215 research outputs found

    Roaming Real-Time Applications - Mobility Services in IPv6 Networks

    Full text link
    Emerging mobility standards within the next generation Internet Protocol, IPv6, promise to continuously operate devices roaming between IP networks. Associated with the paradigm of ubiquitous computing and communication, network technology is on the spot to deliver voice and videoconferencing as a standard internet solution. However, current roaming procedures are too slow, to remain seamless for real-time applications. Multicast mobility still waits for a convincing design. This paper investigates the temporal behaviour of mobile IPv6 with dedicated focus on topological impacts. Extending the hierarchical mobile IPv6 approach we suggest protocol improvements for a continuous handover, which may serve bidirectional multicast communication, as well. Along this line a multicast mobility concept is introduced as a service for clients and sources, as they are of dedicated importance in multipoint conferencing applications. The mechanisms introduced do not rely on assumptions of any specific multicast routing protocol in use.Comment: 15 pages, 5 figure

    Improved Handover Routing Scheme In Hierarchical Mobile Ipv6 Networks

    Get PDF
    Mobile Internet Protocol version 6 (MIPv6) has been proposed to solve the problem of mobility in the new era of Internet. MIPv6 is a proposal for handling routing of IPv6 packets to mobile nodes that have moved away from their home network. In the near future, with the simultaneous growth of the mobile user population and the Internet, users will move more frequently between networks as they stay connected to the Internet and access its resources. Thus, as mobility increases across networks, handovers will significantly give impact on the quality of the connection and on user application . Previous research has shown that MIPv6 only defines a means of managing global mobility (macro-mobility) but does not address local mobility (micro-mobility) separately. Instead, it uses the same mechanism in both cases. This involves long handover delay and a lot of signaling. The extension of protocol of basic MIPv6 has been investigated. Internet Engineering Task Force (IETF) introduced Hierarchical Mobile IPv6 (HMIPv6) . HMIPv6 is the proposed enhancement of MIPv6 that is designed to reduce the amount of signaling required and to improve handover speed for mobile connections. New node in HMIPv6 called the mobility anchor point (MAP) serves as a local entity to aid in mobile handover. By separating global and local mobility, HMIPv6 makes it possible to deal with either situation of macro mobility and micro mobility appropriately. The MAP helps to decrease the delay and packet loss during handover. HMIPv6's handover operation has been investigated. We have analyzed the handover routing scheme on Internet Protocol (IP) layer. The operation of this handover starts from the mobile node (MN) sends binding update (BU) to its new network until MN receives packet from the correspondent node (CN) or home agent (HA) through its new network. The adoption of multicast scheme and the avoidance of redundancy in sending binding update scheme have been proposed and have been implemented to HMIPv6. Proposed multicast scheme may allow MN to receive packets during handover operation. The avoidance of redundancy in sending B U scheme may reduce the amount of signaling for the handover thus reduce the handover delay. We have tested the performance of HMIPv6 with the proposed schemes based on simulation study. The results show that our proposed schemes reduce the handover delay and the amount of packet loss in HMIPv6

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    Macro/micro-mobility fast handover in hierarchical mobile IPv6

    Get PDF
    Mobile Internet Protocol version 6 (MIPv6) has been proposed to solve the problem of mobility in the new era of Internet by handling routing of IPv6 packets to mobile nodes that have moved away from their home network. Users will move frequently between networks, as they stay connected to the Internet. Thus, as mobility increases across networks, handovers will significantly impact the quality of the connection and user application. However, MIPv6 only defines means of managing global (macro)-mobility but does not address micro-mobility separately. Instead, it uses the same mechanism in both cases. This involves long handover delay and signaling load. The Hierarchical Mobile IPv6 (HMIPv6) protocol has been proposed as an extension of basic MIPv6 to solve this problem by splitting the handover management into macro-mobility and micro-mobility schemes. HMIPv6 introduced a new protocol agent called Mobility Anchor Point (MAP) to manage mobility and serve as a local entity to aid in mobile handover. The handover (or registration) operation is the operation when MN registers its presence to its Home Agent (HA) and Correspondent Node (CN). This paper proposes a mechanism to perform fast handover in HMIPv6 by adopting the multicast technique to the MAP for both macromobility and micro-mobility management. Our proposal is designed to minimize service disruption that occurs during the registration operation. We simulate the performance using network simulator (NS-2) and we present and analyze the performance testing for our proposal by comparing it with the basic hierarchical mobile IPv6. The results show that our scheme allows the MN to receive packets faster than the basic HMIPv6

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Low latency IP mobility management: Protocol and analysis

    Get PDF
    Mobile IP is one of the dominating protocols that enable a mobile node to remain reachable while moving around in the Internet. However, it suffers from long handoff latency and route inefficiency. In this article, we present a novel distributed mobility management architecture, ADA (Asymmetric Double-Agents), which introduces double mobility agents to serve one end-to-end communication. One mobility agent is located close to the MN and the other close to the CN. ADA can achieve both low handoff latency and low transmission latency, which is crucial for improvement of user perceived QoS. It also provides an easy-to-use mechanism for MNs to manage and control each traffic session with a different policy and provide specific QoS support. We apply ADA to MIPv6 communications and present a detailed protocol design. Subsequently, we propose an analytical framework for systematic and thorough performance evaluation of mobile IP-based mobility management protocols. Equipped with this model, we analyze the handoff latency, single interaction delay and total time cost under the bidirectional tunneling mode and the route optimization mode for MIPv6, HMIPv6, CNLP, and ADA. Through both quantitative analysis and NS2-based simulations, we show that ADA significantly outperforms the existing mobility management protocols. © 2011 Liu et al; licensee Springer
    corecore