
Three Logics for Branching Bisimulation*
EXTENDED ABSTRACT

Rocco De Nicola
IEI-CNR

Via S. Maria, 46 I-56126 Pisa
ITALY

DENICOLA@ICNUCEVM.CNUCE.CNR.IT

Abstract

Three temporal logics are introduced which induce on

labelled transition systems the same identifications as

branching bisimulation. The first is an extension of

Hennessy-Milner Logic with a kind of "until" operator.

The second is another extension of Hennessy-Milner Logic

which exploits the power of backward modalities. The

third is CTL * without the next-time operator interpreted

over all paths, not just over maximal ones. A relevant

side-effect of the last characterization is that it sets a bridge

between the state- and event-based approaches to the

semantics of concurrent systems.

1. Introduction

The operational semantics of concurrent systems has often

been described by means of labelled transition systems.

However, these descriptions are frequently too concrete and

do not always give the same account of systems which

exhibit the same observable behaviour. The addition of a

plausible notion of behavioural equivalence permits to

overcome these problems; see [DeN87] and [vG190] for

comparative presentations.

Together with the definition of these equivalences,

different attempts have been made towards defining new

The first author has been partially supported by Esprit Basic
Research Action Program, Project 3011 CEDISYS and by CNR
Progetto Finalizzato Sistemi lnformatici e Calcolo Parallelo,
project LAMBRUSCO. The research of the second author was
supported by RACE project 1040, SPECS. Part of the reasearch
was carried out during a visit of the second author to Pisa which
was supported by CEDISYS and LAMBRUSCO.

CH2897-7/90/0000/0118$01.00 © 1990 IEEE 1111

Frits Vaandrager
CWI

P.O. Box 4079, 1009 AB Amsterdam
THE NETHERLANDS

FRITSV@CWI.NL

logics which permit the specification of concurrent

systems. In particular, temporal logic has been seen as a

promising approach (see [REX89]). To date, there is no

general agreement on the type of temporal logic to be

used, and, since logics also naturally give rise to

equivalence classes consisting of all those systems which

satisfy the same formulae, often the logics proposed have

been compared with operational equivalences for a better

understanding and evaluation.

A well known result relating operational and logical

semantics is that reported in [HM85]. In that paper, a

modal logic, now known as Hennessy-Milner Logic

(HML), is defined which, when interpreted over (transition)

labelled transition systems with and without silent actions,

is proved to be in full agreement with strong and weak

observational equivalence, respectively. Other

correspondences have been established in [BCG88]; two

equivalences over Kripke frames (state-labelled transition

systems) are related to two variants of CTL * [EH86]. It is

first shown that a variant of strong observational

equivalence coincides with the equivalence induced by

CTL *; and then that CTL * without the next operator

(CTL * - X) is in full agreement with stuttering

equivalence, an equivalence based on the idea of merging

adjacent state with the same labelling.

Recently, a new notion of behavioural equivalence for

labelled transition systems, called branching bisimulation

(=b).has been proposed [GW89]. It aims at generalizing

strong observational equivalence to ignore silent actions

while preserving the branching structures of systems.

Indeed, "'b considers two systems to be equivalent only if

every computation, i.e. every sequence of (visible and

silent) actions and states, of one system has a correspo-

ndent in the other; corresponding computations have the

same sequence of visible actions and are such that all their

intennediate states have equivalent potentials. Branching

bisimulation is more restrictive than weak observational

equivalence but has a pleasant axiomatic characterization

which leads to a complete canonical tenn rewriting system

[DIN90] and does indeed preserve the branching structures

of systems.

In this paper, we study the logical characterization of

branching bisimulation, and propose three different logics

which serve our scope.

The first logic, Lu, is obtained from HML by

replacing the indexed operator <a> with a kind of "until"

operator. The new binary operator, written cp<a><p', tests

whether a system can reach, by exhibiting a visible action

a, a state which satisfies <p' while moving only through

states which satisfy cp. It is worth noting that the original

HML can be recovered from Lu by limiting the formulae

with the until operator to those in which cp is the constant

true. Clearly, if no silent action is present, Lu induces the

same identifications as HML.

The second logic, LBF. stems from the characterization

of =b as a back-and-forth bisimulation [DMV90]. It

extends HML with a reverse operator (see [Sti89]). This

operators permits inquiries to be made about the past of

computations. The philosophy behind this generalization

of HML is very similar to that of the logic called J r in

[HS85]; the relevant difference is that LBF permits

abstracting from silent actions, while Jr does not Indeed,

in the context of classic labelled transition systems, J r has

no more discriminating power than strong observational

equivalence; it was introduced by Hennessy and Stirling to

deal with non-continuous properties of generalized

transition systems with fully visible infinite computations

not obtainable as limits of finite ones. The characterization

of "'b in terms of a more abstract version of J r gives

strength to the claim that branching bisimulation is indeed

a natural generalization of strong bisimulation and that it

can be easily extended to cope with infinitary properties of

119

systems.

The third logic which we use to characterize =b is a

* variant of CTL *, more specifically it is CTL - X when

interpreted, as in the original proposal (see [ES89]), over

all runs of Kripke frames and not just over maximal runs.

Together with this correspondence, we provide a variant of

branching bisimulation which is in full agreements with

CTL * - X interpreted over maximal runs.The steps we

* perfonn to prove the correspondence between en. -X and

=b allow us to establish a connection between the state

and event-based approaches to the semantics of concurrent

systems. Indeed, we establish the relationships between

CTL * and =b by relating both to variants of the stuttering

equivalence (=g) of [BCG88].

We give a logical characterization of two variants of

stuttering equivalence. The first equivalence is weaker than

= s and is insensitive to divergence, we will call it

divergence blind stuttering equivalence (=dbs)· Its

definition is new; it is simpler than that of =s· and

naturally leads to a more efficient decision algorithm

[GV90]. The definition of second equivalence, called

divergence sensitive stuttering equivalence (=dss) relies on

the first and inherits its simplicity and the essence of its

decision procedure. We prove that ""dss induces the same

identification as CTL * -X interpreted over maximal runs

and thus, since a similar result for =s has been proved in

[BCG88], we have that==ctss coincides wiHi ""s• the original

stuttering equivalence. Finally, we define a divergence

sensitive version of branching bisimulation which

coincides with =s·

To relate branching bisimulation and stuttering

equivalence, we introduce a general transformation function

which, given a labelled transition system, yields an

enriched system in which both states and transitions are

labelled; the generated systems has the same structure as

that of the original one: the unfolding of the two systems

are isomorphic. We prove that divergence blind stuttering

equivalence and =b. and divergence sensitive branching

bisimulation and =s induce the same identifications on the

class of enriched systems.

Due to lack of space, all proofs will be omitted; they

will be reported in the full version of the paper.

2. Branching Bisimulation and
Hennessy-Milner Logics

In this section, we introduce two logical characterizations

of branching bisimulation based on Hennessy-Milner

Logic, HML for short. The first logic relies on a kind of

until operator which, given a sequence of transitions (run),

permits testing not only what is true after that run but also

what are the properties which hold along it. The second

logic introduces a backward modality which permits to test

both for properties which are verified after the execution of

a particular visible action and for properties which where

enjoyed before the execution of the action.

We provide now the necessary background definitions

about transition systems and their runs and introduce

branching bisimulation. The actual definition of the latter

is slightly simpler and apparently less restrictive than the

original one of [GW89]; however, it can be easily proved

that our equivalence does indeed coincides with the original

one.

Definition 2.1. (Labelled Transition Systems)

A labelled transition system (or LTS) is a triple

A= (S, A, ~) where:

• S is a set of states;

• A is a set of actions; the silent action 't is not in A;

• ~ ~ S x Au't x S is the transition relation; an element

(r,c:x,s)e ~is called a transition, and is usually written

as r-c:x~s.

We let A't = Au't; Ae =Aue, e ~ A't. Moreover, we

let r, s, ... range over S; a, b, ... over A; ex, ~ •... over A't

and k over Ae.
We will also make use of the mapping (.)0 : A't~Ae

which is such that c:x0 = ex if c:xe A and cx0 = £ otherwise. +

120

Definition 2.2. (Notation for strings)

Let K be any set K* stands for the set of finite sequences

of elements of K; KID denotes the set of infinite sequences

of elements of K; K00 stands for KIDuK*. Concatenation

of sequences is denoted by juxtaposition; A. denotes the

empty sequence; 11tl denotes the length of a sequence x. +

Definition 2.3. (Paths and runs over LTS' s)

Let.A= (S, A,~) be a LTS.

• A sequence (S(),CX(),Sl) .•• (sn-t.<Xn-1.sn) e ~ * is called

a path from so;
• A run from s e S is a pair (s,x), where 1t is a path from

s;

•We write run.A(s), or justrun(s). for the set of runs from

s;

• We write rufiA for the set of runs in A;

We let 1t, ... range over paths and p, cr, ... over runs. +

Definition 2.4. (Many step transitions and bounded

nondeterminism)

i) Let .A= {S, A.~) be a LTS. For a e A, we define on

S, r=a=>s if and only if there exists r' and s' in S such

that r=e=>r'-a~s'=e=>s; here =E=> is the transitive

and reflexive closure of-'t~.

ii) A has bounded nondeterminism iff for all se S and for

all ke Ae the set r I S=k~r is finite.

Definition 2.5. (Branching bisimulation)

Let A= (S, A,~) be aLTS.

•

•A relation R !:: S x Sis called a branching bisimulation

if it is symmetric and satisfies the following transfer

property: if rRs and r-CX~r·, then either CX='t and r'Rs,

or 3 si. s' such that S=E=>s1-<X--+s', r R s1 and r' R s'.

•Two states r, s are branching bisimilar, abbreviated

A: r ""b s or r ""b s, if there exists a branching

bisimulation relating r and s. +

The arbitrary union of branching bisimulation relations is

again a branching bisimulation; "'b is the maximal

branching bisimulation and is an equivalence relation.

We could have strengthened the above definition by

requiring all intennediate states in s==e=>s1 to be related

with r. The following lemma implies that this would have

lead to the same equivalence relation.

Lemma 2.6. (cf. Lemma 1.3 of [GW89])

Let :A = (S, A, ~) be a LTS. Let for some n > 0,

(so;t,sI) ... (sn-1.'t,sn) be a path with so ""b sn. then for

all 0 5 i $; n: SQ ""b Si. +

In the rest of the paper we will study the relationships

between branching bisimulation and the equivalence

induced by different logics. A general definition of the

equivalence -L on states of labelled transition systems

induced by L-fonnulas, and the associated satisfaction

relation I=, is given by:

r-L s if and only if (v'cp e L: r I= cp ~ r I= cp).

We will show that, for three significantly different logics,

-L coincides with branching bisimulation equivalence.

2. 1. Until operators

The first logic we will introduce is a variant of Hennessy

Milner Logic (HML) which rather than

the family of diamond operator <a> has an indexed until

operator. Below, we will introduce our new logic after

presenting syntax and semantics of the original HML.

Definition 2.7 (Hennessy Milner Logic)

Let A be a given alphabet of symbols. The syntax of HML

is defined by the following grammar where we let cp, cp', ...

range over HML formulas:

<p ::= T I --.cp I <pA<p' I <k> cp'. •

121

Definition 2.8. (The satisfaction relation for HML)

i) Let :A = (S, A, ~) be a LTS. The satisfaction relation

I= k: S x Lu is defined inductively by:

• s I= T always

• s I= --.cp iff s l:;t: cp

• s i= (j)A<p' iff s I= cp and s I= q>'

• s I= <k>q> iff 3 s' such that s=k=>s' and s' I= <p.

For labelled transition systems with bounded

nondeterminism, the above logic has been proved, in

[HM85], to be in full agreement with the equivalence

relation known as weak observational equivalence which is

based on a slightly less demanding bisimulation than that

of Definition 2.5, in the sense that it in order to consider

equivalent two states it only requires them to lead via the

same sequences of visible actions to equivalent states,

without considering the intermediate states along the path.

In order to take also the properties of these states into

account, within the new version of HML we replace the

diamond operator <k>cp with a binary operator, written

cp<k>cp', which is used to test, whether a system can reach

via k, a state which satisfies cp' while moving only

through states which satisfy cp.

Definition 2.9. (Hennessy Milner Logic with Until:

LU)

Let A be a given alphabet of symbols. The syntax of the

language Lu is defined by the following grammar where

we let cp, cp' ... range over Lu formulas:

<p ::= T I -,cp I cpAcp' I cp <k> cp'.

Definition 2.10. (The satisfaction relation and the

equivalence induced by Lu)

Let :A= (S, A, ~) be a LTS. The satisfaction relation

I= ~ S x Lu is defined inductively by:

• s I= T always

• s I= --.<p iff s l:;t: cp

• s I= <pA<p' iff s I= cp and s I= cp'

• s I= <p <k><p' iff either k=e and s I= <p', or there is a run

(s, (S(),'t,Sl) •.. (sn-i.t,sn) (sn,a.,sn+l)) such that

Vis; n: Si I= <p, k=a.0 and sn+t I= <p' with n ~ 0. +

It is possible to define, within Lu, other temporal

operators; we will write <k><p for T<k>cp and (k]<p for

-.<k>-,cp. It is worth noting that the original HML can be

recovered from Lu in the sense that the diamond operator

"<k>cp" of HML is rendered by "T<k><E>q>". In the latter

formula, we need to have <£> after <k> because our until

operators are interpreted only over runs which always end

with the action which indexes them; in HML this

restriction is not present and runs are considered which

may continue with sequences of invisible actions. Clearly,

if no silent action is present, Lu and HML induce the

same identifications on LTS's.

We give now two pairs of systems and two formulae

which show the additional power of Lu when compared

with the original Hennessy-Milner Logic. The two pairs

<r, S> and <p, q> are just two instances of the second and

third t'laws (see e.g. [HM85]), respectively, thus they

certainly not differentiated by HML.

Example 2.11. (Two pairs of processes which are weak

observational equivalent but not branching bisimilar)

r s

.r ·~
p q

a

b

122

If we let cp = (T) <a> T we have s I= <p while r l;t <p.

If we let cp' = [a] (<c>T) we have p I= cp' while q l;t: cp'. +

Theorem 2.12. (Lu and ""b induce the same

identifications on bounded i.Abelled Transition Systems)
Let A = (S, A, --+) be a LTS with bounded

nondetenninism. Then: r =b s iff r -LU s. •

2.2. Backward Modalities

In this section, we present a new kind of bisimulation

which we call back and forth bisimulation. It not only

requires the futures of equivalent processes to be equivalent

but constraints also their pasts. This new bisimulation has

been put forward in [DMV90], where it is proved that it

induces on LTS's the same identifications as branching

bisimulation. Here, we take advantage of this result and

introduce a variant of Hennessy-Milner Logic with a

backward modality which permits analyzing the past of

computations. The spirit of the last generalization of HML

is similar to that proposed by Hennessy and Stirling in

[HS85], the relevant difference is that we take into accou~t
also the possibility that some of the action might be

invisible while they deal with visible action only and thus

do not admit partially controlled state changes. Indeed, the

past operator is introduced in [HS85] only to capture non

continuous properties (e.g fairness) of generalized

transition systems and it is proved that in the case of

classical transition system without silent moves the

equivalence induced by the logic with the past operator

coincides with strong bisimulation.

Since we want to talk about the past of systems, we

need to define our relations on runs rather than on single

states; this enables us to go back from a state along the

run which represents its history. Because of this, we

introduce the notion of transition between runs:

• p -a~ cr if there exists a run a = (s, (s, a., s')) such that

p concatenated with 0 gives cr;

• p =£=> cr if there exist po. Pl. P2 ... Pn. (n ~O), such

that p =PO, Pn = cr and for all OSi<n: Pi-t~Pi+l;

• p =<X=> cr if there exist p', cr' such that

p =e=>p' -a.~ cr' =e=> o-.

More detailed discussions and motivations on the actual

definitions of the new bisimulation and its consequences

can be found in [DMV90]. Here, we would only like to

stress, once again, that we do not define bisimulations as

relations between states anymore but as relations between

runs. The equivalence of two given states is obtained by

considering all runs from them.

Definition 2.13. (Back and forth bisimulation)

Let .A= (S, A,~) be a LTS. Two states r, s e Sare back

andforth bisimi.lar, abbreviated

.A: r ""bf s or r ""bf s, if there exists a relation R ~

run,A(r) x runA_(s), called a back and forth bisimulation,

satisfying:

i) (r, A.) R (s, A.);

ii) if p R cr and p=k=>p' then there exists a cr' such that

cr=k=>cr' and p' R cr';

iii) if p R cr and p '=k=>p then there exists a a' such that

cr'=k=>cr and p' R cr';

iv) if p R <J and cr=k=>cr' then there exists a p' such that

p=k=>p' and p' R cr';

v) if p R cr and cr'=k=>O' then there exists a p' such that

p'=k=>p and p' R cr'. •

Theorem 2.14. (Back and forth and branching

bisimulation induce the same identifications on LTS' s)

Let .A= (S, A,~) be a LTS . .A: r=b s iff .A: r =bf S. +

Definition 2.15. (Hennessy Milner Logic with

backward modalities: LBF)

Let A be a given alphabet of symbols. The syntax of back

and forth Logic LBF is defined by the following grammar

123

where cp and <p' denote generic formulae of the language:
~ cp::= T I -,cp I cp A cp' I <le> cp I < k> cp +

Definition 2.16. (The Satisfaction Relation for LBF)

i) Let A= (S, A,~) be a LTS. The satisfaction relation

I= !::: run.A x LBF is defined inductively by:

• p I= T always;

• p I= -,cp iff p I* cp;

• p I= cpAcp' iff p I= cp and p I= cp';

• p I= <k>cp iff there exists a run p' such that
p =k=> p' and p' I= cp;

• p I= < ~ k>cp iff there exists a run p' such that
p' =k=> p and p' I= cp.

ii) For s e S and cp E LBF we define s I= cp iff (s, A.) I= cp .

•
It is worth pointing out that, when interpreted over

transition systems without silent actions, the above logic

does not provide us with any additional discriminating

power with respect to HML. This consideration agrees

with [HS85] where it is shown that for the class of

transition systems we are considering here, when no silent

action is present, HML and LBF do coincide. Thus we

have that HML, LB F and Lu induce the same

identifications on systems without silent actions. Going

back, to systems with silent action, below, we show that

also LBF is able to differentiate the systems of Example

2.11.

Example 2.17.

Let p, q, rand s be as in Ex.ample 2.11, and let
~ ~

[k] :-,<k>-, and [k] =-i< le>-,.

If cp = <a>~ a] T then s I= cp while r l:;t cp.

If cp' = [a][b]<~><e>T then p I= cp' while q l;t: cp'. •
Theorem 2.18. (LBF and branching bisimulation induce

the same identifications on bounded LTS' s)

Let .A = (S, A, ~) be a L TS with bounded
nondeterminism, then: r =b s iff r -LBF s. •

3. Branching Bisimulation and CTL*

In this section, we shall study the relationship of

branching bisimulation with a different type of logic, the

branching time logic known as CTL *. This will be

achieved by relating branching bisimulation to a variant of

the stuttering equivalence defined and related to C1L * in

[BCG88]. First of all, we introduce the relevant notation

for the class of structures which have been used to interpret

CTL * and to define stuttering equivalence.

Definition 3.1. (Kripke Structures)

Let AP be a fixed set of atomic proposition names ranged

over by p, q, A Kripke structure (or KS) is a triple

'.JG= (S, L, ~)where:

• S is a set of states;

• L: S ~ 2AP is the proposition labelling;

• ~ ~ S x Sis the transition relation; an element (r,s) E

~ is called a transition and is usually written as r ~ s.

We let r, s, ... range over states of Kripke Structures. •

Definition 3.2. (Notation for Kripke Structures)

Let'.DG = (S, L, ~)be a Kripke structure.

• A (finite or infinite) sequence (so, s1)(si. s2) ... E ~00

is called a path from so; if the sequence of pairs of states

is infinite the path is calledfullpath.

• A run from s E S is a pair (s,1t), where 1t is a path from

s.
•We write run](,{s), or just run(s), for the set of runs from

s, and µrun](,(S), or just µrun(s), for the set of maximal

runs (i.e., runs whose second element is a fullpath) from

s.

• We let p, cr, 0, 11, ... range over runs.

·If P = (s,1t) is a run and 1t == (so,s1)(s1,s2) ... , then

first(p)=s, path{p)=n: and states(p)==sos 1 s2-·

• With p < e and p ~ e we indicate that run e is a proper

suffix, respectively a suffix, of run p.

• Concatenation of runs is denoted by juxtaposition. •

124

Definition 3.3. (CTL *and CTL)

The set of fonnulas C1L * is defined as the smallest set of

state fonnulas such that:

• if p E AP, then p is a state formula;

• if cp and cp' are state formulas, then -.cp and <pA<p' are state

formulas;

• if 1t is a path fonnula, then 3tt is a state formula;

• if cp is a state formula, then cp is a path formula;

•if 1t and 1t' are path formulas, then --,n, 1tA1t1
, Xtt and

7tU1t' are path fonnulas.

We let cp,. .. range over state formulas and 1t, ... over path

formulas.

CTL is defined as the subset of CTL * in which we restrict

path formulas to be:

•if cp and <p' are state formulas, then Xcp and cpUcp' are path

formulas;

• if 1t is a path formula, then so is -.1t. •
Below, when we write to CTL * - X and CTL-X, we refer

to the subsets of C1L * and CTL, respectively, consisting

of formulas without the next (X) operator. Moreover, we

will write \In for --,3--,tt, Fn for TU n, and Gn: for --,F--,tt.

Now, we present two different satisfaction relations for the

logics introduced above. This will be done by relying on

different structures to interpret fonnulae. In one case, we

will use only maximal runs of Kripke Structures to

interpret path formulae, in the other, we will use both

finite and infinite runs. Due to its ability of describing non

continuous properties like fairness, the generally accepted

interpretation of CTL *, is that based on maximal runs

only. The less restrictive interpretation, however, has a

series of interesting properties and is the version of C1L *
which was originally proposed (see [ES89]).

Definition 3.4. (Two satisfaction relations for CTL "')

Let '.JG = (S, L, ~) be a Kripke structure.

i) Satisfaction of a state formula cp by a state s, notation s

I= cp, and of a path formula n by a run p, notation p i= n,
is defined inductively by:
• s l=piffpeL(s)

• s I= -,cp iff s l:t; <p

• s I= <pA<p' iff s I= <p and s I= <p'

• s I= :Jn iff there exists a run p e run(s) such that p I= n
•p I= q> iff first(p) I= <p

• p I= -,n iff p l:t; n

• p I= 1tA1t' iff p I= 1t and p I= n'

• p I= 1tU1t'iff there exists a 0 with p ~ 0 such that 0 I= n'
and for all p ~ ri<0: 11I=1t

• p I= X1t iff there exist 'Jl,0 such that the path of TI has

length l, p=rie and 9I=1t.

ii) Satisfaction wrt maximal paths of a state fonnula cp by
a state s, notation s I=µ cp, and of a path formula 1t by a

maximal run p, notation p I=µ n, is defined by replacing in
the above definition I= by I=µ and the clause for 31t by:

• s I::::µ 3n iff there exists a run p e µrun(s) such that

p I=µ 1t. +

3. 1 CTL .. and Stuttering Equivalences

We will now introduce stuttering equivalence. Actually,

our definition of stuttering equivalence, although similar

in spirit, is slightly different from that of [BCG88].

Browne, Clarke and Griimberg assume to deal always with

structures whose states are never deadlocked; if systems

have to be modelled which contain states without any

outgoing transition they assume the presence of a

transition from the final state to itself, thus all maximal

runs of a system are infinite. We will take a somewhat

complementary approach and rather than avoiding

deadlocked states, we do emphasize their presence.

Actually, we will give two variants of stuttering

equivalence which differ in the way they deal with

divergent processes. These two variants will be proved to

be in direct correspondence with the two interpretations of

CIL * described above.

125

Definition 3.5. (Divergence blind stuttering equival.)
Let 1G :::: (S, L, ~) be a Kripke structure.

i) A relation R 1:: S x S is called a divergence blind

stuttering bisimulation if it is symmetric and whenever

r R s then:

• L(r)=L(s) and

• if r ~ r', then there exist so, s i, .. , sn such that so = s

and for all i < n: Si ~ Si+ i. r R Si and r' R sn.

ii) Two states r,s are divergence blind stuttering equivalent,

abbreviated 1G: r "'dbs s or r ""dbs s, if there exists a

divergence blind stuttering bisimulation relating rand s.

iii) Two runs p,cr are divergence blind stutlering

equivalent, notation 1G: p ""dbs cr or p ""dbs cr, if there is a

partition B1B2 ... of states(p) and a partition B'1B'2 ... of

states(cr) such that for all j, Bj and B'j are both non-empty

and every state in Bj is divergence blind stuttering

equivalent to every state in B'j. +

Lemma 3.6.
Let r ""dbs sand let p e run(r). Then there exists a cr e

run(s) such that p "'dbs cr. •

Theorem 3.7.
If r ""dbs s, then for every CTL * -X fonnula cp:

r I:::: cp iff s I= cp. +

Theorem 3.8.
Let x, = (S, L, ~) be a finite state Kripke structure and let

s e S. Then there exists a CTL-X formula cp such that for

all re S: r I= cp iff r "'dbs s. •

Theorem 3.9. (Divergence blind stuttering, CTL * -X

and CTL-X agree for I=)
Let x, :::: (S, L, ~) be a finite state Kripke structure and let

r, s e S. The following statements are equivalent:

(i) r "'dbs s,

(ii) for every CTL *-X formula cp: r I= cp iff s I:::: cp, and

(iii) for every CTL-X fonnula cp: r I= <p iff s I= cp. •

Now, we introduce the new version of stuttering

equivalence which, for finite stare Kripke structures, can

be proved to coincide with the original stuttering

equivalence of [BCG88] and which does not ignore

divergence. The new version is defined in terms of the

previous one.

Definition 3.10. (Extending Kripke frames with

livelocked state)

Let X = (S, L, ~)be a finite state Kripke structure, let so
be a state not in S and let PO be an atomic proposition

such that for all s E S we have PO ~ L(s). Define the

Kripkestructure'.K1by

:K1 = (S', L', ~·)where S' = s u SQ, L' =Lu <SQ, Po>

and~·=~ u <S, so> Is has no outgoing transition or

occurs in a cycle of states with the same label. •

Definition 3.11. (Divergence sensitive stuttering

equivalence)

Let '.K = (S, L, ~) be a finite state Kripke structure.

i) Two states r, s E S are stuttering equivalent,

abbreviated '.K: r =s s or r =s s, if and only if '.K-1: r ""dbs s.

ii) Two runs p, crare stuttering equivalent,abbreviated'.K:

p =s er or p =s cr, if and only if '.K-1: p "'dbs cr. +

The next example shows the different stress the two

equivalences put on divergence (infinite repetition of the

same state).

Example 3.12. (Differences between =sand =dbs)

~
s r • q ? ~dbs

-:::f.s

• q

126

Lemma 3.13.
Let r =s s and let p e µrun(r). Then there exists a cr E

µrun(s) such that p =s cr. •

Theorem 3.14. If r =s s, then for every CTL *-X

formula <p: r I=µ <p iff s I=µ <p. +

Theorem 3.15.
Let '.K = (S, L, ~) be a finite state Kripke structure and let

s E S. Then there exists a CTL-X formula <p such that for

all r e S: r I=µ <p iff r =s s. •

By combining Theorems 3.14 and 3.15 we obtain the

following:

* Theorem 3.16. (Stuttering, CTL -X and CTL-X agree

for I=µ)

Let '.K = (S, L, ~) be a finite state Kripke structure and let

r, s E S. The following are equivalent:

(i) r =s s,

(ii) for every CTL * -X formula <p: r I= µ cp iff s I= µ <p, and

(iii) for every CTL-X formula <p: r I= µ <p iff s I= µ q>. +

As a corollary of the above theorem, we have that our

version of stuttering equivalence coincides with that of

[BCG88] for finite state Kripke Structures without

deadlocked states.

3.2. Stuttering Equivalences and Branching

Bi simulations

In this section, we want to study the relationships between

branching bisimulation and CTL * -X. We will do it, by

exploiting the relationships between stuttering equivalence

and this logic. Indeed, we will get the new logical

characterization of branching bisimulation by relating it to

the divergence blind stuttering equivalence studied above.

We will need some preliminary work which allows us to

relate the different structures on which branching and

stuttering equivalence are defined, namely Kripke

Structures and Labelled Transition Systems.

We will introduce a new kind of structure which can be

projected naturally on both Labelled Transition Systems

and Kripke Structures. The new structure will be called

Doubly Labelled Transition Systems (L 2-rs).

Definition 3.17. (Doubly Labelled Transition Systems)

Let AP be a fixed set of atomic proposition names.

An LbrS is a structure (S, A,~. L) where (S, A,~) is a

LTS and L: S ~ 2AP is a labelling function which

associates a set of atomic propositions to each state. +

This definition is far too general for our interests, indeed

the generalized transition systems which we need have also

to guarantee a certain degree of consistency between the

labels of two adjacent states and the labels of the

transitions connecting the states. Because of this, we

introduce the class of Consistent L 2-rs.

Definition 3.18. (Consistent L2TS)

A L 2Ts (S, A, ~, L) is consistent if there exist two

functions

• effect: 2AP x A't ~ 2AP and

• action: 2AP x 2AP ~ At

such that

i) effect(!, 't) = l

ii) action(l, 1) = 't

iii) s -ex~ r implies (L(r) = effect(L(s), a) and

ex= action(L(s), L(r))).

What this definition amounts to saying is that states

which are connected by an invisible action have the same

labels and the labels of adjacent states are consistent with

the label of the transition connecting them. The above

restriction on L 2TS, permits performing the first step

* toward relating branching bisimulation and CTL -X,

127

because stuttering equivalence and branching bisimulation

agree when they are defined on consistent L 2Ts·s. We do

not give here the formal definitions of the two

equivalences over the new structure; they are exactly the

same as the original one for LTS and KS and completely

ignore the label of the states and of the transitions

respectively.

Theorem 3.19. (Divergence blind stuttering and

branching bisimulations agree on consistent L2TS' s)

If .AX.= (S, A,~. L) is a consistent L2Ts then for any

pair of state r, s in S we have:

r ""dbs s if and only if r ""b s and L(r) = L.(s). +

An example of how to build a L 2TS from a given LTS

can be found in [CLM89]. There, a given LTS is extended

by labelling each state with the set of the labelling of the

runs which lead to it; runs are labelled by the set of those

actions which are performed an odd number of times.

Unfortunately, this construction does not always lead to

consistent L 2TS and is not able to cope with systems

whose states can be reached via two paths which contain

the same action an even and an odd number of times.

Indeed, the authors restrict attention to those L TS 's which

lead to unique labelling. This restricted class of LTS 's

gives rise to consistentL2Ts·s only.

We now propose a new transformation function which

permits building a consistent L2TS from any LTS. The

transformation involves the introduction of new states, but

a simple example below shows that this is unavoidable.

Definition 3.20. (From LTS' s to Consistent Doubly

labelled LTSs)

Let A = ~ I a E A and L = A u A.
tr: LTS ~ L 2TS is a function which given an LTS A=

(S, A.~) yields a L 2TS

AX= (S', A.~', L) where

• S' =SI Is E S, l E L;

• ~· is the least relation induced by the following rules

i) s-b~ rand a* b implies sa -b~' 1b and sa -b~' lb.
ii) s -a~ r implies sa -a~· ra and sa -a~· ra

iii) s -'t~ r implies sa -t~' ra and sa -'t~' ra

• L(si) = {l} for every s e S, for every l e L.

Now, we give two examples of translation of labelled

transition systems into doubly labelled ones. The two

translations should evidence how, by means of the

underlined labels, we avoid labelling states with invisible

actions but are still able to give different labels to states of

systems which are intuitively different. Had we not

introduced the underlined labels, the only consistent

labelling for the translation of u1 was one which would

associate an a also to the state in the t-cycle, but this

would have lead to identifying, via stuttering equivalence,

the translations of u 1 and of u2.

Example 3.21 (Translating LTS' s into L2TS' s)

a
i:!:

a a

~

t

Ul tr(u1)

a

ao ~ a • • i!

"----/ ~

•
i!

u2 tr(u2)

Proposition 3.22. (tr yields consistent L2TS' s)

Given an LTS A., tr(A.) is a consistent L 2Ts.

•

•

121!

Proposition 3.23. (The structure of A and tr(A) are

very similar)
Ifs is a state of a LTS A. and s1 e tr(....l) then sand s1

give rise to isomorphic unfoldings.

Now, Proposition 3.23 and Theorem 3.19, together with

Theorem 3.9, allow us to prove the main theorem of this

section.

Theorem 3.24.

If A. = (S, A, ~) is a finite state LTS then for any pair of

states r, s in S we have

A.: s '"'b r if and only if\>' <p E

s1 I= <p <=> tr(A.): r1 I= <p.

Example 3.25.

* CTL -X, \>'l E L, ti-(A.):

Let p, q, rand s be as in Example 2.11, and supposed is

an element of A not in a, b, c.
If we define cp = 3 (3 Fb) U a then sd I= cp but rd l:t:. <p.

Ifwe define cp' = 3 ((d v VG-, c) U b) then~ I= cp' but

Pd l:t:. cp'. +

Clearly, we can also replace CTL *-X with CTL-X in the

above theorem.

We conclude this section by introducing a new version of

branching bisimulation which is in full agreement with

the stuttering equivalence of [BCG88] and thus with the

equivalence induced by the standard interpretation of CTL *
and CTL without the next-time operator. What we need is

nothing more than a divergence sensitive version of the

original definition of Section 2. We pedantically follow

the approach we took to define stuttering equivalence from

its divergence blind version.

Definition 3.26. (Extending LTS' s with live locked

state)

Let A. = (S, A, ~) be a Labelled Transition System, let

so be a state not in S and let o be a distinct action not in

A. Define the Labelled Transition System

AS= (S', A',~·) where S' =Su so. A'= Au Sand

~· = ~ u <S, s, so> I s has no outgoing transition or

occurs in a t-cycle. +

Definition 3.27. (Divergence sensitive branching

bi simulation)

Let A= (S, A,~) be a Labelled Transition System. Two

states r, s in S are divergence sensitive branching

bisimilar, abbreviated .A: r -=dsb s or r ""dsb s, if and only

if AS: r-=b s. +

Theorem 3.28. (Stuttering and divergence sensitive

branching bisimulation agree on consistent L2TS' s)

If A'.JG. = (S, A,~. L) is a consistent L2TS then for any

pair of states r, sin S we have

r =s s if and only if r ""dsb sand L(r) = L(s). +

Theorem 3.29.

If A= (S, A,~) is a LTS then for any pair of states r, s

* in S we have: .A: s -=dsb r if and only if 'v'<p e CTL -X,
'v'l e L, tr(A): s1 I=µ cp <=> tr(....l): r1 I=µ <p. +

4. Acknowledgements

The original idea of using a kind of until operator for

characterizing branching bisimulation is due to Rob van

Glabbeek. Electronic correspondence with Oma Griimberg

helped in understanding the relationships between

stuttering and weak bisimulation.

5. References

[BCG88] M.C. Browne, E.M. Clarke & 0. Grilmberg:
Characterizing Finite Kripke Structures in
Propositional Temporal Logic. Theoret. Comp. Sci.,
59 (1,2), 1988, pp. 115-131.

[CLM89] E.M. Clarke, D.E. Long & K.L. Mcmillan:
Compositional Model Checking. In Proceedings 4th
Annual Symposium on Logic in Computer Science

129

(LICS), Asilomar, California, IEEE Computer Society
Press, Washington, (1989), pp. 353-362.

[DeN87] R. De Nicola: Extensional Equivalences for
Transition Systems, Acta Informatica, 24, 1987, pp.
211-237.

[DIN90] De Nicola, R., Inverardi, P. and Nesi, M. Using
Axiomatic Presentation of Behavioural Equivalences for
Manipulating CCS Specifications. In Automatic
Verification Methods for Finite State Machines (J.

Sifakis, ed.) Lecture Notes in Computer Science 407,
Springer Verlag (1990); pp. 54-67.

[DMV90] R. De Nicola, U. Montanari & F.W.
Vaandrager: Back and Forth Bisimulations; 1990.
Submitted for Publication.

[EH86] E.A.Emerson & J.Y. Halpern: "Sometimes" and
"Not Never" Revisited: on Branching Time versus
Linear Time Temporal Logic. Journal of ACM, 33, 1,
1986, pp. 151-178.

[ES89] E. A. Emerson & J. Srinivasan: Branching Time
Temporal Logic. In [REX89], pp. 123-172.

[GV90] J.F. Groote & F.W. Vaandrager: An Efficient
Algorithm for Branching Bisimulation and Stuttering
Equivalence. CWI Report CS-R9001; to appear in

proc. ICALP '90.
[vG190] R.J. Van Glabbeek: The Linear Time - Branching

Time Spectrum; 1990. Submitted for Publication.
[GW89] RJ. Van Glabbeek & W.P. Weijland: Branching

Time and Abstraction in Bisimulation Semantics
(extended abstract). In Information Processing '89
(G.X. Ritter, ed.), Elsevier Science Publishers B.V.
(North Holland), (1989), pp. 613-618.

[HM85] M. Hennessy & R. Milner: Algebraic Laws for
Nondeterminism and Concurrency. Journal of ACM,
32, 1985, pp. 137-161.

[HS85] M. Hennessy & C. Stirling : The Power of the
Future Perfect in Program Logics. Information and
Control, 67, 1985, pp. 23-52.

[REX89] Linear Time, Branching Time and Partial Order
in Logics and Models for Concu"ency, (de Bakker, de
Roever and Rozenberg eds.) Lecture Notes in
Computer Science, 354, Springer Verlag, (1989).

[Sti89] C. Stirling: Modal and Temporal Logics, In
Handbook of Logic in Computer Science, Vol I,

(Abramsky ed.), to appear, (1989).

