1,312 research outputs found

    A Global Optimisation Toolbox for Massively Parallel Engineering Optimisation

    Full text link
    A software platform for global optimisation, called PaGMO, has been developed within the Advanced Concepts Team (ACT) at the European Space Agency, and was recently released as an open-source project. PaGMO is built to tackle high-dimensional global optimisation problems, and it has been successfully used to find solutions to real-life engineering problems among which the preliminary design of interplanetary spacecraft trajectories - both chemical (including multiple flybys and deep-space maneuvers) and low-thrust (limited, at the moment, to single phase trajectories), the inverse design of nano-structured radiators and the design of non-reactive controllers for planetary rovers. Featuring an arsenal of global and local optimisation algorithms (including genetic algorithms, differential evolution, simulated annealing, particle swarm optimisation, compass search, improved harmony search, and various interfaces to libraries for local optimisation such as SNOPT, IPOPT, GSL and NLopt), PaGMO is at its core a C++ library which employs an object-oriented architecture providing a clean and easily-extensible optimisation framework. Adoption of multi-threaded programming ensures the efficient exploitation of modern multi-core architectures and allows for a straightforward implementation of the island model paradigm, in which multiple populations of candidate solutions asynchronously exchange information in order to speed-up and improve the optimisation process. In addition to the C++ interface, PaGMO's capabilities are exposed to the high-level language Python, so that it is possible to easily use PaGMO in an interactive session and take advantage of the numerous scientific Python libraries available.Comment: To be presented at 'ICATT 2010: International Conference on Astrodynamics Tools and Techniques

    A flexible and efficient multi-purpose optimization library in python

    Get PDF
    Bakurov, I., Buzzelli, M., Castelli, M., Vanneschi, L., & Schettini, R. (2021). General purpose optimization library (Gpol): A flexible and efficient multi-purpose optimization library in python. Applied Sciences (Switzerland), 11(11), 1-34. [4774]. https://doi.org/10.3390/app11114774Several interesting libraries for optimization have been proposed. Some focus on individual optimization algorithms, or limited sets of them, and others focus on limited sets of problems. Frequently, the implementation of one of them does not precisely follow the formal definition, and they are difficult to personalize and compare. This makes it difficult to perform comparative studies and propose novel approaches. In this paper, we propose to solve these issues with the General Purpose Optimization Library (GPOL): a flexible and efficient multipurpose optimization library that covers a wide range of stochastic iterative search algorithms, through which flexible and modular implementation can allow for solving many different problem types from the fields of continuous and combinatorial optimization and supervised machine learning problem solving. Moreover, the library supports full-batch and mini-batch learning and allows carrying out computations on a CPU or GPU. The package is distributed under an MIT license. Source code, installation instructions, demos and tutorials are publicly available in our code hosting platform (the reference is provided in the Introduction).publishersversionpublishe
    corecore