31,515 research outputs found

    A Complete Hierarchical Key Management Scheme for Heterogeneous Wireless Sensor Networks

    Get PDF
    Heterogeneous cluster-based wireless sensor networks (WSN) attracted increasing attention recently. Obviously, the clustering makes the entire networks hierarchical; thus, several kinds of keys are required for hierarchical network topology. However, most existing key management schemes for it place more emphasis on pairwise key management schemes or key predistribution schemes and neglect the property of hierarchy. In this paper, we propose a complete hierarchical key management scheme which only utilizes symmetric cryptographic algorithms and low cost operations for heterogeneous cluster-based WSN. Our scheme considers four kinds of keys, which are an individual key, a cluster key, a master key, and pairwise keys, for each sensor node. Finally, the analysis and experiments demonstrate that the proposed scheme is secure and efficient; thus, it is suitable for heterogeneous cluster-based WSN

    Security in heterogeneous wireless networks

    Get PDF
    The proliferation of a range of wireless devices, from the cheap low power resource starved sensor nodes to the ubiquitous cell phones and PDA\u27s has resulted in their use in many applications. Due to their inherent broadcast nature Security and Privacy in wireless networks is harder than the wired networks. Along with the traditional security requirements like confidentiality, integrity and non-repudiation new requirements like privacy and anonymity are important in wireless networks. These factors combined with the fact that nodes in a wireless network may have different resource availabilities and trust levels makes security in wireless networks extremely challenging. The functional lifetime of sensor networks in general is longer than the operational lifetime of a single node, due to limited battery power. Therefore to keep the network working multiple deployments of sensor nodes are needed. In this thesis, we analyze the vulnerability of the existing key predistribution schemes arising out of the repeated use of fixed key information through multiple deployments. We also develop SCON, an approach for key management that provides a significant improvement in security using multiple key pools. SCON performs better in a heterogeneous environment. We present a key distribution scheme that allows mobile sensor nodes to connect with stationary nodes of several networks. We develop a key distribution scheme for a semi ad-hoc network of cell phones. This scheme ensures that cell phones are able to communicate securely with each other when the phones are unable to connect to the base station. It is different from the traditional ad hoc networks because the phones were part of a centralized network before the base station ceased to work. This allows efficient distribution of key material making the existing schemes for ad hoc networks ineffective. In this thesis we present a mechanism for implementing authenticated broadcasts which ensure non-repudiation using identity based cryptography. We also develop a reputation based mechanism for the distributed detection and revocation of malicious cell phones. Schemes which use the cell phone for secure spatial authentication have also been presented

    Secure Group Association Management in Heterogeneous Distributed Sensor Networks

    Get PDF
    A Heterogeneous Distributed Sensor Network (HDSN) is a type of distributed sensor network where sensors with different functional types participate at the same time. In this network model, the sensors are associated with different deployment groups but they cooperate with each other within and out of their respective groups. The heterogeneity of HDSN refers to the functional heterogeneity of the sensors participating in the network unlike the heterogeneity considered (e.g., considering transmission range, energy level, computation ability, sensing range) for traditional heterogeneous sensor networks. Taking this model into account, we propose a secure group association authentication mechanism using one-way accumulator which ensures that; before collaborating for a particular task, any pair of nodes in the same deployment group can verify the legitimacy of group association of each other. Secure addition and deletion of sensors are also supported in this approach. In addition, a policy-based sensor addition procedure is also suggested. For secure handling of disconnected node of a group, we use an efficient pairwise key derivation scheme. Side by side proposing our mechanisms, we also discuss the characteristics of HDSN, its scopes, applicability, challenges, and future. The efficiency of our management approach is demonstrated with performance evaluation and analysis

    An efficient approach of secure group association management in densely deployed heterogeneous distributed sensor network

    Get PDF
    A heterogeneous distributed sensor network (HDSN) is a type of distributed sensor network where sensors with different deployment groups and different functional types participate at the same time. In other words, the sensors are divided into different deployment groups according to different types of data transmissions, but they cooperate with each other within and out of their respective groups. However, in traditional heterogeneous sensor networks, the classification is based on transmission range, energy level, computation ability, and sensing range. Taking this model into account, we propose a secure group association authentication mechanism using one-way accumulator which ensures that: before collaborating for a particular task, any pair of nodes in the same deployment group can verify the legitimacy of group association of each other. Secure addition and deletion of sensors are also supported in this approach. In addition, a policy-based sensor addition procedure is also suggested. For secure handling of disconnected nodes of a group, we use an efficient pairwise key derivation scheme to resist any adversary’s attempt. Along with proposing our mechanism, we also discuss the characteristics of HDSN, its scopes, applicability, future, and challenges. The efficiency of our security management approach is also demonstrated with performance evaluation and analysis

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5
    • …
    corecore