We define notions of languages, statements, witnesses, and a couple of algo-
rithms that operate on such objects. We then introduce the notion of a challenge-
response protocol for the word problem in such a setting.

3.1 Associating Problems with the Words of a Language

Statements, candidates, witnesses. Let Σ be an alphabet and let L ⊆
U ⊆ Σ∗ be languages. We assume that deciding membership in U is efficient,
while for L this might not be the case. Each element x ∈ Σ∗ is referred to
as a statement. A statement x is a candidate if x ∈ U . A statement x is valid
if x ∈ L; otherwise, it is invalid. (Thus, in general there coexist valid and in-
valid candidates.) For all candidates x we assume a (possibly empty) set of
witnesses Wx such that valid candidates are characterized by having a witness:
∀x ∈ U : |Wx| ≥ 1 ⇐⇒ x ∈ L.

Relating problems with candidates. For all candidates x ∈ U let Px
be a problem space and Sx a solution space, where we require that deciding
membership in Px is efficient. Let Relx ⊆ Px×Sx be a relation that (abstractly)
matches problems with solutions. For any problem P ∈ Px we write Solx(P) :=
{S | (P,S) ∈ Relx} ⊆ Sx for the set of its solutions. Not necessarily all problems
are solvable, so we partition the problem space as Px = P+

x ∪· P−x such that
precisely the elements of P+

x have solutions: P ∈ P+
x ⇐⇒ |Solx(P)| ≥ 1

and, equivalently, P ∈ P−x ⇐⇒ Solx(P) = ∅. We extend relation Relx to
Rel∗x := Relx ∪ (P−x × {⊥}) by marking problems without solution with the
special value ⊥, and we extend notion Solx to Sol∗x such that for all P ∈ P−x we
have Sol∗x(P) = {⊥}. We require that every candidate has at least one problem-
solution pair: ∀x ∈ U : |Relx| ≥ 1.

We assume four efficient algorithms, Verify, Sample, Sample∗, and Solve,
that operate on these sets. Deterministic algorithm Verify implements for all
candidates the indicator function of Rel, i.e., decides whether a problem and a
solution are matching. More precisely, Verify takes a candidate x ∈ U , a prob-
lem P ∈ Px, and a potential solution S ∈ Sx for P, and outputs a bit that
indicates whether (P,S) is contained in Relx or not. Formally, ∀x ∈ U , (P,S) ∈
Px × Sx : Verify(x,P,S) = 1 ⇐⇒ (P,S) ∈ Relx. Algorithm Sample is ran-
domized, takes a candidate x ∈ U , and outputs a (matching) problem-solution
pair (P,S) ∈ Relx. Algorithm Sample∗ is randomized, takes a candidate x ∈ U ,



and outputs a pair (P,S) ∈ Rel∗x (note that S = ⊥ if P ∈ P−x ). Finally, de-
terministic algorithm Solve takes a (valid) statement x ∈ L, a witness w ∈ Wx

for it, and a problem P ∈ Px, and outputs the subset of Sx that contains all
solutions of P. (If no solution exists, Solve outputs the empty set.) Formally,
∀x ∈ L, w ∈ Wx,P ∈ Px : Solve(x,w,P) = Solx(P).

If we write P =
⋃
Px, S =

⋃
Sx, Rel =

⋃
Relx, Rel∗ =

⋃
Rel∗x, W =

⋃
Wx,

where the unions are over all x ∈ U , a shortcut notation for the syntax of the
four algorithms is

U × P × S → Verify → {0, 1}
U → Sample →$ Rel
U → Sample∗ →$ Rel∗

L ×W ×P → Solve → Powerset(S)

Number of solutions, spectrum, solvable-problem density. Note
that different problems P ∈ P+ have, in general, different numbers of solutions.
For any set M ⊆ U of candidates, the spectrum #M collects the cardinalities
of the solution sets of all solvable problems associated with the candidates listed
inM. Formally,

#M := {|Solx(P)| : x ∈M,P ∈ P+
x } .

Consequently, max #L is the largest number of solutions that solvable problems
associated with valid candidates might have, and min #(U \ L) is the smallest
number of solutions of solvable problems associated with invalid candidates.
Further, for a setM⊆ U the solvable-problem density distribution ∆M, defined
as

∆M := {|P+
x |/|Px| : x ∈M} ,

indicates the fractions of problems that are solvable (among the set of all prob-
lems), for all candidates in M. Most relevant in this article are the derived
quantities min∆L and max∆(U \ L).

Uniformity notions for sampling algorithms. For the two sampling
algorithms defined above we introduce individual measures of quality. For Sample
we say it is problem-uniform (on invalid candidates) if for all x ∈ U \ L the
problem output by Sample(x) is uniformly distributed in P+

x . Formally, for all
x ∈ U \ L,P ′ ∈ P+

x we require that

Pr[(P, )←$ Sample(x) : P = P ′] = 1/|P+
x | .

Further we say that Sample is solution-uniform (on invalid candidates) if for all
x ∈ U \ L and each pair (P,S) output by Sample(x), solution S is uniformly
distributed among all solutions for P. Formally, we require that for all x ∈
U \ L, (P ′,S ′) ∈ [Sample(x)] we have

Pr[(P,S)←$ Sample(x) : S = S ′ | P = P ′] = 1/|Solx(P ′)| .



For Sample∗ we say it is problem-uniform (on valid candidates) if for all x ∈ L
the problem output by Sample∗(x) is uniformly distributed in Px. Formally, for
all x ∈ L,P ′ ∈ Px we require that

Pr[(P, )←$ Sample∗(x) : P = P ′] = 1/|Px| .

Further we say that Sample∗ is solution-uniform (on valid candidates) if for all
x ∈ L and each pair (P,S) output by Sample∗(x), the solution S is uniformly
distributed among all solutions of P (if a solution exists at all, i.e., if S 6= ⊥).
Formally, we require that for all x ∈ L, (P ′,S ′) ∈ [Sample∗(x)] we have

Pr[(P,S)←$ Sample∗(x) : S = S ′ | P = P ′] = 1/|Sol∗x(P ′)| .

3.2 Challenge-Response Protocols

In the context of Sect. 3.1, a challenge-response protocol (CRP) for (L,U) spec-
ifies a (verifier) state space St, a challenge space Ch, a response space Rsp, and
efficient algorithms V1,P,V2 such that V = (V1,V2) implements a stateful ver-
ifier and P implements a (stateless) prover. In more detail, algorithm V1 is
randomized, takes a candidate x ∈ U , and returns a pair (st, c), where st ∈ St is
a state and c ∈ Ch a challenge. Prover P, on input of a valid statement x ∈ L,
a corresponding witness w ∈ Wx, and a challenge c ∈ Ch, returns a response
r ∈ Rsp. Finally, deterministic algorithm V2, on input a state st ∈ St and a
response r ∈ Rsp, outputs a bit that indicates acceptance (1) or rejection (0).
An overview of the algorithms’ syntax is as follows.

U → V1 →$ St × Ch
L ×W × Ch → P →$ Rsp
St ×Rsp → V2 → {0, 1}

We define the following correctness and security properties for CRPs.

Correctness. Intuitively, a challenge-response protocol is correct if honest
provers convince honest verifiers of the validity of valid statements. Formally,
we say a CRP is δ-correct if for all valid candidates x ∈ L and corresponding
witnesses w ∈ Wx we have

Pr [(st, c)←$ V1(x); r ←$ P(x,w, c) : V2(st, r)⇒ 1] ≥ δ .

If the CRP is 1-correct we also say it is perfectly correct.
Soundness. Intuitively, a challenge-response protocol is sound if (dishonest)

provers cannot convince honest verifiers of the validity of invalid statements.
Formally, a CRP is ε-sound if for all invalid candidates x ∈ U \ L and all
(potentially unbounded) algorithms P∗ we have

Pr [(st, c)←$ V1(x); r ←$ P∗(x, c) : V2(st, r)⇒ 0] ≥ ε .

If the CRP is 1-sound we also say it is perfectly sound. To quantity 1− ε we
also refer to as the soundness error.



Zero-knowledge. Intuitively, a challenge-response protocol is (perfectly) zero-
knowledge if (dishonest) verifiers do not learn anything from interacting
with (honest) provers, beyond the fact that the statement is valid. Formally,
a CRP is (perfectly) zero-knowledge if there exists a simulator S such that
for all (potentially unbounded) distinguishers D, all valid candidates x ∈ L,
and all corresponding witnesses w ∈ Wx, we have

|Pr[DP(x,w,·) ⇒ 1]− Pr[DS(x,·) ⇒ 1]| = 0 .

Here, with P(x,w, ·) and S(x, ·) we denote oracles that invoke the prover
algorithm P on input x,w, c and the simulator S on input x, c, respectively,
where challenge c is in both cases provided by distinguisher D on a call-by-
call basis.

In Sect. 4 we study two frameworks for constructing challenge-response protocols
of the described type. The analyses of the corresponding protocols will be in the
random oracle model, meaning that the algorithms V1,P,V2 have access to an
oracle H implementing a function drawn uniformly from the set of all functions
between some fixed domain and range. Also the above correctness and secu-
rity definitions need corresponding adaptation by (1) extending the probability
spaces to also include the random choice of H, and (2) giving all involved algo-
rithms, i.e., V1,P,V2,P∗,D, oracle access to H. In the zero-knowledge definition,
simulator S simulates both P and H.

4 Constructing Challenge-Response Protocols

In Sect. 3 we linked the word decision problem of a language to challenge-
response protocols (CRP). Concretely, if L ⊆ U are languages, a corresponding
CRP would allow a prover to convince a verifier that a given candidate statement
is in L rather than in U \L. In the current section we study two such protocols,
both requiring a random oracle. The first protocol, Hash-then-Solve, is in-
spired by prior work but significantly improves on it, while the second protocol,
Solve-then-Hash, is novel. The bounds on correctness and security of the two
protocols are, in general, incomparable. In the following paragraphs we give a
high-level overview of their working principles.

Let x ∈ U be a (valid or invalid) candidate statement. In the protocol of
Sect. 4.1 a random oracle H is used to generate problem instances for x as per
P ← H(r), where r is a random seed picked by the verifier. If P has a solution S ,
the prover recovers it and shares it with the verifier who accepts iff the solution is
valid. (If P has multiple solutions, the prover picks one of them at random.) Note
that solving problems is in general possible also for invalid candidates, but the
idea behind this protocol is that it allows for telling apart elements of L and U\L
if the fraction of solvable problems among the set of all problems associated with
valid candidates is strictly bigger than the fraction of solvable problems among
all problems associated with invalid candidates, i.e., if min∆L > max∆(U \L).
(As we show in Sect. 5, this is the case for some interesting number-theoretic
decision problems.)



We now turn to the protocol of Sect. 4.2. Here, the random oracle is not
used to generate problems as above. Rather, the random oracle is used to hash
solutions into bit strings. Concretely, the verifier randomly samples a problem P
with corresponding solution S . It then sends P to the prover who derives the set
of all solutions for it; this set obviously includes S . The prover hashes all these
solutions and sends the set of resulting hash values to the verifier. The latter
accepts if the hash value of S is contained in this set. Note that finding the set
of all solutions for problems is in general possible also for invalid candidates, but
the protocol allows for telling apart valid from invalid candidates if (solvable)
problems associated with valid candidates have strictly less solutions than prob-
lems associated with invalid candidates, i.e., if max #L < min #(U \L). Indeed,
if the verifier does not accept more hash values than the maximum number of
solutions for valid statements, a cheating prover will make the verifier accept
only with a limited probability, while in the valid case the verifier will always
accept. (We again refer to Sect. 5 for number-theoretic problems that have the
required property.)

Let us quickly compare the two approaches. In principle, whether they are
applicable crucially depends on languages L,U and the associated problem and
solution spaces. Note that the random oracles are used in very different ways: in
the first protocol to ensure a fair sampling of a problem such that no solution is
known a priori (to neither party), and in the second protocol to hide those solu-
tions from the verifier that the latter does not know anyway. That the random
oracle in the first protocol has to map into the problem space might represent
a severe technical challenge as for some relevant problem spaces it seems unfea-
sible to find a construction for such a random oracle.5 In such cases the second
protocol might be applicable.

4.1 A GMR-Inspired Protocol: Hash-then-Solve

A general protocol framework for showing that certain properties hold for a
candidate RSA modulus (that it is square-free, Blum, etc.) was proposed by
Gennaro, Micali, and Rabin in [19]. Recall from the discussion in the introduc-
tion that the full version of their protocol has a total of four message passes
and involves both number-theoretic computations and the use of a commitment
scheme. In this section we study a variant of this protocol where the commitment
scheme is implemented via a random oracle. The benefit is that the protocol be-
comes more compact and less interactive. Concretely, the number of message
passes decreases from four to two.

Let L ⊆ U ⊆ Σ∗ be as in Sect. 3.1, and let l ∈ N be a security parameter.
Let (Hx)x∈U be a family of hash functions (in the security reduction: random
oracles) such that for each x ∈ U we have a mapping Hx : {0, 1}l → Px. Consider
the challenge-response protocol with algorithms V1,P,V2 as specified in Fig. 1.
The idea of the protocol is that the verifier picks a random seed r which it
5 For instance if the problem space is the set of quadratic residues modulo some
composite integer.



communicates to the prover and from which both parties deterministically derive
a problem as per P ← Hx(r). The prover, using its witness, computes the set S
of all solutions of P, denotes one of them with S , and sends S to the verifier. (If
P has no solution, the prover sends ⊥.) The verifier accepts (meaning: concludes
that x ∈ L) iff S 6= ⊥ and S is indeed a solution for P. Importantly, while the
prover selects the solution S within set S in a deterministic way (so that for
each seed r and thus problem P it consistently exposes the same solution even
if queried multiple times), from the point of view of the verifier the solution S
is picked uniformly at random from the set of all solutions of P. This behavior
is implemented by letting the prover make its selection based on an additional
random oracle that is made private to the prover by including the witness w in
each query. Theorem 1 assesses the correctness and security of the protocol.

Protocol Hash-then-Solve
Verifier (on input x ∈ U)
00 r ←$ {0, 1}l

01 Send r −→

02 Receive S ←−
03 If S = ⊥: Return 0
04 P ← Hx(r)
05 Return Verify(x, P, S)

Prover (on input x ∈ L, w ∈ Wx)

06 Receive r
07 P ← Hx(r)
08 S← Solve(x, w, P)
09 S ← (S 6= ∅) ? $P(S) : ⊥
10 Send S

Fig. 1. Hash-then-Solve: Random-oracle based version of the GMR protocol from [19].
Specifications of the three CRP algorithms can be readily extracted from the code:
algorithm V1 is in lines 00–01, algorithm V2 is in lines 02–05, and algorithm P is in
lines 06–10. The expression of the form S ← $P(S) in line 09 is an abbreviation for
S ← RO(x, w, P, S), where RO: {0, 1}∗ → S is a (private) random oracle.

Theorem 1. The Hash-then-Solve protocol defined in Fig. 1 is δ-correct and
ε-sound and perfectly zero-knowledge, where

δ = min∆(L) and ε = 1−max∆(U \ L) ,

if hash functions (Hx)x∈U are modeled as random oracles. For this result we as-
sume that the Sample∗ algorithm is both problem-uniform and solution-uniform.

Proof. Correctness. Let x ∈ L and w ∈ Wx. Since Hx is modeled as a random
oracle, problem P assigned in line 07 is uniformly distributed in Px. Set S from
line 08 is empty if P ∈ P−x and contains elements if P ∈ P+

x . The probability
that the prover outputs a solution, and that the verifier accepts it in line 05, is
thus precisely |P+

x |/|Px|. A lower bound for this value is δ = min∆(L).
Soundness. Let x ∈ U \ L. A necessary condition for the verifier to accept

in line 05 is that there exists a solution to problem P = Hx(r), i.e., that P ∈



P+
x . Since Hx is modeled as a random oracle, P is uniformly distributed in Px.

The probability of P having a solution is thus |P+
x |/|Px|. This value is at most

max∆(U \ L). Thus ε = 1−max∆(U \ L) is a lower bound for the probability
of the verifier not accepting in a protocol run.

Zero-knowledge. We show that the protocol is zero-knowledge by specifying
and analyzing a simulator S. Its code is in Fig. 2. The prover oracle P(x,w, ·) and
the random oracle Hx(·) are simulated by algorithms Psim and Hsim, respectively.
Associative array R reflects the input-output map of the random oracle and is
initialized such that all inputs map to special value ⊥. If Hsim is queried on a
seed r, a fresh problem-solution pair is sampled using the Sample∗ algorithm,
the pair is registered in R, and the problem part is returned to the caller. Note
that by the assumed problem-uniformity of Sample∗(x) this is an admissible
implementation of a random oracle that maps to set Px.

The task of the Psim algorithm is to return, for any seed r, a uniformly
picked solution for the problem P = Hx(r); if no solution exists, the oracle shall
return ⊥. This is achieved by returning the solution part of the problem-solution
pair that was sampled using Sample∗ when processing the random oracle query
Hx(r). Note that this argument uses both the solution uniformity of Sample∗
and the fact that the P algorithm from Fig. 1 is deterministic and in particular
always outputs the same solution if a seed is queried multiple times to a P(x,w, ·)
prover. ut

Oracle Psim(r)
00 If R[r] = ⊥:
01 (P, S)←$ Sample∗(x)
02 R[r]← (P, S)
03 (P, S)← R[r]
04 If S = ⊥: Return ⊥
05 Return S

Oracle Hsim(r)
06 If R[r] = ⊥:
07 (P, S)←$ Sample∗(x)
08 R[r]← (P, S)
09 (P, S)← R[r]
10 Return P

Fig. 2. Simulator S. Associative array R is initialized as per R[·]← ⊥, i.e., such that
all values initially map to ⊥. Note that lines 00–02 become redundant if one requires
(w.l.o.g.) that Hsim(r) is always queried before Psim(r).

4.2 Our New Protocol: Solve-then-Hash
We propose a new challenge-response protocol for the word decision problem in
languages. Like the one from Sect. 4.1 it uses a random oracle, but it does so in
a quite different way: The random oracle is not used for generating problems,
but for hashing solutions. The advantage is that constructing a random oracle
that maps into a problem space might be difficult (for certain problem spaces),
while hashing solutions to bit strings is always easy.

Let L ⊆ U ⊆ Σ∗ be as in Sect. 3.1. Let H be a finite set and H: {0, 1}∗ → H
a hash function (in the security reduction: a random oracle). The idea of the



protocol is that the verifier samples a problem-solution pair (P,S) and commu-
nicates the problem to the prover, the latter then, using its witness, computes
the sets S of all solutions of P and h of hash values of these solutions, and
returns set h to the verifier, and the verifier finally checks whether the hash
value h of S is contained in this set. An important detail is that the prover uses
pseudorandom bit-strings to pad the returned set of hash values to constant-size:
If k = max #L is the maximum number of solutions of problems associated with
valid candidates, then the prover exclusively outputs sets h of this cardinality.
The algorithms of the corresponding challenge-response protocol are specified in
Fig. 3. (Note that when transmitting h from the prover to the verifier an encod-
ing has to be chosen that hides the order in which elements were added to h.)
The analysis of our protocol is in Theorem 2. The main technical challenge of
the proof is that it has to deal with collisions of the random oracle (two or more
solutions might hash to the same string).

Protocol Solve-then-Hash
Verifier (on input x ∈ U)
00 (P, S)←$ Sample(x)
01 h← H(P, S)
02 Send P −→

03 Receive h ←−
04 Require |h| ≤ k
05 Return [h ∈ h]

Prover (on input x ∈ L, w ∈ Wx)

06 Receive P (abort if P /∈ Px)
07 S← Solve(x, w, P)
08 {S1, . . . , St} ← S
09 h1, . . . , ht ← H(P, S1), . . . , H(P, St)
10 ht+1, . . . , hk ← $t+1

P (H), . . . , $k
P(H)

11 h← {h1, . . . , hk}
12 Send h (hiding the order of elements)

Fig. 3. Solve-then-Hash: Our new challenge-response protocol. We assume k =
max #L. Specifications of the three CRP algorithms can be readily extracted from the
code: algorithm V1 is in lines 00–02, algorithm V2 is in lines 03–05, and algorithm P
is in lines 06–12. In line 08, the cardinality of set S is denoted with t. Expressions
of the form h ← $u

v (H) in line 10 are abbreviations for h ← RO(x, w, u, v), where
RO: {0, 1}∗ → H is a (private) random oracle.

Theorem 2. Let k = max #L, m = min #(U \ L), and M = max #(U \ L),
such that k ≤ m ≤ M . Then the Solve-then-Hash protocol defined in Fig. 3 is
perfectly correct and ε-sound and perfectly zero-knowledge, where

ε = 1−
(
k/m+ k/|H|+ (min(M, q))2/|H|

)
≈ 1− k/m ,

if H is modeled as a random oracle and q is the maximum number of random
oracle queries posed by any (dishonest) prover P∗. For this result we assume that
the Sample algorithm is both problem-uniform and solution-uniform.



Proof. Correctness. Let x ∈ L and w ∈ Wx. Then for (P,S) from line 00 we
have S ∈ S in line 07. Further, as x ∈ L we have t ≤ k = max #L in line 08 and
thus |h| ≤ k in line 04 and h ∈ h in line 05. Thus V2 accepts with probability 1.

Soundness. Let x ∈ U\L be an invalid candidate and P∗ a (malicious) prover.
Let Win denote the event that P∗ succeeds in finding a response h such that ver-
ifier V2 accepts, i.e. the event {(h,P)←$ V1(x); h←$ P∗(x,P) : V2(h,h)⇒ 1}.
Recall that Solx(P) denotes the set of solutions of problem P, and let S1, . . . ,Sl ∈
Solx(P) denote the solutions to the problem on which P∗ queries random ora-
cle H, i.e., the elements such that P∗ queries for H(P,Si) with i ∈ {1, . . . , l}. We
define Col = {∃i 6= j : H(P,Si) = H(P,Sj)} as the event that the hash values of
at least two of the queried solutions collide. We have

Pr[Win] = Pr [Win | Col] Pr [Col] + Pr [Win | ¬Col] Pr [¬Col]
≤ Pr [Col] + Pr [Win | ¬Col] .

We conclude that Pr[Win] < k/m+ k/|H|+ (min(M, q))2/|H| by showing that

a) Pr [Col] < (min(M, q))2/|H| and b) Pr [Win | ¬Col] ≤ k/m+k/|H| .

For claim a), note that x ∈ U \L implies that the set Relx(P) of solutions of
problem P has at most max #(U \L) = M elements. P∗ makes at most q queries
to H. Hence l ≤ min(M, q). We obtain

Pr [Col] = Pr [∃i 6= j : H(P,Si) = H(P,Sj)]
≤ l2 Pr [H(P,S1) = H(P,S2)] ≤ min(M, q)2/|H| ,

where the last two inequalities hold since H is modeled as a random oracle.
We conclude the proof by showing claim b). Recall that S is the solution

sampled alongside problem P. Since algorithm Sample is solution-uniform, S is
distributed uniformly in Solx(P), which implies that H(P,S) is uniformly dis-
tributed in {H(P,S ′) : S ′ ∈ Solx(P)}. Note that |Solx(P)| ≥ m = min #(U \ L)
and that —conditioned on ¬Col— all values H(P,S ′) that P∗ knows are dis-
tinct. Conditioned on the events S ∈ {S1, . . . ,Sl} and ¬Col, prover P∗ guesses
H(P,S) with probability at most 1/l. If, on the other hand, S /∈ {S1, . . . ,Sl},
then H(P,S) is uniformly distributed from P∗’s point of view. Hence its best
chance of guessing it is 1/|H|. Note that Pr[S ∈ {S1, . . . ,Sl}] ≤ l/m. Summing
up—conditioned on ¬Col— P∗’s chance of correctly guessing H(P,S) is bounded
by l/m ·1/l+1/|H| = 1/m+1/|H|. Event Win according to line 04 cannot occur
if h contains more than k elements, so we obtain Pr [Win | ¬Col] ≤ k/m+k/|H|.

Zero-knowledge. We show that the protocol is zero-knowledge by specifying
and analyzing a simulator S. Its code is in Fig. 4. The prover oracle P(x,w, ·) and
the random oracle H(·, ·) are simulated by algorithms Psim and Hsim, respectively.
For oracle H we assume w.l.o.g. that it is not queried twice on the same input.

Core components of our simulator are the associative arrays RU[·] and RF[·]
that associate problems with used and fresh random hash values, respectively.
The simulator starts with initializing for each problem a vector of k-many fresh



Initialization
00 For all P ∈ Px:
01 RU[P]← ε
02 RF[P]← $1

P(H), . . . , $k
P(H)

Oracle Psim(P)
03 h← RU[P]‖RF[P]
04 Return h (hiding the order of elements)

Oracle Hsim(P, S)
05 If Verify(x, P, S) = 0:
06 h←$ H; Return h
07 h1, . . . , ht−1 ‖ht, . . . , hk ← RU[P]‖RF[P]
08 RU[P]‖RF[P]← h1, . . . , ht ‖ht+1, . . . , hk

09 Return ht

Fig. 4. Simulator S for the protocol of Fig. 3. We require (w.l.o.g.) that Hsim(·) is
queried at most once on each input. Expressions of the form h← $u

v (H) in line 02 are
abbreviations for h← RO(u, v), where RO: {0, 1}∗ → H is a (private) random oracle.
In line 07, the lengths of vectors RU[P] and RF[P] are t− 1 and k− t + 1, respectively.
In line 08, the new lengths of vectors RU[P] and RF[P] are t and k − t, respectively.

hash values.6 Oracle Hsim on input a problem-solution pair (P,S) checks whether
S is a solution to P. If not, a random hash value is returned. Otherwise the vector
of (fresh) hash values RF[P] associated to P is retrieved. The first element of
this vector is taken as the response of the random oracle query; however, before
the response is output, the element is appended to the vector of (used) hash
values RU[P] associated to P. Note this procedure will never fail (i.e., never a
value has to be taken from RF[P] after the list is emptied) since there are at
most k = max #L solutions to P. Queries to Psim on input P are responded with
the set h of all elements contained in RF[P] and RU[P], which by definition
of Hsim stays unchanged throughout the simulation. Since these elements are
initialized as random hash values, responses to queries to Psim have the correct
distribution. Furthermore, for every S ∈ Solx(P) we have that Hsim(P,S) is
contained in Psim(P). Summing up, the output of Psim and Hsim is correctly
distributed and simulator S provides distinguisher D with a perfect simulation
of P(x,w, ·). ut

4.3 Generalizing the Analysis of the Solve-then-Hash Protocol

We generalize the statement of Theorem 2, making it applicable to a broader
class of languages. Recall that our protocol from Sect. 4.2 decides membership
in a language L ⊆ U if for every (invalid) candidate x ∈ U \L and every solvable
problem P ∈ P+

x the number |Solx(P)| of solutions to P exceeds the maximum
number max #L of solutions to problems associated with valid candidates. We
next relax this condition by showing that for soundness it already suffices if the
expected value of |Solx(P)| (over randomly sampled P ∈ P+

x ) exceeds max #L.
In order to do so, we associate to L and U the function εL,U : [0, 1] → R+ such

6 Of course it is inefficient to assign to each P ∈ Px a vector of values ahead of time.
However, our code can easily be implemented in an equivalent form that uses lazy
sampling.



that

εL,U (γ) := min{ε′ | ∀x ∈ U \L : Pr[P ←$ P+
x : max #(L)/|Solx(P)| ≤ ε′] ≥ γ} ,

i.e., the function that associates to each probability value γ ∈ [0, 1] the small-
est factor ε′ such that for every invalid x a uniformly sampled problem with
probability of at least γ has at least max #(L)/ε′ solutions.

In Theorem 3 we give a correspondingly refined soundness analysis of the
Solve-then-Hash protocol. Note that, as the protocol itself did not change, the
correctness and zero-knowledge properties do not require a new analysis. Note
further that εL,U (1) = max #(L)/min #(U \ L), and that thus the soundness
analysis of Theorem 2 is just the special case of Theorem 3 where γ = 1.

Theorem 3. Let k = max #L and M = max #(U \ L) such that k ≤M . Then
for every γ ∈ [0, 1] the Solve-then-Hash protocol defined in Fig. 3 is perfectly
correct and ε-sound and perfectly zero-knowledge, where

ε = 1−
(
εL,U (γ) + (1− γ)/(1− c) + k/|H|+ c

)
≈ γ − εL,U (γ) ,

if H is modeled as a random oracle, q is the maximum number of random ora-
cle queries posed by any (dishonest) prover P∗ and c = (min(M, q))2/|H|. For
this result we assume that the Sample algorithm is both problem-uniform and
solution-uniform.

Proof. The correctness and zero-knowledge property of the protocol were al-
ready shown in the proof of Theorem 2. We thus show the bound on the sound-
ness error. Fix γ ∈ [0, 1] and let εL,U = εL,U (γ). Let x ∈ U \ L be an in-
valid candidate and P∗ a (malicious) prover. Let Win denote the event that
P∗ succeeds in finding a response h such that verifier V2 accepts, i.e. the event
{(h,P)←$ V1(x); h←$ P∗(x,P) : V2(h,h)⇒ 1}. Recall that Solx(P) denotes
the set of solutions of problem P, and let S1, . . . ,Sl ∈ Solx(P) denote the so-
lutions to the problem on which P∗ queries random oracle H, i.e., the elements
such that P∗ queries for H(P,Si) with i ∈ {1, . . . , l}. We define Col = {∃i 6= j :
H(P,Si) = H(P,Sj)} as the event that the hash values of at least two of the
queried solutions collide. We have

Pr[Win] = Pr [Win | Col] Pr [Col] + Pr [Win | ¬Col] Pr [¬Col]
≤ Pr [Col] + Pr [Win | ¬Col] .

We conclude that Pr[Win] < εL,U + (1− γ)/(1− c) + k/|H|+ c by showing that

a) Pr [Col] < (min(M, q))2/|H| = c

and
b) Pr [Win | ¬Col] ≤ εL,U + (1− γ)/(1− c) + k/|H| .

Claim a) follows as in the proof of Theorem 2. In order to prove b) we denote by
PG the event that the problem P given as input to P∗ by the verifier is “good” in



the sense of having many solutions, i.e. the event {max #(L)/|Solx(P)| ≤ εL,U}.
We have

Pr[Win | ¬Col] = Pr[Win | ¬Col ∧ PG] Pr[PG | ¬Col]
+ Pr[Win | ¬Col ∧ ¬PG] Pr[¬PG | ¬Col]

≤ Pr[Win | ¬Col ∧ PG] + Pr[¬PG | ¬Col]
≤ Pr[Win | ¬Col ∧ PG] + Pr[¬PG]/Pr[¬Col] .

As stated above, we have Pr[¬Col] ≥ 1−c. Further, by problem-uniformity, P is
distributed uniformly on P+

x and by the definition of εL,U we have Pr[¬PG] ≤
1 − γ. Hence Pr[¬PG]/Pr[¬Col] ≤ (1 − γ)/(1 − c) and it remains to show
that Pr[Win | ¬Col ∧ PG] ≤ εL,U + k/|H|. Since S is sampled with (solution-
uniform) Sample, it is distributed uniformly on Solx(P), which implies that
H(P,S) is uniformly distributed on {H(P,S ′) : S ′ ∈ Solx(P)}. Recall that k =
max #L. If event PG occurs then |Solx(P)| ≥ k/εL,U . Further —conditioned
on ¬Col— all values H(P,S ′) that P∗ knows are distinct. Conditioned on the
events S ∈ {S1, . . . ,Sl}, PG and ¬Col prover P∗ guesses H(P,S) with probability
at most 1/l. If, on the other hand, S /∈ {S1, . . . ,Sl}, then from P∗’s point of view
H(P,S) is uniformly distributed on H. Hence in this case its best chance of
guessing it is 1/|H|. Note that Pr[S ∈ {S1, . . . ,Sl} | ¬Col ∧ PG] ≤ l · εL,U/k.
Summing up —conditioned on ¬Col and PG— prover P∗’s chance of correctly
guessing H(P,S) is bounded by lεL,U/k·1/l+1/|H| = εL,U/k+1/|H|. Event Win
according to line 04 cannot occur if h contains more than k elements, so we obtain
Pr [Win | ¬Col] ≤ εL,U + k/|H|. ut

5 Challenge-Response Protocols in the Domain of
Number-Theory

We provide several protocols to prove number theoretic properties of a number
N ∈ N, the corresponding witness being the factorization of N . More formally,
we consider the universe

Lodd = {N ∈ N : ν2 = 0; |P(N)| ≥ 2}

of odd numbers, which have at least two prime factors. Note that Lodd can
be efficiently decided. We associate problem and solution spaces as defined in
Sect. 3.1 to several languages L ⊆ Lodd, hence obtaining membership checking
protocols via Theorem 1 and Theorem 2. In most cases the problem and solution
space associated to a statement N ∈ Lodd are defined as Z∗N , while the defining
relationRelN for problem b and solution a is of the type b ≡ ae mod N , where the
exponent e is chosen according to the number theoretic property of N we want
to prove. Equation (1) of Sect. 2.2 serves as a primary tool to deduce bounds
on max #(L) and min #(Lodd \ L). Defining RelN in the described way enables
us to to sample from it as follows. Algorithm Sample first chooses a solution a
uniformly from SN = Z∗N . Then the corresponding problem b is set to ae. In this



L U PN SN RelN k/m HtS StH Sec.

Lsf Lodd Z∗N Z∗N (an, a) 1/3 X X 5.1
Lppp Lodd Z∗N Z∗N (a2, a) 1/2 X 5.2
Lper Lodd Z∗N Z∗N (ae, a) 1/2 X X 5.3
Lpp Lodd (Z∗N )2 (Z∗N )2 1/2 X 5.4
Lrsa Lodd (Z∗N )3 (Z∗N )3 1/2 X 5.4
Lblum Lpp Z∗N Z∗N (a4, a) 1/2 X 5.5
Lpai Lpp Z∗n2 Zn × Z∗N (f(n,g)(a), a) 1/2 X X 5.6

Table 1. Protocols for properties of RSA moduli. Assume k = max #L and m =
min #(U \L). Columns seven and eight indicate whether the Hash-then-Solve (HtS) or
Solve-then-Hash (StH) protocol can be used to decide L. Lpp and Lrsa are intersections
of other decidable languages and can be decided by running the corresponding protocols
in parallel.

way a is uniformly distributed on SolN (b) and the proposed algorithm samples
solution-uniformly (for both valid and invalid candidates) as required for the
Solve-then-Hash protocol of Sect. 4.2.

For some of the considered languages the map a 7→ ae defines a permutation
on Z∗N for every valid statement N ∈ L. In this case every problem is solvable,
we hence have P+

N = PN , and the described sampling algorithm also fulfills the
property of problem-uniformity and can be used in the Hash-then-Solve protocol
of Sect. 4.1. For other of the considered languages the space P+

N of solvable
problems is a proper subset of PN and it seems not feasible to construct an
algorithm with the desired properties. In this cases only the Solve-then-Hash
protocol can be used to decide the language.

Considered languages. We provide a toolbox of protocols checking ar-
guably the most important properties required of RSA-type moduli. An overview
of our results is given in Table 1. Combining several of the protocols gives a
method to check for properties required of typical applications. For example the
property that the RSA map a 7→ ae mod N defined by numbers (N, e) is “good”
can be checked by showing that N has exactly two prime factors and is square
free and that e indeed defines a permutation on Z∗N . If an application requires a
feature more specific than the ones we treat, then likely corresponding problem
and solution spaces and a corresponding relation can be found.

As a starting point we consider the languages

Lsf := {N ∈ Lodd : gcd(N,ϕ(N)) = 1}
Lppp := {N ∈ Lodd : |P(N)| = 2}

of square free numbers and prime power products, i.e. numbers having exactly
two prime factors. For both languages the corresponding relation was implicitly
given in [19]. Note that by definition of ϕ(N) condition (gcd(ϕ(N), N) = 1)



implies that νp = 1 for every p ∈ P(N) and hence indeed the number is square
free. Due to the choice of the relation it additionally implies that p - (q − 1) for
every p, q ∈ P(N). Intersecting both languages yields the language

Lpp := {pq ∈ Lodd : p, q ∈ P, p 6= q, p - (q − 1), q - (p− 1)}

of prime products. Each N in this language is the product of two distinct primes,
a minimal requirement on RSA moduli. We further give relations for the lan-
guages

Lper := {(N, e) ∈ Lodd × N : a 7→ ae defines a permutation}
Lrsa := {(N, e) ∈ Lpp × N : a 7→ ae defines a permutation}

of pairs (N, e) such that exponentiation with e defines a permutation on Z∗N and
N being a prime product such that e defines a permutation on Z∗N . The relations
were implicitly used in [34,11]. Building on the protocol for Lpp we consider the
language

Lblum := {pq ∈ Lpp : p ≡ q ≡ 3 mod 4}

of Blum integers, i.e. prime products with both primes being equal to 3 modulo
4. We give problem and solution spaces and a corresponding relation, which up
to our knowledge has not been used so far, such that Lblum can be decided in
universe Lpp. Finally, we show that it can be efficiently decided whether the
trapdoor function corresponding to Paillier’s encryption scheme, which corre-
sponds to pairs (N, g) consisting of a prime product N and an element g of Z∗N2 ,
indeed defines a bijection. A protocol for this property has up to our knowledge
not been given so far. Note that given (N, g) it is assumed to be hard to decide
whether the corresponding map is bijective, since it has been shown to be a lossy
trapdoor function under the decisional quadratic residuosity assumption [15].

5.1 Deciding Lsf

Consider the language

Lsf := {N ∈ Lodd : gcd(N,ϕ(N)) = 1}

of square free integers, i.e. of odd numbers such that for every p, q ∈ P(N) we
have νp = 1 and p - q − 1. We show that Lsf can be decided in universe Lodd.
For a statement N ∈ Lodd let the corresponding witness be its factorization. We
define the corresponding problem and solution spaces and the defining relation
as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ aN mod N} .



RelN is defined via the map Z∗N → Z∗N ; a 7→ aN . By equation (1) of Sect. 2.2
this map is a bijection exactly if N ∈ Lsf , i.e. if gcd(N,ϕ(N)) = 1, and, since N
is odd, at least 3-to-1 if N ∈ Lodd \Lsf . Hence max #(Lsf) = 1 and min #(Lodd \
Lsf) = 3.

We now describe the corresponding algorithms. Algorithms Sample samples
from RelN by choosing a ←$ Z∗N , setting b ← aN and returning the problem-
solution pair (b, a). As discussed above, since the solution a is sampled at random
and the corresponding problem b is derived from it afterwards, a is uniformly
distributed on SolN (b) and Sample is solution-uniform. Verify on input (b, a)
checks whether b ≡ an mod n and responds accordingly. Note that Nth roots
modulo N can be efficiently computed given the factorization of N . Hence it
is possible to construct the problem solving algorithm Solve and by Theorem 2
language Lsf can be decided using the Solve-then-Hash protocol.

For every valid statement N ∈ Lsf the map Z∗N → Z∗N ; a 7→ aN defining the
relation RelN is a bijection. Hence in this case every problem b ∈ PN is solvable.
Further the problems sampled by Sample are uniformly distributed on PN and
solutions are uniformly distributed on the corresponding solution set SolN (b).
Thus Sample is both problem-uniform and solution-uniform, and therefore fulfills
the requirements, which are necessary to be used as sampling algorithm Sample∗
in the Hash-then-Solve protocol of Sect. 4.1.

5.2 Deciding Lppp

Consider the language

Lppp := {N ∈ Lodd : |P(N)| = 2}

of prime power products, i.e. of odd numbers that have exactly two prime factors.
We show that Lppp can be decided in universe Lodd. For a statement N ∈ Lodd
let the corresponding witness be its factorization. We define the corresponding
problem and solution spaces and the defining relation as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ a2 mod N} .

RelN is defined via the map Z∗N → Z∗N ; a 7→ a2. Since N is odd we obtain by
equation (1) of Sect. 2.2 that this map is 4-to-1 if N ∈ Lppp, i.e. if N has at
most 2 distinct prime factors, and at least 8-to-1 if N ∈ Lodd \ Lppp. Hence
max #(Lppp) = 4 and min #(Lodd \ Lppp) = 8.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ Z∗N , setting b ← a2 and returning the problem-
solution pair (b, a). Note that Sample is solution-uniform. Verify on input (b, a)
checks whether b ≡ a2 mod N and responds accordingly. Note that square roots
modulo N can be efficiently computed given the factorization of N . Hence it



is possible to construct the problem solving algorithm Solve and by Theorem 2
language Lppp can be decided using the Solve-then-Hash protocol.

Let N ∈ Lppp be a valid statement. The set P+
N of solvable problems is

the set QR(N) of quadratic residues modulo N . Hence a sampling algorithm
Sample∗ compatible with the Hash-then-Solve protocol of Sect. 4.1 would require
that a) the sampled problems are uniformly distributed in Z∗N and b) if a sampled
problem is solvable then it is accompanied by a solution. While both sampling
uniformly from Z∗N or sampling uniformly from (b, a) ∈ RelN ⊆ QR(N) × Z∗N
is easy, it is unclear how to construct an algorithm with the required properties
that does not need access to the factorization of N . The authors of [19] overcome
this problem by imposing additional requirements on N . They give a protocol
able to verify that pq = N ∈ Lppp such that p, q 6≡ 1 mod 8 and p 6≡ q mod 8.
For this restricted language exactly one element of the set {+b,−b,+2b,−2b}
has a square root for every b ∈ Z∗N . Changing the relation to pairs (b, a), such
that a is the root of one of those elements one then defines Sample∗ to sample
(b, a) with algorithm Sample from above and then output (c b, a), where c ←$

{+1,−1,+2,−2}.

5.3 Deciding Lper

Consider the language

Lper := {(N, e) ∈ Lodd × N : a 7→ ae defines a permutation}

of pairs (N, e) such that the map a 7→ ae defines a permutation. We show
that Lper can be decided in universe Lodd. For a statement N ∈ Lodd let the
corresponding witness be its factorization. We define the corresponding problem
and solution spaces and the defining relation as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ ae mod N} .

RelN is defined via the map Z∗N → Z∗N ; a 7→ ae. Since this map is a homo-
morphism, it is at least 2-to-1 if it is not bijective. Hence max #(Lsf) = 1 and
min #(Lodd \ Lsf) = 2.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ Z∗N , setting b ← ae and returning the problem-
solution pair (b, a). Note that Sample is both problem-uniform and solution-
uniform. Verify on input (b, a) checks whether b ≡ ae mod N and responds
accordingly. Note that eth roots modulo N can be efficiently computed given
the factorization of N . Hence it is possible to construct the problem solving
algorithm Solve and by Theorem 2 language Lper can be decided using the
Solve-then-Hash protocol.

Further, for every valid statement N ∈ Lper the map Z∗N → Z∗N ; a 7→ ae

defining the relationRelN is a bijection. Hence in this case every problem b ∈ PN



is solvable. Further the problems sampled by Sample are uniformly distributed
on PN and solutions are uniformly distributed on the corresponding solution
set SolN (b). Thus Sample is both problem-uniform and solution-uniform, and
therefore fulfills the requirements, which are necessary to be used as sampling
algorithm Sample∗ in the Hash-then-Solve protocol of Sect. 4.1.

5.4 Deciding Lpp and Lrsa

Consider the languages

Lpp := {pq ∈ Lodd : p, q ∈ P, p 6= q, p - (q − 1), q - (p− 1)}

of prime products, i.e. square-free numbers having exactly two prime factors,
and

Lrsa := {(N, e) ∈ Lpp × N : a 7→ ae defines a permutation}

of pairs (N, e) such that N is a prime product and the RSA map Z∗N → Z∗N ; a 7→
ae defines a permutation. We have Lpp = Lppp∩Lsf and Lrsa = Lper∩Lppp∩Lsf .
The protocols deciding Lsf , Lppp and Lper are all defined with respect to the same
universe Lodd. By running them in parallel we hence obtain protocols deciding
Lpp or Lrsa respectively with respect to Lodd.

5.5 Deciding Lblum

Consider the language

Lblum := {pq ∈ Lpp : p ≡ q ≡ 3 mod 4}

of Blum integers. We show that Lblum can be decided in universe Lpp. For a
statement N ∈ Lpp let the corresponding witness be its factorization. We define
the corresponding problem and solution spaces and the defining relation as

PN = Z∗N
SN = Z∗N
RelN = {(b, a) ∈ (Z∗N )2 : b ≡ a4 mod N} .

Since all statements are elements of Lpp and hence have two odd prime factors,
every square in Z∗N has four square roots. Further, if N a is Blum integer then
each element of QR(N) has exactly one root that is again a square. This implies
that every problem of P+ = {b ∈ Z∗N : b ≡ a4 for some a ∈ Z∗N} has four
corresponding solutions, i.e. max #(Lsf) = 2. If on the other hand N ∈ Lpp \
Lblum, then every element of the form b = a4 has at least two square roots, which
are elements of QR(N). Hence in this case we obtain min #(Lpp \ Lblum) = 8.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ Z∗N , setting b ← a4 and returning the problem-
solution pair (b, a). Note that Sample is solution-uniform. Verify on input (b, a)
checks whether b ≡ a4 mod N and responds accordingly. Note that 4th roots



modulo N can be efficiently computed given the factorization of N . Hence it
is possible to construct the problem solving algorithm Solve and by Theorem 2
language Lblum can be decided using the Solve-then-Hash protocol.

Let N ∈ Lblum be a valid statement. Since for Blum integers squaring is a
permutation on QR(N), the space of solvable problems is given by QR(N).
Hence as in the case of the relation for language Lppp it seems unfeasible to
construct an alternative sampling algorithm Sample∗ that admits the use of the
Hash-then-Solve protocol of Sect. 4.1.

5.6 Deciding Lpai

Let N ∈ Lpp and g ∈ Z∗N2 such that N divides the order of the group generated
by g. In this case the following function associated to N and g, which is used
in Paillier’s encryption scheme [26], defines a bijection that can be efficiently
inverted given the factorization of N .

fn,g :
{
ZN × Z∗N → Z∗N2

(a1, a2) 7→ ga1 aN2 mod N2

In this section we show that our protocols can be used to check in universe Lpp,
whether a public key (N, g) for the Paillier encryption scheme indeed defines a
bijection. Hence consider the language

Lpai := {(N, g) ∈ Lpp × N : g ∈ Z∗N2 , fN,g is permutation} .

Note that the condition g ∈ Z∗N2 can be efficiently checked. For a statement N ∈
Lpp let the corresponding witness be its factorization. We define the correspond-
ing problem and solution spaces and the defining relation as

PN = Z∗N2

SN = ZN × Z∗N
RelN = {(b, a) ∈ P(N,g) × S(N,g) : b ≡ fN,g(a) mod N} .

RelN is defined via map f(N,g), which is a homomorphism. Hence if it is not
bijective it is at least 2-to-1 and we obtain max #(Lsf) = 1 and min #(Lodd \
Lsf) = 2.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ ZN × Z∗N , setting b ← f(N,g)(a) and returning
the problem-solution pair (b, a). Note that Sample is both problem-uniform and
solution-uniform. Verify on input (b, a) checks whether b ≡ f(N,g)(a) and re-
sponds accordingly. Map f(N,g) can be efficiently inverted given the factorization
of N . Hence it is possible to construct the problem solving algorithm Solve and
by Theorem 2 language Lpai can be decided using the Solve-then-Hash protocol.

For every valid statement N ∈ Lpai the map f(N,g) defining the relation RelN
is a bijection. Hence in this case every problem b ∈ PN is solvable. Further the
problems sampled by Sample are uniformly distributed on PN and solutions are



uniformly distributed on the corresponding solution set SolN (b). Thus Sample
is both problem-uniform and solution-uniform, and therefore fulfills the require-
ments, which are necessary to be used as sampling algorithm Sample∗ in the
Hash-then-Solve protocol of Sect. 4.1.

The constructions can be easily adapted to handle the generalized version of
the trapdoor function from [14], which uses domain ZNs ×Z∗N and range Z∗Ns+1

for some s ∈ N.
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