28 research outputs found

    Simultaneous wireless information and power transfer with fixed and adaptive modulation

    Get PDF
    Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated

    Power allocation and signal labelling on physical layer security

    Get PDF
    PhD ThesisSecure communications between legitimate users have received considerable attention recently. Transmission cryptography, which introduces secrecy on the network layer, is heavily relied on conventionally to secure communications. However, it is theoretically possible to break the encryption if unlimited computational resource is provided. As a result, physical layer security becomes a hot topic as it provides perfect secrecy from an information theory perspective. The study of physical layer security on real communication system model is challenging and important, as the previous researches are mainly focusing on the Gaussian input model which is not practically implementable. In this thesis, the physical layer security of wireless networks employing finite-alphabet input schemes are studied. In particular, firstly, the secrecy capacity of the single-input single-output (SISO) wiretap channel model with coded modulation (CM) and bit-interleaved coded modulation (BICM) is derived in closed-form, while a fast, sub-optimal power control policy (PCP) is presented to maximize the secrecy capacity performance. Since finite-alphabet input schemes achieve maximum secrecy capacity at medium SNR range, the maximum amount of energy that the destination can harvest from the transmission while satisfying the secrecy rate constraint is computed. Secondly, the effects of mapping techniques on secrecy capacity of BICM scheme are investigated, the secrecy capacity performances of various known mappings are compared on 8PSK, 16QAM and (1,5,10) constellations, showing that Gray mapping obtains lowest secrecy capacity value at high SNRs. We propose a new mapping algorithm, called maximum error event (MEE), to optimize the secrecy capacity over a wide range of SNRs. At low SNR, MEE mapping achieves a lower secrecy rate than other well-known mappings, but at medium-to-high SNRs MEE mapping achieves a significantly higher secrecy rate over a wide range of SNRs. Finally, the secrecy capacity and power allocation algorithm (PA) of finite-alphabet input wiretap channels with decode-and-forward (DF) relays are proposed, the simulation results are compared with the equal power allocation algorithm

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Symbol-level and Multicast Precoding for Multiuser Multiantenna Downlink: A State-of-the-art, Classification and Challenges

    Get PDF
    Precoding has been conventionally considered as an effective means of mitigating or exploiting the interference in the multiantenna downlink channel, where multiple users are simultaneously served with independent information over the same channel resources. The early works in this area were focused on transmitting an individual information stream to each user by constructing weighted linear combinations of symbol blocks (codewords). However, more recent works have moved beyond this traditional view by: i) transmitting distinct data streams to groups of users and ii) applying precoding on a symbol-per-symbol basis. In this context, the current survey presents a unified view and classification of precoding techniques with respect to two main axes: i) the switching rate of the precoding weights, leading to the classes of block-level and symbol-level precoding, ii) the number of users that each stream is addressed to, hence unicast, multicast, and broadcast precoding. Furthermore, the classified techniques are compared through representative numerical results to demonstrate their relative performance and uncover fundamental insights. Finally, a list of open theoretical problems and practical challenges are presented to inspire further research in this area

    Transmission strategies for wireless energy harvesting nodes

    Get PDF
    Over the last few decades, transistor miniaturization has enabled a tremendous increase in the processing capability of commercial electronic devices, which, combined with the reduction of production costs, has tremendously fostered the usage of the Information and communications Technologies (ICTs) both in terms of number of users and required data rates. In turn, this has led to a tremendous increment in the energetic demand of the ICT sector, which is expected to further grow during the upcoming years, reaching unsustainable levels of greenhouse gas emissions as reported by the European Council. Additionally, the autonomy of battery operated devices is getting reduced year after year since battery technology has not evolved fast enough to cope with the increase of energy consumption associated to the growth of the node¿s processing capability. Energy harvesting, which is known as the process of collecting energy from the environment by different means (e.g., solar cells, piezoelectric generators, etc.), has become a potential technology to palliate both of these problems. However, when energy harvesting modules are placed in wireless communication devices (e.g., sensor nodes or hand-held devices), traditional transmission strategies are no longer applicable because the temporal variations of the node¿s energy availability must be carefully accounted for in the design. Apart from not considering energy harvesting, traditional transmission strategies assume that the transmission radiated power is the unique energy sink in the node. This is a reasonable assumption when the transmission range is large, but it no longer holds for low consumption devices such as sensor nodes that transmit to short distances. As a result, classical transmission strategies become suboptimal in short-range communications with low consumption devices and new strategies should be investigated. Consequently, in this dissertation we investigate and design transmission strategies for Wireless Energy Harvesting Nodes (WEHNs) by paying a special emphasis on the different sinks of energy consumption at the transmitter(s). First, we consider a finite battery WEHN operating in a point-to-point link through a static channel and derive the transmission strategy that minimizes the transmission completion time of a set of data packets that become available dynamically over time. The transmission strategy has to satisfy causality constrains in data transmission and energy consumption, which impose that the node cannot transmit data that is not yet available nor consume energy that has not yet been harvested. Second, we consider a WEHN that has an infinite backlog of data to be transmitted through a point-to-point link in a time-varying linear vector Gaussian channel and study the linear precoding strategy that maximizes the mutual information given an arbitrary distribution of the input symbols while satisfying the Energy Causality Constraints (ECCs) at the transmitter. Next, apart from the transmission radiated power, we take into account additional energy sinks in the power consumption model and analyze how these energy sinks affect to the transmission strategy that maximizes the mutual information achieved by a WEHN operating in a point-to-point link. Finally, we consider multiple transmitter and receiver pairs sharing a common channel and investigate a distributed power allocation strategy that aims at maximizing the network sum-rate by taking into account the energy availability in the different transmitters and a generalized power consumption model.Durant les últimes dècades, la miniaturització del transistor i la reducció dels seus costos de fabricació han provocat un augment substancial del nombre de terminals de comunicacions i del tràfic de dades requerit per aquests dispositius. Així doncs, el consum energètic del sector de les Tecnologies de la Informació i Comunicacions ha incrementat notablement. A més a més, s’espera que aquest consum segueixi creixent durant els propers anys arribant a nivells insostenibles d’emissions de gasos d’efecte hivernacle segons ha informat el Consell Europeu. D’altra banda, la tecnologia de les bateries no ha evolucionat suficientment ràpid com per fer front a l’augment del consum energètic associat al creixement de la capacitat de processament dels dispositius. Això ha ocasionat que l’autonomia dels dispositius que operen amb bateries empitjori any rere any. Les energies renovables (per exemple, energia solar, cinètica, etc.) s’han convertit en una solució potencial per pal•liar aquests dos problemes. No obstant això, quan els dispositius de comunicació sense fils incorporen mòduls de captació d’energies renovables, les estratègies tradicionals de transmissió deixen de ser vàlides, ja que les variacions temporals de la disponibilitat d’energia en el dispositiu han de ser considerades en el disseny. A més a més, les estratègies de transmissió tradicionals assumeixen que la potència radiada és l’única font de consum energètic del node. Aquesta és una suposició raonable per distàncies de transmissió llargues, però deixa de ser vàlida quan es consideren dispositius de baix consum que transmeten en distàncies curtes. Com a resultat, les estratègies de transmissió clàssiques són subòptimes en comunicacions de curt abast amb dispositius de baix consum i per això, s’han d’investigar noves estratègies. En conseqüència, en aquesta tesi doctoral s’investiguen i es dissenyen noves estratègies de transmissió per nodes sense fils que operen amb energies renovables (WEHN) posant un èmfasi especial en les diferents fonts de consum d’energia en el transmissor. En primer lloc, la tesi investiga l’estratègia de transmissió en un enllaç¸ punt a punt a través d’un canal estàtic que minimitza el temps de transmissió d’un conjunt de paquets de dades que s’adquireixen al llarg del temps. L’estratègia de transmissió ha de satisfer les limitacions per causalitat en la transmissió de dades i en el consum d’energia les quals imposen que el node no pot transmetre dades que no han estat encara obtingudes o utilitzar energia que encara no ha estat adquirida. En segon lloc, es considera un WEHN que sempre disposa de dades per a transmetre a través d’un enllaç¸ punt a punt en un canal lineal Gaussià amb variacions temporals. En aquest escenari i, també, donada una distribució arbitrària dels símbols d’entrada, s’estudia l’estratègia de precodificació lineal que maximitza la informació mútua alhora que satisfà la causalitat d’energia en el transmissor. A continuació, a part de la potència radiada en transmissió, s’inclouen en el model de consum energètic els costos d’activació per accés al canal i per portadora. Donat aquest model, s’analitza com aquestes fonts de consum addicionals afecten a l’estratègia de transmissió que maximitza la informació mútua d’un WEHN que opera en un enllaç punt a punt. Finalment, la tesi considera diversos parells transmissor i receptor que comparteixen un canal comú i investiga una estratègia d’assignació de potència distribuïda la qual té com a objectiu maximitzar la suma de les taxes de transmissió dels diferents nodes tenint en compte la disponibilitat energètica en cada transmissor que està basada en un model de consum energètic generalitzat
    corecore