199 research outputs found

    Stuttering equivalence is too slow!

    Get PDF
    Groote and Wijs recently described an algorithm for deciding stuttering equivalence and branching bisimulation equivalence, acclaimed to run in O(mlogā”n)\mathcal{O}(m \log n) time. Unfortunately, the algorithm does not always meet the acclaimed running time. In this paper, we present two counterexamples where the algorithms uses Ī©(md)\Omega(md) time. A third example shows that the correction is not trivial. In order to analyse the problem we present pseudocode of the algorithm, and indicate the time that can be spent on each part of the algorithm in order to meet the desired bound. We also propose fixes to the algorithm such that it indeed runs in O(mlogā”n)\mathcal{O}(m \log n) time.Comment: 11 page

    Generalized Strong Preservation by Abstract Interpretation

    Full text link
    Standard abstract model checking relies on abstract Kripke structures which approximate concrete models by gluing together indistinguishable states, namely by a partition of the concrete state space. Strong preservation for a specification language L encodes the equivalence of concrete and abstract model checking of formulas in L. We show how abstract interpretation can be used to design abstract models that are more general than abstract Kripke structures. Accordingly, strong preservation is generalized to abstract interpretation-based models and precisely related to the concept of completeness in abstract interpretation. The problem of minimally refining an abstract model in order to make it strongly preserving for some language L can be formulated as a minimal domain refinement in abstract interpretation in order to get completeness w.r.t. the logical/temporal operators of L. It turns out that this refined strongly preserving abstract model always exists and can be characterized as a greatest fixed point. As a consequence, some well-known behavioural equivalences, like bisimulation, simulation and stuttering, and their corresponding partition refinement algorithms can be elegantly characterized in abstract interpretation as completeness properties and refinements

    Folk Theorems on the Correspondence between State-Based and Event-Based Systems

    Full text link
    Kripke Structures and Labelled Transition Systems are the two most prominent semantic models used in concurrency theory. Both models are commonly believed to be equi-expressive. One can find many ad-hoc embeddings of one of these models into the other. We build upon the seminal work of De Nicola and Vaandrager that firmly established the correspondence between stuttering equivalence in Kripke Structures and divergence-sensitive branching bisimulation in Labelled Transition Systems. We show that their embeddings can also be used for a range of other equivalences of interest, such as strong bisimilarity, simulation equivalence, and trace equivalence. Furthermore, we extend the results by De Nicola and Vaandrager by showing that there are additional translations that allow one to use minimisation techniques in one semantic domain to obtain minimal representatives in the other semantic domain for these equivalences.Comment: Full version of SOFSEM 2011 pape

    Sigref ā€“ A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center ā€œAutomatic Verification and Analysis of Complex Systemsā€ (SFB/TR 14 AVACS). See www.avacs.org for more information

    An O(mlog n) algorithm for computing stuttering equivalence and branching bisimulation

    Get PDF
    We provide a new algorithm to determine stuttering equivalence with time complexity O(mlog n), where n is the number of states and mis the number of transitions of a Kripke structure. This algorithm can also be used to determine branching bisimulation in O(m(log |Act| + log n)) time, where Act is the set of actions in a labeled transition system. Theoretically, our algorithm substantially improves upon existing algorithms, which all have time complexity of the form O(mn) at best. Moreover, it has better or equal space complexity. Practical results confirm these findings: they show that our algorithm can outperform existing algorithms by several orders of magnitude, especially when the Kripke structures are large. The importance of our algorithm stretches far beyond stuttering equivalence and branching bisimulation. The known O(mn) algorithms were already far more efficient (both in space and time) than most other algorithms to determine behavioral equivalences (including weak bisimulation), and therefore they were often used as an essential preprocessing step. This new algorithm makes this use of stuttering equivalence and branching bisimulation even more attractive.</p

    Generalizing the Paige-Tarjan Algorithm by Abstract Interpretation

    Full text link
    The Paige and Tarjan algorithm (PT) for computing the coarsest refinement of a state partition which is a bisimulation on some Kripke structure is well known. It is also well known in model checking that bisimulation is equivalent to strong preservation of CTL, or, equivalently, of Hennessy-Milner logic. Drawing on these observations, we analyze the basic steps of the PT algorithm from an abstract interpretation perspective, which allows us to reason on strong preservation in the context of generic inductively defined (temporal) languages and of possibly non-partitioning abstract models specified by abstract interpretation. This leads us to design a generalized Paige-Tarjan algorithm, called GPT, for computing the minimal refinement of an abstract interpretation-based model that strongly preserves some given language. It turns out that PT is a straight instance of GPT on the domain of state partitions for the case of strong preservation of Hennessy-Milner logic. We provide a number of examples showing that GPT is of general use. We first show how a well-known efficient algorithm for computing stuttering equivalence can be viewed as a simple instance of GPT. We then instantiate GPT in order to design a new efficient algorithm for computing simulation equivalence that is competitive with the best available algorithms. Finally, we show how GPT allows to compute new strongly preserving abstract models by providing an efficient algorithm that computes the coarsest refinement of a given partition that strongly preserves the language generated by the reachability operator.Comment: Keywords: Abstract interpretation, abstract model checking, strong preservation, Paige-Tarjan algorithm, refinement algorith

    Next-preserving branching bisimulation

    Get PDF

    Three logics for branching bisimulation

    Get PDF
    • ā€¦
    corecore