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Abstract
This paper investigates a wireless blockchain network with mobile edge computing in which Internet of Things (IoT)

devices can behave as blockchain users (BUs). This blockchain network’s ultimate goal is to increase the overall profits of

all BUs. Because not all BUs join in the mining process, using traditional swarm and evolution algorithms to solve this

problem results in a high level of redundancy in the search space. To solve this problem, a modified chaotic Henry single

gas solubility optimization algorithm, called CHSGSO, has been proposed. In CHSGSO, the allocation of resources to BUs

who decide to engage in mining as an individual is encoded. This results in a different size for each individual in the entire

population, which leads to the elimination of unnecessary search space regions. Because the individual size equals the

number of participating BUs, we devise an adaptive strategy to fine-tune each individual size. In addition, a chaotic map

was incorporated into the original Henry gas solubility optimization to improve resource allocation and accelerate the

convergence rate. Extensive experiments on a set of instances were carried out to validate the superiority of the proposed

CHSGSO. Its efficiency is demonstrated by comparing it to four well-known meta-heuristic algorithms.

Keywords Blockchain � Classification � Mobile edge computing � Meta-heuristics � Henry gas algorithm �
Resource allocation

1 Introduction

Blockchain networks (BNs) have been receiving a lot of

attention lately due to the increasing popularity of cryp-

tocurrencies like Bitcoin [11]. BNs are decentralized peer-

to-peer networks that provide anonymity, auditability, and

secure operations without requiring trust from a third party

[77]. Because of these capabilities, BNs have been

employed in various areas, such as smart manufacturing

[39], smart grid [69], the Internet of Things (IoT) [79], and

supply chain [8]. To implement BNs, three major tech-

nologies are used: (1) a peer-to-peer network; (2) public

key cryptography with hash functions; and (3) a program

(Blockchain protocol, such as consensus). To address the

synchronization problem in traditional distributed data-

bases, blockchain technologies use a distributed consensus

algorithm and combine peer-to-peer networks with cryp-

tography, mathematics, algorithms, and economic models

to create an integrated infrastructure across multiple fields.
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‘‘In essence, a blockchain is a digital public ledger that

records all digital transactions in a data structure known as

’Completed Transaction Blocks’ or in chronological order,

which is then stored across a distributed network. The

block body consists of a transaction counter and transac-

tions. The transaction counter records the number of

transactions, while the list of transactions recorded by the

block is simply referred to as the transactions. The maxi-

mum number of transactions that can be stored in a block is

determined by both the block size and the size of each

transaction. During the process of verifying and validating

transactions, the system checks whether the initiator has

sufficient balance to complete the transaction, or it may be

fooled by a double-spending mechanism [50], where the

same input amount is used in two or more different

transactions [32]. Blockchain users, also known as ’BUs’,

are peers whose computational power is used to mine for

blocks [37]. Once these BUs verify and validate a trans-

action, it is included in a block.’’

In order to publish a block, BUs must expend a signif-

icant amount of their computing resources to solve a

computational puzzle, known as the mining process. The

BUs who are able to solve the puzzle first become the

winning BUs and are given a small incentive to create a

new block. Once a block has been created, a consensus

mechanism is used by all peers in the network to verify the

new block [72]. The mining process involves a complex

anti-collision hash function query, which typically requires

significant resources and high computation capacities of

BUs. However, since resources are often limited, this can

lead to issues with resource allocation for BUs and create

challenges in managing the growth of the network.

Mobile edge computing (MEC) is a promising field that

aims to enhance the computing capabilities of IoT devices

by offloading processes to a MEC server [55, 68].

Numerous studies have been conducted on MEC-operated

wireless blockchain networks (WBNs). For instance, [44]

established a MEC-operated WBN and introduced an

alternative control methodology of multipliers for resource

management. However, if the earnings of the MEC service

provider (MSP) are insufficient, they may choose not to

provide computing services to BUs, which could ultimately

lead to the WBNs being unable to function.

In a related study, [47] proposed a framework for

managing resources in MEC-operated WBNs using deep

learning. Additionally, [31] introduced two bidding

frameworks for resource management in MEC-operated

WBNs: the multi-demand framework and the constant-

demand framework. In the former, an auction mechanism

is designed to achieve optimal social welfare, while in the

latter, an estimation method is introduced to simultane-

ously consider computational efficiency, individual

rationality, and truthfulness.

Furthermore, [73] explored the interaction between

cloud/fog providers and BUs in a proof of work-based BN

using a game-theoretic approach. However, it should be

noted that these studies [31, 47, 73] do not take into

account the transfer delay time between the participating

BUs and MEC server. If there are many BUs offloading

processes onto the MEC server simultaneously, they may

experience significant overlap, resulting in high trans-

portation delays [29]. Therefore, future research should

consider the impact of transfer delay time on resource

management in MEC-operated WBNs to further optimize

the allocation of computing resources and improve network

performance.

Recently, multiple studies of resource management in

BNs have been proposed. Researchers mainly consider two

basic problems: mining decisions and resource allocation.

The first is to determine whether a BU contributes to the

mining process or not, and the last is to decide the number

of resources assigned to each subscribed BU.

Rizun [54] conducted a study on mining decisions,

taking into account the block space supply curve and the

mempool demand curve to demonstrate how a subscribing

BU selects transactions to maximize their profit without a

block size limit. By considering both the orphaning risk

and revenue from transaction fees, the study found that the

block size corresponding to the intersection point of these

two curves is the optimal size for maximizing mining

profit.

Kiayias et al. [34] introduced a mining decision

stochastic game in the Bitcoin network to account for the

randomness of the mining process, where multiple BUs

participate. BUs typically choose to engage in mining to

obtain stable profits.

Houy [28] presented and analyzed two Bitcoin mining

games for BUs. When deciding how many transactions to

include in the block they are mining, BUs need to consider

the trade-off between including more transactions to earn

higher transaction fees, and including fewer transactions to

reduce the time needed to propagate their block solution

and increase the likelihood of their block being included in

the blockchain first.

Some BUs may engage in harmful actions within the

mining pool, leading to a waste of distributed computing

resources and posing a risk to the effectiveness of BNs. To

address this issue, a game-theoretic approach has been

proposed in [66] to incentivize BUs to mine honestly.

While these methods have been shown to be effective, they

have only been applied to wired BNs. With the emergence

of IoT devices, there has been increased attention on

Wireless BNs (WBNs) operating on these devices [7].

However, IoT devices are unable to sustain the mining

process on local machines.
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Liu et al. [45] conducted an analysis on the dynamic

selection of mining pools in BNs. The selection of mining

pools was represented as an evolutionary game, and evo-

lutionary stability was produced through theoretical anal-

ysis. Furthermore, Shijing Yuan et al. [76] proposed an

optimization method for a blockchain-supported edge

video streaming system. The method aims to determine the

offloading mode and resource allocation to achieve an

optimal balance between accuracy and energy

consumption.

In this context, many researchers have utilized opti-

mization algorithms in their studies, these methods have

numerous advantages [56], including (1) self-regulation;

(2) flexibility to dynamic changes; (3) the ability to esti-

mate multiple solutions simultaneously; and (4) not

requiring bounded mathematical characteristics to be

implemented. The family of optimization techniques

includes, but is not limited to, differential evolution (DE)

[6, 57–60], genetic methods [15, 42, 53], ant colony opti-

mization algorithms [36, 52, 74], PSO [17, 26], gray wolf

algorithm [46, 70], firefly optimizer [10, 81], flower pol-

lination optimizer [1], whale optimization optimizer [2],

artificial bee colony [78], binary slime mold optimizer [3],

binary pigeon-inspired optimizer [12], cuckoo search

optimizer [24], moth search optimizer [23], gain sharing

knowledge-based optimization technique [5], diversified

sine–cosine optimizer based on DE [25], light spectrum

algorithm [4], binary light spectrum algorithm [4], and

Aquila algorithm [9].

This paper differs from previous works in that it takes

into account both MSP earnings and transportation post-

ponement in a MEC-operated WBN. To increase the

overall earnings of all BUs, the paper optimizes the BUs’

mining decisions and estimates their resource allocation

simultaneously using a modified version of the Henry gas

solubility optimization (HGSO) called the Chaotic Henry

single gas solubility optimization (CHSGSO) approach.

When HGSO is utilized to address this issue, each indi-

vidual refers to the resource allocations and mining deci-

sions of the joining BUs. However, since not all BUs

participate in mining, considering all BUs as individuals

would lead to an overloaded search space and poor per-

formance. To address this problem, the paper develops a

new approach called CHSGSO, which generates a popu-

lation with variable-length individuals that represent par-

ticipating BUs.

The main contributions of this paper can be listed in the

following points:

• We propose a modified HGSO, in which the resource

allocation to only joining BUs is encoded as an

individual. An adaptive strategy is designed to tune

each individual size.

• A chaotic map has been integrated into the original

HGSO to enhance the convergence rate.

• Comprehensive experiments are applied on a set of

different instances to validate the superiority of

CHSGSO.

• CHSGSO efficacy is then affirmed by doing a fair

comparing with four well-known meta-heuristic

methods.

The remainder of the paper is structured as follows. Sec-

tion 2 introduces the problem formulation and the system

model. Section 3 presents the proposed CHSGSO. The

empirical results are investigated in Sect. 4. Finally, con-

clusions and some potential future works are presented in

Sect. 5.

2 The problem formulation and system
model

The MEC-enabled WBN is shown in Fig. 1, which has a

group of n IoTDs, is considered as mining BUs that are

involved in mining, where N ¼ f1; 2; . . .; ng. If a BU plans

to join mining, it needs to pay for computing resources

from the MEC Service Provider and then transfer its tasks

to the MEC server for the mining process. For simplicity,

the mining task is a 2-tuple: fBi;Cig, where Bi and Ci are

the block size and the computation workload/intensity in

CPU per bit, respectively.

In the considered BN, d ¼ fd1; . . .; dng represents the

BUs mining decision, where di ¼ f0; 1g; ð i 2 NÞ means

that the ith BU chooses to join or not to join in mining. So,

Fig. 1 A MEC-enabled WBN
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the involved BUs number is n0 ¼
P

i2n di. Additionally, the

required resources to the joint BUs need to be allocated,

i.e., computation resources f ¼ ff1; . . .; f 0ng and transmit-

ting power (CPU Cycles/s) p ¼ fp1; . . .; p
0
ng for all partic-

ipating BUs.

For the considered BN, shown in Fig. 1, the mining task

is successfully executed only after the completion of the

following three phases.

Offloading phase In this phase, joint BUs concurrently

transfer tasks to the MEC server with a transmission rate

that is stated as:

Ri ¼ b log2 1 þ piHi

r2 þ
P

j2n0=i djpjHj

 !

; ð1Þ

where Hi represents the ith participating BU’s channel state

information, and the term
P

j2n0=i djpjHj represents the

received interference from other BUs, b represents the

channel bandwidth, and sigma2 represents the power of

background noise. For each BU, the task transmission time

Tt
i and energy consumption Et

i of ith BU can be formulated

as:

Tt
i ¼

Bi

Ri
; 8i 2 n0; ð2Þ

and

Et
i ¼ piT

t
i ; 8i 2 n0; ð3Þ

where R is the transmission rate, B is the size of the block,

T is the task transmission and E is the transmitting energy

consumption.

Mining phase

During this phase of the process, the MEC server is

responsible for carrying out the mining tasks that have been

transmitted by the participants. The energy consumption

and time taken by the MEC server to execute the ith BU

task are consequentially stated as:

Tm
i ¼ BiCi

fi
; 8i 2 n0; ð4Þ

and

Em
i ¼ k1f

3
i T

m
i ; 8i 2 n0; ð5Þ

where k1 is the efficient capacitance coefficient.

Propagation phase After completing the mining phase,

if the BU executes its mining task faster than expected, the

BU earns a reward. The probability of getting a reward, as

a function of mining time, is given as:

Pm
i ¼ k2

Tm
i

; 8i 2 n0; ð6Þ

where k2 is scaling factor.

On the other hand, if the BU executes its mining task

slowly, the BU will not get a reward. Because agreement

may not be obtained, the block may be rejected. In

blockchain networks, blocks are made using a Poisson

process, with propagation time T0
i and with a constant

mean rate (k), is linearly proportional to their size Bi. The

ith BU’s orphaning probability is represented by:

P0
i ¼ 1 � e�kðnBiþTs

i Þ ¼ 1 � e�kðT0
i þTs

i Þ; 8i 2 n0; ð7Þ

where n represents a delay factor and Ts
i represents starting

time of mining. In this study, the mining task of the ith

joining BU will be executed when it is received by the

MEC server; hence Ts
i ¼ Tt

i .

2.1 Profit model

As previously mentioned, if the mining task is executed

successfully and fast enough, a reward can be obtained by

BU. BUs are rewarded with a fixed reward of x and a

variable reward of qBi, where q is the variable reward

factor. In addition, BUs consume definite computing and

communication costs. Therefore, the ith BU profit is

determined by:

FBU
i ¼ ðwþ qBiÞPr

i ð1 � Po
i Þ � s1E

t
i � s2fi; 8i 2 n0;

ð8Þ

where s1 and s2 represent the unit costs of the computation

resources and transmission energy, respectively. The total

profit of all BUs is determined by:

FBU ¼
X

i2n0
FBU
i ; ð9Þ

Additionally, while the MEC service provider earns a profit

by selling computation resources to the BUs, it should pay

for the costs of both the no-load Eo and mining energy

consumption. So, the MSP profit is determined by:

FMSP ¼
X

i2n0
ðs2fi � s3E

m
i Þ � s3E0; ð10Þ

where s3 is the unit cost of consumed energy.

2.2 Problem formulation

For the investigated BN, the mining decision (d), trans-

mission power (p), and computation resources (f) are all

optimized at the same time to maximize the overall profit

of all BUs. The profit model is expressed as a maximiza-

tion problem as follows:
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max
m;p;f

FBU ¼
P

i2n0 F
BU
i ;

s.t. C1 : di 2 f0; 1g; 8i 2 n0;
C2 : fmin � fi � fmax; 8i 2 n0;
C3 : pmin � pi � pmax; 8i 2 n0;

C4 :
P

i2n0 fi � f total;
C5 : Tt

i þ Tm
i þ To

i � Tmax
i ; 8i 2 n0;

C6 : FMSP � 0:

ð11Þ

where C1 denotes that each BU can choose to join mining

or not; C2 specifies the maximum and minimum compu-

tation resources assigned to each joint BU; C3 ensures that

the transmission power assigned to each BU fall within the

maximum and minimum allowable values; C4 represents

the overall computation resources assigned for each BUs,

involved in mining, cannot overtake the overall computa-

tion resources of the MEC server; C5 guarantees that the

overall time of propagation, mining, and offloading can not

overtake the limitation of the maximum time; and C6

guarantees that the MSP profit will be greater than zero.

In the studied BN, We are under the assumption that all

BUs are identical and have the same transmission power

and computation resource ranges.

3 Proposed improved Henry gas solubility
optimization

The HGSO algorithm [27] is based on a physical property

known as Henry’s law [63], which governs the solubility of

materials. Pressure and temperature are two factors that

play a significant role in this rule. The solubility of gases

reduces with increasing temperature. While the gas

becomes more soluble at higher pressures.

3.1 Henry’s law

Henry’s law is a gas law that was formulated by William

Henry in 1803 [40]. According to Henry’s law, ‘‘When the

temperature is constant, the amount of gas dissolved in a

given type of liquid is directly proportional to its partial

pressure above the liquid’’. Therefore, Henry’s law is

highly dependent on temperature. Staudinger and Roberts

[63] proposed that the gas solubility (Sg) is directly pro-

portional to the gas partial pressure (Pg), as described by

the following equation:

Sg ¼ H � Pg; ð12Þ

where H represents Henry’s constant, which is specific to a

particular gaseous solvent composition at a given temper-

ature, and the partial pressure of the gas is represented by

Pg.

In addition, the effect of temperature dependence on the

constants of Henry’s law must be taken into account. The

constants of Henry’s law change with changes in the sys-

tem temperature, which can be represented by the follow-

ing equation of Van’t Hoff as shown:

d lnH

dð1=TÞ ¼
�rsolE

R
; ð13Þ

where rsolE represents the dissolution enthalpy, R repre-

sents the constant of the gas and A and B are two factors for

T dependence of H. So, Eq. 12 can be integrated as the

following equation:

HðTÞ ¼ expðB=TÞ � A; ð14Þ

where H represents a function of parameters A and B.

Alternatively, an expression can be created using H at the

reference temperature T ¼ 298:15 K.

HðTÞ ¼ Hh � exp
�rsolE

R
1=T � 1=Th
� �

� �

; ð15Þ

The Van’t Hoff equation is valid when rsolE is a constant,

so, Eq. 15 can be reconstructed as the following equation:

HðTÞ ¼ exp �C � 1=T � 1=Th
� �� �

� Hh; ð16Þ

3.2 Inspiration source

Henry’s law was first presented by J.W. Henry in 1800.

Generally, the maximum amount of solute that can dissolve

in a given amount of solvent at a given pressure or tem-

perature is called solubility [48]. So, HGSO was inspired

by Henry’s law behavior. According to the above Eqs. 12

through 16, Henry’s law can be utilized to estimate the

solubility of low-solubility gases in liquids. In addition,

pressure and temperature are the two parameters that affect

solubility; at higher temperatures, gases are less soluble,

but solids become more soluble. As for pressure, with

increasing pressure, the solubility of gases increases [14].

3.3 Mathematical model of Henry gas solubility
optimization

The mathematical procedures of the HGSO algorithm are

described in this subsection as follows [27]:

Step 1: Equation 17 is used to create initial population

of candidate solutions with N gases:

x
ð0Þ
i ¼ lbi þ r � ðubi � lbiÞ; ð17Þ

where x
ð0Þ
i is the initial position of the ith gas, and lbi and

ubi are the position’s lower and upper limits, respectively,

for the ith candidate solution. r is a randomly generated

real value in the range [0, 1].

Step 2: Candidates from the population are organized

into groups that are referred to as clusters. Each cluster has
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an equal number of candidates that have the same attri-

butes. The equation referenced in Eq. 18 is used to ini-

tialize these properties:

H
ð0Þ
j ¼ l1 � rand1; P0

i;j ¼ l2 � rand2; C0
j ¼ l3 � rand3;

ð18Þ

where H0
j denotes the initial value of Henry’s coefficient

for jth cluster, P
ð0Þ
i;j represents the ith gas initial partial

pressure in jth cluster, and C
ð0Þ
j represents the initial con-

stant value of cluster j. l1, l2, and l3 are fixed values of

5 � 10�02, 100, and 10�02, respectively.

Step 3: The fitness value of each cluster’s gas particles

is computed, and the best xj;best cluster is assigned. In this

stage, all candidate solutions are sorted according to fitness

to get the global best solution xbest.

Step 4: As the applied partial pressure on gas particles

changes during each iteration, Henry’s coefficient H
ðtþ1Þ
j is

updated according to Eq. 19:

H
ðtþ1Þ
j ¼ H

ðtÞ
j � e�Cj�ð1=TðtÞ�1=ThÞ;

TðtÞ ¼ eð�t=tmaxÞ;
ð19Þ

where H
ðtÞ
j is Henry’s constant for cluster j in iteration t, Th

is a fixed parameter with value 298.15, T ðtÞ represents the

temperature at iteration t, and tmax is maximum iterations.

Step 5: During the tth iteration, Eq. 20 is used to change

the solubility S
ðtÞ
i;j of the ith gas particle in the jth cluster:

S
ðtÞ
i;j ¼ K � H

ðtþ1Þ
j � P

ðtÞ
i;j ; ð20Þ

where P
ðtÞ
i;j represents the applied pressure on ith gas par-

ticle in jth cluster, and K is a fixed value.

Step 6: in this step, the ith gas particle position of the jth

cluster is updated using Eq. 21 for iteration t ¼ t þ 1.

x
ðtþ1Þ
i;j ¼ x

ðtÞ
i;j þ F � r1 � c� ðxi;best � x

ðtÞ
i;j Þ

þ F � r2 � a� ðSðtÞi;j � xbest � x
ðtÞ
i;j Þ;

c ¼ b� expð�Ft
best þ �

Ft
i;j þ �

Þ; � ¼ 0:05;

ð21Þ

where F is used for controlling search direction, c is the

interaction ability of gas within its cluster and a is effect of

other gas on ith particle. r1 and r2 are randomly generated

values between [0,1], and � ¼ 0:05.

Step 7: since HGSO is heuristic algorithms, it may be

optimized locally. Therefore, Eq. 22 is used to rank and

number of worst solutions Nw for re-initialization:

Nw ¼ N � rand � ðc2 � c1Þ þ c1; ð22Þ

where N is the total number of individuals in the population

and rand is a random number between 0 and 1. c1 and c2

are constants that specify the percentage of worst solutions.

Equation 17 is used to reinitialize the positions of the worst

solutions selected in this process.

Algorithm 1 outlines the pseudo-code of the HGSO

algorithm’s step-by-step structure.

3.4 Chaotic improved Henry gas solubility
optimization

3.4.1 Chaotic systems

Dynamic systems are mathematical functions that describe

the movement of a point in geometrical space over time. A

dynamic system has a state for a given time and can be

represented using a vector mathematical function with an

appropriate state-space model. The evolution rule allows us

to determine the next state of a dynamical system using the

current state and its behavior. Most dynamic systems are

deterministic, but some systems generate stochastic ran-

dom events or have an incomplete description. A dynamic

system can be completely modeled for predicting its future

behavior by an analytical solution that is time-dependent.

Dynamic systems can be further classified into two types:

linear dynamic systems and nonlinear dynamic systems. A

nonlinear dynamic system is a system whose output is not

proportional to the changes made in the input. Linear

dynamic systems are dynamic systems whose evaluation is

a linear function, i.e., changes in the output are linearly

proportional to the changes in the input. Chaotic systems

are a type of nonlinear dynamic system. Chaotic maps are a

field of study in mathematics where dynamic systems

produce a random state that appears irregular but is gov-

erned by the initial seed conditions.
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To analyze the chaotic behavior in dynamic systems,

range bifurcation diagrams are often plotted. These dia-

grams illustrate the relationship between chaotic states and

their corresponding control parameters. The Lyapunov

exponent is a parameter that plays a crucial role in deter-

mining whether a chaotic map is useful in pseudo-random

generators. This exponent is highly sensitive to slight

changes in the seed parameters, such as initial conditions

and control parameters. The idea of using chaotic systems

instead of random processes has been noticed in several

areas including computer science, economics, engineering,

etc. [19, 33, 38, 51, 62, 64] One of these areas is the

optimization theory. In random-based optimization algo-

rithms, the role of randomness can be initialized using

chaotic dynamics instead of random processes. Chaotic

maps can be classified into two categories: 1D [30, 75, 80]

and multi-dimension [13, 16, 21, 22, 67].

1D chaotic schemes have modest structure, and simple

dynamic characteristics, and are easy to implement. To

generate the Pseudo-random Sequence (PRS), only one

variable and a few parameters are used. On the other hand,

the 2D chaotic maps possess two variables and a greater

number of control parameters. In the present study, the

authors have used a 1D Sin map. The structure of the Sin

map is defined as [23]:

xiþ1 ¼ l
4

sin ðpxiÞ; ð23Þ

where l is the control parameter with a range of u 2 ½0; 4�,
As shown Fig. 3, one can see that only when the parameter

l� 3:57 can chaotic behavior occur in the Sine map. The

bifurcation diagram Fig. 2 depicts the possible state values

of the system under each parameter. Corresponding to a

value of the system parameter, if there are infinite state

values, the system with the parameter has chaotic behavior.

As remarked in [35, 49, 61, 65], replacing a random

variable with a chaotic sequence enhances the optimization

algorithm’s global convergence speed and

exploration/exploitation.

In the HSGO, the standard procedure Algorithm 1, used

for updating solutions, has at least two clusters and two

gases in each cluster, and all gases have the same search

space dimensions. As shown in Eq. 21, the balance

between the exploration and exploitation phases is con-

trolled by fine-tuning control parameters [27]:

1. the solubility of gas j in cluster i Si;j, which is based on

the time of iteration;

2. the ability c of gas j in cluster i to interact with the

gases in its cluster, which aims to transfers the search

individuals from global to local phase and vice versa;

and

3. the flag F that changes the direction of the search agent

and provides �ve diversity.

It can be observed that the system described by (11) is

considered as a nonlinear optimization problem with mixed

variables since p and f are continuous variables while d is

binary. Consequently, this problem is hard to be solved by

original HGSO algorithm (11). In this paper, the authors

proposed a modified HGSO algorithm to handle the system

(11). The steps of the proposed algorithm are described in

the following subsections.

Fig. 3 The Lyapunov exponent for the sin map

Fig. 2 The bifurcation diagram for the sin map

Fig. 4 Representation of proposed encoding schema and population

of agents
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3.4.2 Individual encoding

It should be noted that if a BU does not choose to join the

mining process (i.e., di ¼ 0), this BU does not require

sending its task to the MEC server or acquiring computing

resources for mining. In this situation, allocating resources

for these BUs is not needed. Thus, the generally utilized

encoding scheme in the original HGSO creates redundancy

in the search space, which can degrade the performance. A

new encoding schema is proposed to solve this problem.

In the proposed individual encoding 4, each individual

contains continuous variables representing the resource

allocations for each BU that joins mining. The length of

each individual, which represents participating BUs only,

is variable in size. Thus, the optimal solution is found in the

2D search space.

3.4.3 Agent structure

The proposed HGSO algorithms consist of different solu-

tions called Agents. Each agent contains a single individual

(i.e., single gas). Agents have different lengths depending

on how many BUs are chosen at random to take part. The

structure of the population of agents is presented in Fig. 4.

3.4.4 Initialization

In the initialization, the participating BUs are randomly

chosen for each agent with a different number of BUs.

Then, the resource allocation initial values of all BUs are

randomly generated. The Fitness function value for each

BU, total fitness, and degree of constraint violation are

evaluated as presented in Algorithm 2. Then, the best agent

is returned for further comparison. The process of the ini-

tialization phase is described in Algorithm 2.

3.4.5 Update p and f

While searching for the best agent, the position (i.e., fi and

pi) in iteration t þ 1 of the ith agent is updated using Eq. 24

as follows:

x
ðtþ1Þ
i;j ¼ F � x

ðtÞ
i;j � ðb1 þ b2 � sinðp� x

ðtÞ
i;j ÞÞ

þ F � r2 � a� ðSðtÞi;j � xi;j � 1Þ;
ð24Þ

where the term ðb1 þ b2 � sinðp� x
ðtÞ
i;j ÞÞ provides the

balance between exploration and exploitation by generat-

ing new positions due to its chaotic nature. b1 and b2

control the randomly generated position range.

3.4.6 Update mining decision d

For the mining decision optimization, we need to select and

update BUs to be involved in the mining process. The

following two steps are performed to optimize the mining

decision:

1-Generate new gas agents In this step, all agents are

sorted according to fitness, and the best agent is selected.

Then, using the predetermined selection probability Psr, a

number of the worst agents are chosen to be replaced by

new agents with the same number of BUs as the best agent.

The details of this process are described in Algorithm 3.

2-Apply mutation To make the agents more diverse and

give them a way to get out of a local optimum, a small

number of BUs need to be replaced using a mutation

operation with a probability of Pmr that has already been

set. The steps for applying mutation are listed in Algorithm

4.
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4 Experiments and discussion

In this section, the results from different computational

experiments with the proposed CHSGSO algorithm are

compared with those obtained from other competing meta-

heuristic algorithms in the literature. This section describes

the parameter settings and performance measures adopted

to validate the superiority of the proposed algorithm.

4.1 Algorithms for comparison

The performance of the proposed GHSGSO is compared

with the following algorithms.

• ACOMV [41]: ACOMV is a continuous optimization

algorithm that has a continuous relaxation and a

categorical optimization approach. Together, these

approaches enable ACOMV to address resource alloca-

tion and mining decisions.

• DE [18]: The DE algorithm is one of the most robust

evolutionary algorithm versions because of its fast

convergence, simplicity, ease of use, and the same

values of its parameters (population size, crossover rate,

and scaling factor) can be used to tackle different

optimization problems. DE was originally introduced to

address continuous optimization problems. Modifica-

tions are needed to address the problems of both

resource allocation and mining decisions.

Integer constraints in mining decisions are handled

by changing a continuous value to its nearest integer.

• DEMiDRA [71]: Every member shows the resource

allocation of a joint BU and the resource allocation of

all joint BUs generates the entire population. Then, the

DE algorithm is used for resource allocation optimiza-

tion. To optimize the mining decision, they have to

choose BUs to join in mining and update the joining

BU’s number. Since the joining BU’s number equals

the population size, they modified the update of the

joint BU’s number into the organization of the popu-

lation size and generated an adaptive approach. Addi-

tionally, a tabu approach is presented to avoid

unfavorable BUs joining mining.

• BOToP [43]: Firstly, BOToP obtains the optimum

solution of the mixed-variable optimization problem by

solving a constrained modified bi-objective optimiza-

tion problem. Second, DE is utilized to solve the

original optimization problem with mixed variables to

find the best solution.

4.2 Environment and parameter settings

In this paper, the proposed CHSGSO method was com-

pared to four promising meta-heuristic methods. These

methods are ACOMV, DE, DEMiDRA, and BOToP. For

every method, 30 independent runs were executed. Then,

the mean values of profit were recorded over the 30 runs.

Table 1 Parameters setup for all

methods
Algorithm Parameter

All methods Number of runs for each method ¼ 30

Maximum number of fitness evaluations FEs ¼ 10000

ACOMV Population size ¼ 60

The influence of the best quality solution ¼ 0:05099

The search width ¼ 0:6795

DE Population size ¼ 100

Scaling factor ¼ 0:9

Crossover control parameter¼ 0:5

DEMiDRA Population size =the number of joint BUs

Scaling factor ¼ 0:9

Crossover control parameter ¼ 0:5

BOToP Population size ¼ 30

Scaling factor is selected from parameter pool: 0.6, 0.8, 1.0

Crossover control parameter is selected from parameter pool: 0.1, 0.2, 1.0

CHSGSO Population size =the number of joint BUs

Agent selection probability ¼ 0:015 to 0.23

Mutation probability ¼ 0:018 to 0.033

a ¼ b ¼ 1:0 and K ¼ 1:0

l1 ¼ 5E�02, l2 ¼ 1Eþ02, and l3 ¼ 1E�02
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For a fair comparison, the maximum number of fitness

evaluations was set at 10,000 for all methods. The common

settings of all methods, along with the parameter settings

for each method, are explained in Table 1.

The common setups of the considered BN are presented

as follows. All BUs are allocated randomly in a square

space of 1000 m � 1000 m and the MEC server is placed in

the middle of this space. Ten examples with multiple

numbers of BUs ði:e:; n ¼ 50; 100; . . .; 500Þ are studied to

examine the proposed CHSGSO performance. Other setups

are shown in Table 2.

To execute all the experiments in this paper, MATLAB

was utilized on a computing environment with a Dual

Intel� Xeon� Gold 5115 2.4 GHz CPU and 128 GB of

RAM on the operating system Microsoft Windows Server

2019.

4.3 The effect of group size (GS)

By implementing different experiments, the effect of the

group size GS on the proposed CHSGSO algorithm per-

formance is verified. This is achieved by establishing the

value of GS ¼ f5; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19;

20; 25; 30g. Box plots of average accumulative profits for

CHSGSO with different instances are presented in Fig. 5.

The Friedman test was carried out to rank all the variants,

with the results reported in Table 3 for the mean results. It

can be seen from Table 3 that the variant with GS ¼ 14 is

the best-obtained result. Based on the Friedman test, the

variant with GS ¼ 14 is preferred and it will be used

throughout the paper.

4.4 Comparison with four counterparts

The results obtained from CHSGSO and the competing

algorithms over 30 independent runs are presented in

Table 4, where ‘‘AVG’’ and ‘‘STD’’ denote the mean and

standard deviation of the total earnings of all BUs.

Sequentially, the ratios within the square brackets denote

the improved rate of CHSGSO versus the rival algorithms.

Wilcoxon’s rank-sum test [20] is used for assessing the

significance of the proposed CHSGSO against counter-

parts. Wilcoxon’s rank-sum statistical analysis is con-

ducted at a 0.05 significance level. Table 4, ‘‘ 	00, ‘‘ #00, and

‘‘ "00 show that CHSGSO performs similarly, worse than,

and better than every counterpart, sequentially.

From Table 4, it is observed that the proposed CHSGSO

achieves the best mean cumulative profits out of its four

counterparts in each case. It should be noted that at

n� 200, the mean cumulative gain achieved by CHAN-

GES is much higher than that derived from three of its

counterparts (ACOMV, DE, and BOToP) and slightly

higher than that of the DEMiDRA algorithm. In terms of

improving performance, CHICAGO outperforms its four

counterparts in each case. Specifically, against DE, CHI-

CAGO achieves greater than 100% performance enhance-

ment in every case unless at n ¼ 50. At n� 200, the

enhancement rate of CHSGSO exceeds 200%. Against

BOToP, CHICAGO achieves greater than 100% perfor-

mance enhancement in every case unless at n ¼ 50. At

n� 250, the enhancement rate of CHSGSO exceeds 200%.

Against ACOMV, when n� 200, CHSGSO obtains an

improvement rate greater than 115%. In the end, CHSGSO

always gets a slightly better rate than the DEMiDRA

algorithm. As stated in Wilcoxon’s rank-sum statistical

analysis, CHSGSO is statistically more reliable than its

four counterparts in each case.

Figure 6 presents the growth of the average accumula-

tive gains derived from ACOMV, DE, DEMiDRA, BOToP

and the proposed CHSGSO when n = 50, 100, 150, 200,

250, 300, 350, 400, 450, and 500. As shown in Fig. 6,

CHSGSO achieves better average accumulative gains than

all of its counterparts. Specifically, against ACOMV, DE,

and BOToP, CHICAGO achieves higher average accu-

mulative gains in all instances. Against DEMiDRA, CHI-

CAGO achieves slightly higher average accumulative

gains in all cases unless at n ¼ 150 where the average

cumulative gains of the algorithms are equal.

Table 2 The considered BN

common settings
Parameter Value

r2 174 dBm/Hz

X 1:8eþ5 Cycles/bit

c2 10 Token/G Cycles

a 0.005 Token/bit

fi [0.1, 2] G Cycles/s

k 1/600

z 1:00e�4

B 10 MHz

Ti;max 4 s

c1 20 Token/J

E0 70 J

k1 1e�27

c3 3 Token/J

Di [1, 2] K bit

f total 800 G Cycles/s

w 2

pi [0.01, 1] W

k2 1
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Fig. 5 Group size effect for a 50; b 100; c 150; d 200; e 250; f 300; g 350; h 400; i 450; and j 500 BUs
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4.5 Insights and real-world applications
for proposed approach

One of the critical components of blockchain technology is

the verification of transactions or blocks in and IoT and

blockchain networks. This process demands an important

amount of energy, making it a resource-intensive opera-

tion. Consequently, there is a continuous requirement for

the optimization of gas usage in those networks. The gas

optimization algorithm that has proven to be effective is

the Improved Henry Gas Optimization method, which

depends on the Henry Gas Law that uses the solubility of a

gas in a liquid as directly proportional to the partial pres-

sure of the gas, given a constant temperature. The proposed

approach by predicting the gas consumption of the network

Table 3 Average rankings of

the variants according to

Friedman test

Variant Ranking

GS ¼ 05 10.2

GS ¼ 10 7.3

GS ¼ 11 6.7

GS ¼ 12 6.8

GS ¼ 13 8.7

GS ¼ 14 5.7

GS ¼ 15 7.2

GS ¼ 16 5.9

GS ¼ 17 7.8

GS ¼ 18 6.9

GS ¼ 19 8

GS ¼ 20 7.3

GS ¼ 25 7

GS ¼ 30 9.5

Table 4 Comparisons of

CHSGSO against a few

promising algorithms

n ACOMV DE DEMiDRA BOToP CHSGSO

AVG ± AVG ± AVG ± AVG ± AVG ±

STD STD STD STD STD

50 1.87e?3 ± 1.42e?3 ± 2.27e?3 ± 1.61e?3 ± 2.56e?03 ±

1.33e?1 3.41e?1 2.27e?2 7.18e?1 1.45e?00

½36:90%� " ½80:28%� " ½12:78%� " ½59:00%� "
100 2.86e?3 ± 2.27e?3 ± 4.74e?3 ± 2.50e?3 ± 5.13e?03 ±

1.97e?1 4.78e?1 3.60e?2 8.14e?1 1.36e?02

½79:37%� " ½125:99%� " ½8:22%� " ½100:05%� "
150 3.81e?3 ± 2.91e?3 ± 7.50e?3 ± 3.12e?3 ± 7.50e?03 ±

1.27e?2 5.69e?1 1.25e?1 1.14e?2 1.60e?01

½96:85%� " ½157:73%� " ½0:00%� 	 ½140:38%� "
200 5.11e?3 ± 3.59e?3 ± 1.00e?4 ± 3.78e?3 ± 1.11e?04 ±

2.57e?2 8.47e?1 1.86e?1 1.70e?2 4.12e?01

½117:22%� " ½209:19%� " ½11:00%� " ½193:65%� "
250 6.23e?3 ± 4.24e?3 ± 1.25e?4 ± 4.35e?3 ± 1.36e?04 ±

2.67e?2 8.73e?1 2.56e?2 1.27e?2 4.18e?01

½118:30%� " ½220:08%� " ½8:80%� " ½212:64%� "
300 6.81e?3 ± 4.54e?3 ± 1.48e?4 ± 4.60e?3 ± 1.51e?04 ±

2.55e?2 7.93e?2 4.18e?1 1.57e?2 1.01e?03

½121:73%� " ½232:60%� " ½2:03%� " ½228:26%� "
350 7.68e?3 ± 5.04e?3 ± 1.72e?4 ± 5.23e?3 ± 1.76e?04 ±

3.38e?2 1.28e?2 5.82e?1 1.44e?2 3.02e?02

½129:17%� " ½249:21%� " ½2:33%� " ½236:52%� "
400 8.12e?3 ± 5.30e?3 ± 1.95e?4 ± 5.67e?3 ± 1.99e?04 ±

3.09e?2 1.19e?2 1.03e?2 2.50e?2 1.34e?03

½145:07%� " ½275:47%� " ½2:05%� " ½250:97%� "
450 9.08e?3 ± 5.82e?3 ± 1.99e?4 ± 6.09e?3 ± 2.18e?04 ±

4.64e?2 1.35e?2 2.02e?2 2.37e?2 9.07e?02

½140:09%� " ½274:57%� " ½9:55%� " ½257:96%� "
500 9.38e?3 ± 5.92e?3 ± 1.99e?4 ± 6.60e?3 ± 2.10e?04 ±

4.80e?2 1.98e?2 1.69e?2 2.96e?2 1.46e?03

½123:88%� " ½254:73%� " ½5:53%� " ½218:18%� "
" = # = 	 10/0/0 10/0/0 10/0/0 9/0/1
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Fig. 6 Evolution of the mean total gain obtained by the proposed CHSGSO and other algorithms for a 50; b 100; c 150; d 200; e 250; f 300;

g 350; h 400; i 450; and j 500 BUs
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nodes, allowing more accurate estimations of gas fees

required for transactions in the blockchain network.

The approach has various real-world applications, par-

ticularly in the financial sector, where blockchain networks

are widely utilized. For instance, in a peer-to-peer (P2P)

lending platform, users lend and borrow money from each

other. The blockchain network that supports the platform

should operate efficiently with minimal gas usage to assert

that the platform’s users benefit from the P2P lending

platform. Moreover, the proposed approach in smart con-

tract deployment allows developers to develop and deploy

more efficient smart contracts that consume fewer resour-

ces while delivering optimal performance. For example,

smart contracts deployed in the healthcare sector can

record patient information and generate automated remin-

ders, among other things, without consuming more gas than

necessary.

Furthermore, the proposed algorithm is crucial for

Proof-of-Stake (PoS) blockchain networks, where stake-

holders who hold a significant number of tokens are

responsible for verifying transactions instead of miners.

Since PoS models do not require high computational

power, the Improved Henry Gas Optimization method can

significantly reduce gas usage for PoS-based blockchain

networks. In conclusion, the proposed approach has proven

to be an effective technique in reducing the gas fees

required for transactions in blockchain networks. The use

of this technique could significantly reduce the energy

consumption of blockchain transactions, making block-

chain networks more sustainable and environmentally

friendly. The implementation of this method also has

numerous real-world applications, particularly in finance,

healthcare, energy, cybersecurity and IoT systems, where

blockchain networks are widely employed.

5 Conclusions and future directions

In this study, an improved HGSO approach (termed

CHSGSO) is presented to jointly improve the resource

allocation and mining decisions for MEC-enabled wireless

BNs. First, the resource allocation to only participating

BUs is encoded, as the BU who decides to participate is

encoded as an individual. An adaptive strategy is designed

to tune each individual size. Following that a chaotic map

was integrated into the original HGSO to improve the

convergence rate. Finally, CHSGSO was implemented on a

group of instances with various scales and compared to

ACO, DE, DEMiDRA, and BOToP. The empirical out-

comes verified the efficiency and significance of the pro-

posed CHSGSO. It is noteworthy that this study considers

that IoT devices are homogeneous in the utilized BNs.

In future studies, the heterogeneous BNs will be

examined. Also, we will investigate the proposed algo-

rithm’s performance in solving other real-optimization

problems and optimization problems with more than

objective functions.
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