195 research outputs found

    Incident Light Frequency-based Image Defogging Algorithm

    Get PDF
    Considering the problem of color distortion caused by the defogging algorithm based on dark channel prior, an improved algorithm was proposed to calculate the transmittance of all channels respectively. First, incident light frequency's effect on the transmittance of various color channels was analyzed according to the Beer-Lambert's Law, from which a proportion among various channel transmittances was derived; afterwards, images were preprocessed by down-sampling to refine transmittance, and then the original size was restored to enhance the operational efficiency of the algorithm; finally, the transmittance of all color channels was acquired in accordance with the proportion, and then the corresponding transmittance was used for image restoration in each channel. The experimental results show that compared with the existing algorithm, this improved image defogging algorithm could make image colors more natural, solve the problem of slightly higher color saturation caused by the existing algorithm, and shorten the operation time by four to nine times

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    UDP-YOLO: High Efficiency and Real-Time Performance of Autonomous Driving Technology

    Get PDF
    In recent years, autonomous driving technology has gradually appeared in our field of vision. It senses the surrounding environment by using radar, laser, ultrasound, GPS, computer vision and other technologies, and then identifies obstacles and various signboards, and plans a suitable path to control the driving of vehicles. However, some problems occur when this technology is applied in foggy environment, such as the low probability of recognizing objects, or the fact that some objects cannot be recognized because the fog's fuzzy degree makes the planned path wrong. In view of this defect, and considering that automatic driving technology needs to respond quickly to objects when driving, this paper extends the prior defogging algorithm of dark channel, and proposes UDP-YOLO network to apply it to automatic driving technology. This paper is mainly divided into two parts: 1. Image processing: firstly, the data set is discriminated whether there is fog or not, then the fogged data set is defogged by defogging algorithm, and finally, the defogged data set is subjected to adaptive brightness enhancement; 2. Target detection: UDP-YOLO network proposed in this paper is used to detect the defogged data set. Through the observation results, it is found that the performance of the model proposed in this paper has been greatly improved while balancing the speed

    Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

    Full text link
    This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 38083808 real foggy images, with pixel-level semantic annotations for 1616 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201

    Adaptive Deep Learning Detection Model for Multi-Foggy Images

    Get PDF
    The fog has different features and effects within every single environment. Detection whether there is fog in the image is considered a challenge and giving the type of fog has a substantial enlightening effect on image defogging. Foggy scenes have different types such as scenes based on fog density level and scenes based on fog type. Machine learning techniques have a significant contribution to the detection of foggy scenes. However, most of the existing detection models are based on traditional machine learning models, and only a few studies have adopted deep learning models. Furthermore, most of the existing machines learning detection models are based on fog density-level scenes. However, to the best of our knowledge, there is no such detection model based on multi-fog type scenes have presented yet. Therefore, the main goal of our study is to propose an adaptive deep learning model for the detection of multi-fog types of images. Moreover, due to the lack of a publicly available dataset for inhomogeneous, homogenous, dark, and sky foggy scenes, a dataset for multi-fog scenes is presented in this study (https://github.com/Karrar-H-Abdulkareem/Multi-Fog-Dataset). Experiments were conducted in three stages. First, the data collection phase is based on eight resources to obtain the multi-fog scene dataset. Second, a classification experiment is conducted based on the ResNet-50 deep learning model to obtain detection results. Third, evaluation phase where the performance of the ResNet-50 detection model has been compared against three different models. Experimental results show that the proposed model has presented a stable classification performance for different foggy images with a 96% score for each of Classification Accuracy Rate (CAR), Recall, Precision, F1-Score which has specific theoretical and practical significance. Our proposed model is suitable as a pre-processing step and might be considered in different real-time applications

    Holistic Attention-Fusion Adversarial Network for Single Image Defogging

    Full text link
    Adversarial learning-based image defogging methods have been extensively studied in computer vision due to their remarkable performance. However, most existing methods have limited defogging capabilities for real cases because they are trained on the paired clear and synthesized foggy images of the same scenes. In addition, they have limitations in preserving vivid color and rich textual details in defogging. To address these issues, we develop a novel generative adversarial network, called holistic attention-fusion adversarial network (HAAN), for single image defogging. HAAN consists of a Fog2Fogfree block and a Fogfree2Fog block. In each block, there are three learning-based modules, namely, fog removal, color-texture recovery, and fog synthetic, that are constrained each other to generate high quality images. HAAN is designed to exploit the self-similarity of texture and structure information by learning the holistic channel-spatial feature correlations between the foggy image with its several derived images. Moreover, in the fog synthetic module, we utilize the atmospheric scattering model to guide it to improve the generative quality by focusing on an atmospheric light optimization with a novel sky segmentation network. Extensive experiments on both synthetic and real-world datasets show that HAAN outperforms state-of-the-art defogging methods in terms of quantitative accuracy and subjective visual quality.Comment: 13 pages, 10 figure
    corecore