11,228 research outputs found

    An energy efficient cluster-heads re-usability mechanism for wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are formed using a cluster of sensor nodes (SNs), deployed randomly to perform sensing operations in an area under observation. Due to the unavailability of an external power source, the energy efficiency considered as one of the critical issues in WSNs. Selection of a sensor node (SN) from a wireless sensor network (WSN) cluster to serve as an aggregator or cluster head (CH), considered as an efficient method to increase the lifetime of wireless sensor network (WSN). In this paper, we have proposed an energy efficient CH selection scheme for WSN, to enhance the lifetime and average residual energy of a single WSN cluster. The proposed strategy nominates a group SNs as CHs, based on their channel condition with the base station (BS) and their residual energy. The proposed algorithm is helpful in solving the problem of unbalanced energy consumption in WSNs. Furthermore, the mechanism of using mobile sink during the hand-off stage helps to overcome the delay in data transmission. Moreover, the incorporation of energy harvesting significantly increases the lifetime of WSN. In comparison to a state-of-art technique available in the literature, our scheme shows a 33% increase in lifetime and presents a steady decrease in residual energy for the same rounds of data transmission

    EERP: Intelligent Cluster based Energy Enhanced Routing Protocol Design over Wireless Sensor Network Environment

    Get PDF
    Wireless Sensor Network (WSN)) and the associated technologies are growing day-by-day in a drastic level. The Wireless Sensor Network medium has a distributed communication logic, in which it is interconnected with set of wireless sensor nodes and a unique basestation. A basestation stays in a constant place to provide a support to the transceivers for achieving a successful communication between source and destination entities. This kind of wireless communication mediums highly depends on the basestation to acquire the transaction needs as well as the basestation acts as a gateway between transmitter and receiver units. The cluster based wireless communication models are introduced to provide a flaw free communication between entities on WSN region with handling of wireless sensor nodes in the form of cluster. In literature several cluster enabled wireless communication models are designed, but all are strucked up with improper node placements and associated energy level mismatching. These issues raise cost efficient problems in Wireless Sensor Network environment. SO, that a new energy efficient routing protocol with an effective communication strategy is required to solve such issues in past. This paper introduced a new routing protocol with high efficient data transmission norms, in which it is called as Energy Enhanced Routing Protocol (eeRP). The proposed approach of eeRP associates the powerful clustering logic in this scheme to provide a fault free communication model to the WSN environment. By using this approach the standardized routing model is constructed with respect to the sensor nodes and basestation. The most important part of cluster based wireless communication model is the handling of Cluster-Head (CH), in which it needs to be elected based on certain communication principles such as the estimation of distance, position of other nodes in the cluster region, basestation positioning and the node capability. These constraints are essential to analyze the Cluster-Head to improve the pathway estimation process. The proposed approach of eeRP utilizes the powerful CH election algorithm called Firefly to provide an intellectual cluster head election process. The performance level of the proposed approach eeRP is estimated based on the efficiency of throughput, path selection efficiency, reduced energy consumption ratio and the network lifetime improvement. The experimental results assure these metrics in resulting section with graphical proofs

    Prolonging Network Lifetime of Clustered Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networking is envisioned as an economically viable paradigm and a promising technology because of its ability to provide a variety of services, such as intrusion detection, weather monitoring, security, tactical surveillance, and disaster management. The services provided by wireless senor networks (WSNs) are based on collaboration among small energy-constrained sensor nodes. The large deployment of WSNs and the need for energy efficient strategy necessitate efficient organization of the network topology for the purpose of balancing the load and prolonging the network lifetime. Clustering has been proven to provide the required scalability and prolong the network lifetime. Due to the bottle neck phenomena in WSNs, a sensor network loses its connectivity with the base station and the remaining energy resources of the functioning nodes are wasted. This thesis highlights some of the research done to prolong the network lifetime of wireless sensor networks and proposes a solution to overcome the bottle neck phenomena in cluster-based sensor networks. Transmission tuning algorithm for a cluster-based WSNs is proposed based on our modeling of the extra burden of the sensor nodes that have direct communication with the base station. Under this solution, a wireless sensor network continues to operate with minimum live nodes, hence increase the longevity of the system. An information theoretic metric is proposed as a cluster head selection criteria for breaking ties among competing clusters, hence as means to decrease node reaffiliation and hence increasing the stability of the clusters, and prolonging the network lifetime. This proposed metric attempts to predict undesired mobility caused by erosion

    CH Selection via Adaptive Threshold Design Aligned on Network Energy

    Full text link
    Energy consumption in Wireless Sensor Networks (WSN) involving multiple sensor nodes is a crucial parameter in many applications like smart healthcare systems, home automation, environmental monitoring, and industrial use. Hence, an energy-efficient cluster-head (CH) selection strategy is imperative in a WSN to improve network performance. So to balance the harsh conditions in the network with fast changes in the energy dynamics, a novel energy-efficient adaptive fuzzy-based CH selection approach is projected. Extensive simulations exploited various real-time scenarios, such as varying the optimal position of the location of the base station and network energy. Additionally, the results showed an improved performance in the throughput (46%) and energy consumption (66%), which demonstrated the robustness and efficacy of the proposed model for the future designs of WSN applications

    Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision

    Full text link
    [EN] Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.This work has also been partially supported by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Qureshi, KN.; Bashir, MU.; Lloret, J.; León Fernández, A. (2020). Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision. Journal of Sensors. 2020:1-19. https://doi.org/10.1155/2020/9040395S1192020Sneha, K., Kamath, R., Balachandra, M., & Prabhu, S. (2019). New Gossiping Protocol for Routing Data in Sensor Networks for Precision Agriculture. Soft Computing and Signal Processing, 139-152. doi:10.1007/978-981-13-3393-4_15Qureshi, K. N., Abdullah, A. H., Bashir, F., Iqbal, S., & Awan, K. M. (2018). Cluster-based data dissemination, cluster head formation under sparse, and dense traffic conditions for vehicular ad hoc networks. International Journal of Communication Systems, 31(8), e3533. doi:10.1002/dac.3533Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104-122. doi:10.1016/j.comnet.2014.03.027Feng, X., Zhang, J., Ren, C., & Guan, T. (2018). An Unequal Clustering Algorithm Concerned With Time-Delay for Internet of Things. IEEE Access, 6, 33895-33909. doi:10.1109/access.2018.2847036Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019). Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. doi:10.1109/access.2019.2902371Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Qureshi, K. N., Din, S., Jeon, G., & Piccialli, F. (2020). Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Computer Communications, 149, 382-392. doi:10.1016/j.comcom.2019.10.030Kumar, S. A., & Ilango, P. (2017). The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wireless Personal Communications, 98(1), 685-698. doi:10.1007/s11277-017-4890-zAnisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2014). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216-238. doi:10.1007/s11119-014-9371-8Long, D. S., & McCallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492-504. doi:10.1007/s11119-015-9391-zFu, X., Fortino, G., Li, W., Pace, P., & Yang, Y. (2019). WSNs-assisted opportunistic network for low-latency message forwarding in sparse settings. Future Generation Computer Systems, 91, 223-237. doi:10.1016/j.future.2018.08.031Mehmood, A., Khan, S., Shams, B., & Lloret, J. (2013). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972-989. doi:10.1002/dac.2720Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 15(2), 551-591. doi:10.1109/surv.2012.062612.00084De Farias, C. M., Pirmez, L., Fortino, G., & Guerrieri, A. (2019). A multi-sensor data fusion technique using data correlations among multiple applications. Future Generation Computer Systems, 92, 109-118. doi:10.1016/j.future.2018.09.034Rao, P. C. S., Jana, P. K., & Banka, H. (2016). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks, 23(7), 2005-2020. doi:10.1007/s11276-016-1270-7Fu, X., Fortino, G., Pace, P., Aloi, G., & Li, W. (2020). Environment-fusion multipath routing protocol for wireless sensor networks. Information Fusion, 53, 4-19. doi:10.1016/j.inffus.2019.06.001Liu, X. (2015). Atypical Hierarchical Routing Protocols for Wireless Sensor Networks: A Review. IEEE Sensors Journal, 15(10), 5372-5383. doi:10.1109/jsen.2015.2445796Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., & Niaz, I. A. (2017). A Balanced Energy-Consuming and Hole-Alleviating Algorithm for Wireless Sensor Networks. IEEE Access, 5, 6134-6150. doi:10.1109/access.2017.2676004Gupta, G. P., Misra, M., & Garg, K. (2014). Energy and trust aware mobile agent migration protocol for data aggregation in wireless sensor networks. Journal of Network and Computer Applications, 41, 300-311. doi:10.1016/j.jnca.2014.01.003Safa, H., Karam, M., & Moussa, B. (2014). PHAODV: Power aware heterogeneous routing protocol for MANETs. Journal of Network and Computer Applications, 46, 60-71. doi:10.1016/j.jnca.2014.07.035Liu, X. (2015). An Optimal-Distance-Based Transmission Strategy for Lifetime Maximization of Wireless Sensor Networks. IEEE Sensors Journal, 15(6), 3484-3491. doi:10.1109/jsen.2014.2372340Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy Efficient Direction-Based PDORP Routing Protocol for WSN. IEEE Access, 4, 3182-3194. doi:10.1109/access.2016.2576475Abo-Zahhad, M., Ahmed, S. M., Sabor, N., & Sasaki, S. (2015). Mobile Sink-Based Adaptive Immune Energy-Efficient Clustering Protocol for Improving the Lifetime and Stability Period of Wireless Sensor Networks. IEEE Sensors Journal, 15(8), 4576-4586. doi:10.1109/jsen.2015.2424296Huynh, T.-T., Dinh-Duc, A.-V., & Tran, C.-H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580-588. doi:10.1109/jcn.2016.000081Shen, J., Wang, A., Wang, C., Hung, P. C. K., & Lai, C.-F. (2017). An Efficient Centroid-Based Routing Protocol for Energy Management in WSN-Assisted IoT. IEEE Access, 5, 18469-18479. doi:10.1109/access.2017.2749606Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wireless Communications and Mobile Computing, 2019, 1-20. doi:10.1155/2019/6470359Sajwan, M., Gosain, D., & Sharma, A. K. (2018). CAMP: cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks, 25(5), 2603-2620. doi:10.1007/s11276-018-1689-0Varga, A. (2010). OMNeT++. Modeling and Tools for Network Simulation, 35-59. doi:10.1007/978-3-642-12331-3_3Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A Matlab Toolbox for Music Information Retrieval. Studies in Classification, Data Analysis, and Knowledge Organization, 261-268. doi:10.1007/978-3-540-78246-9_31Mathur, P., Nielsen, R. H., Prasad, N. R., & Prasad, R. (2016). Data collection using miniature aerial vehicles in wireless sensor networks. IET Wireless Sensor Systems, 6(1), 17-25. doi:10.1049/iet-wss.2014.0120Zou, T., Lin, S., Feng, Q., & Chen, Y. (2016). Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks. Sensors, 16(1), 53. doi:10.3390/s16010053Song, Y., Ma, J., Zhang, X., & Feng, Y. (2012). Design of Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System. Journal of Networks, 7(5). doi:10.4304/jnw.7.5.838-844Nikolidakis, S., Kandris, D., Vergados, D., & Douligeris, C. (2013). Energy Efficient Routing in Wireless Sensor Networks Through Balanced Clustering. Algorithms, 6(1), 29-42. doi:10.3390/a6010029Ndzi, D. L., Harun, A., Ramli, F. M., Kamarudin, M. L., Zakaria, A., Shakaff, A. Y. M., … Farook, R. S. (2014). Wireless sensor network coverage measurement and planning in mixed crop farming. Computers and Electronics in Agriculture, 105, 83-94. doi:10.1016/j.compag.2014.04.01

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5
    • …
    corecore