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Abstract 

Three temporal logics are introduced which induce on 

labelled transition systems the same identifications as 

branching bisimulation. The first is an extension of 

Hennessy-Milner Logic with a kind of "until" operator. 

The second is another extension of Hennessy-Milner Logic 

which exploits the power of backward modalities. The 

third is CTL * without the next-time operator interpreted 

over all paths, not just over maximal ones. A relevant 

side-effect of the last characterization is that it sets a bridge 

between the state- and event-based approaches to the 

semantics of concurrent systems. 

1. Introduction 

The operational semantics of concurrent systems has often 

been described by means of labelled transition systems. 

However, these descriptions are frequently too concrete and 

do not always give the same account of systems which 

exhibit the same observable behaviour. The addition of a 

plausible notion of behavioural equivalence permits to 

overcome these problems; see [DeN87] and [ vG190] for 

comparative presentations. 

Together with the definition of these equivalences, 

different attempts have been made towards defining new 
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logics which permit the specification of concurrent 

systems. In particular, temporal logic has been seen as a 

promising approach (see [REX89]). To date, there is no 

general agreement on the type of temporal logic to be 

used, and, since logics also naturally give rise to 

equivalence classes consisting of all those systems which 

satisfy the same formulae, often the logics proposed have 

been compared with operational equivalences for a better 

understanding and evaluation. 

A well known result relating operational and logical 

semantics is that reported in [HM85]. In that paper, a 

modal logic, now known as Hennessy-Milner Logic 

(HML), is defined which, when interpreted over (transition) 

labelled transition systems with and without silent actions, 

is proved to be in full agreement with strong and weak 

observational equivalence, respectively. Other 

correspondences have been established in [BCG88]; two 

equivalences over Kripke frames (state-labelled transition 

systems) are related to two variants of CTL * [EH86]. It is 

first shown that a variant of strong observational 

equivalence coincides with the equivalence induced by 

CTL *; and then that CTL * without the next operator 

(CTL * - X) is in full agreement with stuttering 

equivalence, an equivalence based on the idea of merging 

adjacent state with the same labelling. 

Recently, a new notion of behavioural equivalence for 

labelled transition systems, called branching bisimulation 

(=b).has been proposed [GW89]. It aims at generalizing 

strong observational equivalence to ignore silent actions 

while preserving the branching structures of systems. 

Indeed, "'b considers two systems to be equivalent only if 

every computation, i.e. every sequence of (visible and 

silent) actions and states, of one system has a correspo-



ndent in the other; corresponding computations have the 

same sequence of visible actions and are such that all their 

intennediate states have equivalent potentials. Branching 

bisimulation is more restrictive than weak observational 

equivalence but has a pleasant axiomatic characterization 

which leads to a complete canonical tenn rewriting system 

[DIN90] and does indeed preserve the branching structures 

of systems. 

In this paper, we study the logical characterization of 

branching bisimulation, and propose three different logics 

which serve our scope. 

The first logic, Lu, is obtained from HML by 

replacing the indexed operator <a> with a kind of "until" 

operator. The new binary operator, written cp<a><p', tests 

whether a system can reach, by exhibiting a visible action 

a, a state which satisfies <p' while moving only through 

states which satisfy cp. It is worth noting that the original 

HML can be recovered from Lu by limiting the formulae 

with the until operator to those in which cp is the constant 

true. Clearly, if no silent action is present, Lu induces the 

same identifications as HML. 

The second logic, LBF. stems from the characterization 

of =b as a back-and-forth bisimulation [DMV90]. It 

extends HML with a reverse operator (see [Sti89]). This 

operators permits inquiries to be made about the past of 

computations. The philosophy behind this generalization 

of HML is very similar to that of the logic called J r in 

[HS85]; the relevant difference is that LBF permits 

abstracting from silent actions, while Jr does not Indeed, 

in the context of classic labelled transition systems, J r has 

no more discriminating power than strong observational 

equivalence; it was introduced by Hennessy and Stirling to 

deal with non-continuous properties of generalized 

transition systems with fully visible infinite computations 

not obtainable as limits of finite ones. The characterization 

of "'b in terms of a more abstract version of J r gives 

strength to the claim that branching bisimulation is indeed 

a natural generalization of strong bisimulation and that it 

can be easily extended to cope with infinitary properties of 
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systems. 

The third logic which we use to characterize =b is a 

* variant of CTL *, more specifically it is CTL - X when 

interpreted, as in the original proposal (see [ES89]), over 

all runs of Kripke frames and not just over maximal runs. 

Together with this correspondence, we provide a variant of 

branching bisimulation which is in full agreements with 

CTL * - X interpreted over maximal runs.The steps we 

* perfonn to prove the correspondence between en. -X and 

=b allow us to establish a connection between the state

and event-based approaches to the semantics of concurrent 

systems. Indeed, we establish the relationships between 

CTL * and =b by relating both to variants of the stuttering 

equivalence (=g) of [BCG88]. 

We give a logical characterization of two variants of 

stuttering equivalence. The first equivalence is weaker than 

= s and is insensitive to divergence, we will call it 

divergence blind stuttering equivalence (=dbs)· Its 

definition is new; it is simpler than that of =s· and 

naturally leads to a more efficient decision algorithm 

[GV90]. The definition of second equivalence, called 

divergence sensitive stuttering equivalence (=dss) relies on 

the first and inherits its simplicity and the essence of its 

decision procedure. We prove that ""dss induces the same 

identification as CTL * -X interpreted over maximal runs 

and thus, since a similar result for =s has been proved in 

[BCG88], we have that==ctss coincides wiHi ""s• the original 

stuttering equivalence. Finally, we define a divergence 

sensitive version of branching bisimulation which 

coincides with =s· 

To relate branching bisimulation and stuttering 

equivalence, we introduce a general transformation function 

which, given a labelled transition system, yields an 

enriched system in which both states and transitions are 

labelled; the generated systems has the same structure as 

that of the original one: the unfolding of the two systems 

are isomorphic. We prove that divergence blind stuttering 

equivalence and =b. and divergence sensitive branching 

bisimulation and =s induce the same identifications on the 



class of enriched systems. 

Due to lack of space, all proofs will be omitted; they 

will be reported in the full version of the paper. 

2. Branching Bisimulation and 
Hennessy-Milner Logics 

In this section, we introduce two logical characterizations 

of branching bisimulation based on Hennessy-Milner 

Logic, HML for short. The first logic relies on a kind of 

until operator which, given a sequence of transitions (run), 

permits testing not only what is true after that run but also 

what are the properties which hold along it. The second 

logic introduces a backward modality which permits to test 

both for properties which are verified after the execution of 

a particular visible action and for properties which where 

enjoyed before the execution of the action. 

We provide now the necessary background definitions 

about transition systems and their runs and introduce 

branching bisimulation. The actual definition of the latter 

is slightly simpler and apparently less restrictive than the 

original one of [GW89]; however, it can be easily proved 

that our equivalence does indeed coincides with the original 

one. 

Definition 2.1. (Labelled Transition Systems) 

A labelled transition system (or LTS) is a triple 

A= (S, A, ~) where: 

• S is a set of states; 

• A is a set of actions; the silent action 't is not in A; 

• ~ ~ S x Au't x S is the transition relation; an element 

(r,c:x,s)e ~is called a transition, and is usually written 

as r-c:x~s. 

We let A't = Au't; Ae =Aue, e ~ A't. Moreover, we 

let r, s, ... range over S; a, b, ... over A; ex, ~ •... over A't 

and k over Ae. 
We will also make use of the mapping (.)0 : A't~Ae 

which is such that c:x0 = ex if c:xe A and cx0 = £ otherwise. + 
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Definition 2.2. (Notation for strings) 

Let K be any set K* stands for the set of finite sequences 

of elements of K; KID denotes the set of infinite sequences 

of elements of K; K00 stands for KIDuK*. Concatenation 

of sequences is denoted by juxtaposition; A. denotes the 

empty sequence; 11tl denotes the length of a sequence x. + 

Definition 2.3. (Paths and runs over LTS' s) 

Let.A= (S, A,~) be a LTS. 

• A sequence (S(),CX(),Sl) .•• (sn-t.<Xn-1.sn) e ~ * is called 

a path from so; 
• A run from s e S is a pair (s,x), where 1t is a path from 

s; 

•We write run.A(s), or justrun(s). for the set of runs from 

s; 

• We write rufiA for the set of runs in A; 

We let 1t, ... range over paths and p, cr, ... over runs. + 

Definition 2.4. (Many step transitions and bounded 

nondeterminism) 

i) Let .A= {S, A.~) be a LTS. For a e A, we define on 

S, r=a=>s if and only if there exists r' and s' in S such 

that r=e=>r'-a~s'=e=>s; here =E=> is the transitive 

and reflexive closure of-'t~. 

ii) A has bounded nondeterminism iff for all se S and for 

all ke Ae the set r I S=k~r is finite. 

Definition 2.5. (Branching bisimulation) 

Let A= (S, A,~) be aLTS. 

• 

•A relation R !:: S x Sis called a branching bisimulation 

if it is symmetric and satisfies the following transfer 

property: if rRs and r-CX~r·, then either CX='t and r'Rs, 

or 3 si. s' such that S=E=>s1-<X--+s', r R s1 and r' R s'. 

•Two states r, s are branching bisimilar, abbreviated 

A: r ""b s or r ""b s, if there exists a branching 

bisimulation relating r and s. + 



The arbitrary union of branching bisimulation relations is 

again a branching bisimulation; "'b is the maximal 

branching bisimulation and is an equivalence relation. 

We could have strengthened the above definition by 

requiring all intennediate states in s==e=>s1 to be related 

with r. The following lemma implies that this would have 

lead to the same equivalence relation. 

Lemma 2.6. (cf. Lemma 1.3 of [GW89]) 

Let :A = (S, A, ~) be a LTS. Let for some n > 0, 

(so;t,sI) ... (sn-1.'t,sn) be a path with so ""b sn. then for 

all 0 5 i $; n: SQ ""b Si. + 

In the rest of the paper we will study the relationships 

between branching bisimulation and the equivalence 

induced by different logics. A general definition of the 

equivalence -L on states of labelled transition systems 

induced by L-fonnulas, and the associated satisfaction 

relation I=, is given by: 

r-L s if and only if (v'cp e L: r I= cp ~ r I= cp). 

We will show that, for three significantly different logics, 

-L coincides with branching bisimulation equivalence. 

2. 1. Until operators 

The first logic we will introduce is a variant of Hennessy

Milner Logic (HML) which rather than 

the family of diamond operator <a> has an indexed until 

operator. Below, we will introduce our new logic after 

presenting syntax and semantics of the original HML. 

Definition 2.7 (Hennessy Milner Logic) 

Let A be a given alphabet of symbols. The syntax of HML 

is defined by the following grammar where we let cp, cp', ... 

range over HML formulas: 

<p ::= T I --.cp I <pA<p' I <k> cp'. • 
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Definition 2.8. (The satisfaction relation for HML) 

i) Let :A = (S, A, ~) be a LTS. The satisfaction relation 

I= k: S x Lu is defined inductively by: 

• s I= T always 

• s I= --.cp iff s l:;t: cp 

• s i= (j)A<p' iff s I= cp and s I= q>' 

• s I= <k>q> iff 3 s' such that s=k=>s' and s' I= <p. 

For labelled transition systems with bounded 

nondeterminism, the above logic has been proved, in 

[HM85], to be in full agreement with the equivalence 

relation known as weak observational equivalence which is 

based on a slightly less demanding bisimulation than that 

of Definition 2.5, in the sense that it in order to consider 

equivalent two states it only requires them to lead via the 

same sequences of visible actions to equivalent states, 

without considering the intermediate states along the path. 

In order to take also the properties of these states into 

account, within the new version of HML we replace the 

diamond operator <k>cp with a binary operator, written 

cp<k>cp', which is used to test, whether a system can reach 

via k, a state which satisfies cp' while moving only 

through states which satisfy cp. 

Definition 2.9. (Hennessy Milner Logic with Until: 

LU) 

Let A be a given alphabet of symbols. The syntax of the 

language Lu is defined by the following grammar where 

we let cp, cp' ... range over Lu formulas: 

<p ::= T I -,cp I cpAcp' I cp <k> cp'. 

Definition 2.10. (The satisfaction relation and the 

equivalence induced by Lu) 

Let :A= (S, A, ~) be a LTS. The satisfaction relation 

I= ~ S x Lu is defined inductively by: 

• s I= T always 

• s I= --.<p iff s l:;t: cp 

• s I= <pA<p' iff s I= cp and s I= cp' 



• s I= <p <k><p' iff either k=e and s I= <p', or there is a run 

(s, (S(),'t,Sl) •.. (sn-i.t,sn) (sn,a.,sn+l)) such that 

Vis; n: Si I= <p, k=a.0 and sn+t I= <p' with n ~ 0. + 

It is possible to define, within Lu, other temporal 

operators; we will write <k><p for T<k>cp and (k]<p for 

-.<k>-,cp. It is worth noting that the original HML can be 

recovered from Lu in the sense that the diamond operator 

"<k>cp" of HML is rendered by "T<k><E>q>". In the latter 

formula, we need to have <£> after <k> because our until 

operators are interpreted only over runs which always end 

with the action which indexes them; in HML this 

restriction is not present and runs are considered which 

may continue with sequences of invisible actions. Clearly, 

if no silent action is present, Lu and HML induce the 

same identifications on LTS's. 

We give now two pairs of systems and two formulae 

which show the additional power of Lu when compared 

with the original Hennessy-Milner Logic. The two pairs 

<r, S> and <p, q> are just two instances of the second and 

third t'laws (see e.g. [HM85]), respectively, thus they 

certainly not differentiated by HML. 

Example 2.11. (Two pairs of processes which are weak 

observational equivalent but not branching bisimilar) 

r s 

.r ·~ 
p q 

a 

b 

122 

If we let cp = (<b> T) <a> T we have s I= <p while r l;t <p. 

If we let cp' = [a] (<c>T) we have p I= cp' while q l;t: cp'. + 

Theorem 2.12. (Lu and ""b induce the same 

identifications on bounded i.Abelled Transition Systems) 
Let A = (S, A, --+) be a LTS with bounded 

nondetenninism. Then: r =b s iff r -LU s. • 

2.2. Backward Modalities 

In this section, we present a new kind of bisimulation 

which we call back and forth bisimulation. It not only 

requires the futures of equivalent processes to be equivalent 

but constraints also their pasts. This new bisimulation has 

been put forward in [DMV90], where it is proved that it 

induces on LTS's the same identifications as branching 

bisimulation. Here, we take advantage of this result and 

introduce a variant of Hennessy-Milner Logic with a 

backward modality which permits analyzing the past of 

computations. The spirit of the last generalization of HML 

is similar to that proposed by Hennessy and Stirling in 

[HS85], the relevant difference is that we take into accou~t 
also the possibility that some of the action might be 

invisible while they deal with visible action only and thus 

do not admit partially controlled state changes. Indeed, the 

past operator is introduced in [HS85] only to capture non

continuous properties (e.g fairness) of generalized 

transition systems and it is proved that in the case of 

classical transition system without silent moves the 

equivalence induced by the logic with the past operator 

coincides with strong bisimulation. 

Since we want to talk about the past of systems, we 

need to define our relations on runs rather than on single 

states; this enables us to go back from a state along the 

run which represents its history. Because of this, we 

introduce the notion of transition between runs: 



• p -a~ cr if there exists a run a = (s, (s, a., s')) such that 

p concatenated with 0 gives cr; 

• p =£=> cr if there exist po. Pl. P2 ... Pn. (n ~O), such 

that p =PO, Pn = cr and for all OSi<n: Pi-t~Pi+l; 

• p =<X=> cr if there exist p', cr' such that 

p =e=>p' -a.~ cr' =e=> o-. 

More detailed discussions and motivations on the actual 

definitions of the new bisimulation and its consequences 

can be found in [DMV90]. Here, we would only like to 

stress, once again, that we do not define bisimulations as 

relations between states anymore but as relations between 

runs. The equivalence of two given states is obtained by 

considering all runs from them. 

Definition 2.13. (Back and forth bisimulation) 

Let .A= (S, A,~) be a LTS. Two states r, s e Sare back 

andforth bisimi.lar, abbreviated 

.A: r ""bf s or r ""bf s, if there exists a relation R ~ 

run,A(r) x runA_(s), called a back and forth bisimulation, 

satisfying: 

i) (r, A.) R (s, A.); 

ii) if p R cr and p=k=>p' then there exists a cr' such that 

cr=k=>cr' and p' R cr'; 

iii) if p R cr and p '=k=>p then there exists a a' such that 

cr'=k=>cr and p' R cr'; 

iv) if p R <J and cr=k=>cr' then there exists a p' such that 

p=k=>p' and p' R cr'; 

v) if p R cr and cr'=k=>O' then there exists a p' such that 

p'=k=>p and p' R cr'. • 

Theorem 2.14. (Back and forth and branching 

bisimulation induce the same identifications on LTS' s) 

Let .A= (S, A,~) be a LTS . .A: r=b s iff .A: r =bf S. + 

Definition 2.15. (Hennessy Milner Logic with 

backward modalities: LBF) 

Let A be a given alphabet of symbols. The syntax of back 

and forth Logic LBF is defined by the following grammar 
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where cp and <p' denote generic formulae of the language: 
~ cp::= T I -,cp I cp A cp' I <le> cp I < k> cp + 

Definition 2.16. (The Satisfaction Relation for LBF) 

i) Let A= (S, A,~) be a LTS. The satisfaction relation 

I= !::: run.A x LBF is defined inductively by: 

• p I= T always; 

• p I= -,cp iff p I* cp; 

• p I= cpAcp' iff p I= cp and p I= cp'; 

• p I= <k>cp iff there exists a run p' such that 
p =k=> p' and p' I= cp; 

• p I= < ~ k>cp iff there exists a run p' such that 
p' =k=> p and p' I= cp. 

ii) For s e S and cp E LBF we define s I= cp iff (s, A.) I= cp . 

• 
It is worth pointing out that, when interpreted over 

transition systems without silent actions, the above logic 

does not provide us with any additional discriminating 

power with respect to HML. This consideration agrees 

with [HS85] where it is shown that for the class of 

transition systems we are considering here, when no silent 

action is present, HML and LBF do coincide. Thus we 

have that HML, LB F and Lu induce the same 

identifications on systems without silent actions. Going 

back, to systems with silent action, below, we show that 

also LBF is able to differentiate the systems of Example 

2.11. 

Example 2.17. 

Let p, q, rand s be as in Ex.ample 2.11, and let 
~ ~ 

[k] :-,<k>-, and [ k] =-i< le>-,. 

If cp = <a>~ a]<b> T then s I= cp while r l:;t cp. 

If cp' = [a][b]<~><e>T then p I= cp' while q l;t: cp'. • 
Theorem 2.18. (LBF and branching bisimulation induce 

the same identifications on bounded LTS' s) 

Let .A = (S, A, ~ ) be a L TS with bounded 
nondeterminism, then: r =b s iff r -LBF s. • 



3. Branching Bisimulation and CTL* 

In this section, we shall study the relationship of 

branching bisimulation with a different type of logic, the 

branching time logic known as CTL *. This will be 

achieved by relating branching bisimulation to a variant of 

the stuttering equivalence defined and related to C1L * in 

[BCG88]. First of all, we introduce the relevant notation 

for the class of structures which have been used to interpret 

CTL * and to define stuttering equivalence. 

Definition 3.1. (Kripke Structures) 

Let AP be a fixed set of atomic proposition names ranged 

over by p, q, .... A Kripke structure (or KS) is a triple 

'.JG= (S, L, ~)where: 

• S is a set of states; 

• L: S ~ 2AP is the proposition labelling; 

• ~ ~ S x Sis the transition relation; an element (r,s) E 

~ is called a transition and is usually written as r ~ s. 

We let r, s, ... range over states of Kripke Structures. • 

Definition 3.2. (Notation for Kripke Structures) 

Let'.DG = (S, L, ~)be a Kripke structure. 

• A (finite or infinite) sequence (so, s1)(si. s2) ... E ~00 

is called a path from so; if the sequence of pairs of states 

is infinite the path is calledfullpath. 

• A run from s E S is a pair (s,1t), where 1t is a path from 

s. 
•We write run](,{s), or just run(s), for the set of runs from 

s, and µrun](,(S), or just µrun(s), for the set of maximal 

runs (i.e., runs whose second element is a fullpath) from 

s. 

• We let p, cr, 0, 11, ... range over runs. 

·If P = (s,1t) is a run and 1t == (so,s1)(s1,s2) ... , then 

first(p )=s, path{p )=n: and states(p )==sos 1 s2-· 

• With p < e and p ~ e we indicate that run e is a proper 

suffix, respectively a suffix, of run p. 

• Concatenation of runs is denoted by juxtaposition. • 
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Definition 3.3. (CTL *and CTL) 

The set of fonnulas C1L * is defined as the smallest set of 

state fonnulas such that: 

• if p E AP, then p is a state formula; 

• if cp and cp' are state formulas, then -.cp and <pA<p' are state 

formulas; 

• if 1t is a path fonnula, then 3tt is a state formula; 

• if cp is a state formula, then cp is a path formula; 

•if 1t and 1t' are path formulas, then --,n, 1tA1t1
, Xtt and 

7tU1t' are path fonnulas. 

We let cp,. .. range over state formulas and 1t, ... over path 

formulas. 

CTL is defined as the subset of CTL * in which we restrict 

path formulas to be: 

•if cp and <p' are state formulas, then Xcp and cpUcp' are path 

formulas; 

• if 1t is a path formula, then so is -.1t. • 
Below, when we write to CTL * - X and CTL-X, we refer 

to the subsets of C1L * and CTL, respectively, consisting 

of formulas without the next (X) operator. Moreover, we 

will write \In for --,3--,tt, Fn for TU n, and Gn: for --,F--,tt. 

Now, we present two different satisfaction relations for the 

logics introduced above. This will be done by relying on 

different structures to interpret fonnulae. In one case, we 

will use only maximal runs of Kripke Structures to 

interpret path formulae, in the other, we will use both 

finite and infinite runs. Due to its ability of describing non 

continuous properties like fairness, the generally accepted 

interpretation of CTL *, is that based on maximal runs 

only. The less restrictive interpretation, however, has a 

series of interesting properties and is the version of C1L * 
which was originally proposed (see [ES89]). 

Definition 3.4. (Two satisfaction relations for CTL "') 

Let '.JG = (S, L, ~) be a Kripke structure. 

i) Satisfaction of a state formula cp by a state s, notation s 



I= cp, and of a path formula n by a run p, notation p i= n, 
is defined inductively by: 
• s l=piffpeL(s) 

• s I= -,cp iff s l:t; <p 

• s I= <pA<p' iff s I= <p and s I= <p' 

• s I= :Jn iff there exists a run p e run(s) such that p I= n 
•p I= q> iff first(p) I= <p 

• p I= -,n iff p l:t; n 

• p I= 1tA1t' iff p I= 1t and p I= n' 

• p I= 1tU1t'iff there exists a 0 with p ~ 0 such that 0 I= n' 
and for all p ~ ri<0: 11I=1t 

• p I= X1t iff there exist 'Jl,0 such that the path of TI has 

length l, p=rie and 9I=1t. 

ii) Satisfaction wrt maximal paths of a state fonnula cp by 
a state s, notation s I=µ cp, and of a path formula 1t by a 

maximal run p, notation p I=µ n, is defined by replacing in 
the above definition I= by I=µ and the clause for 31t by: 

• s I::::µ 3n iff there exists a run p e µrun(s) such that 

p I=µ 1t. + 

3. 1 CTL .. and Stuttering Equivalences 

We will now introduce stuttering equivalence. Actually, 

our definition of stuttering equivalence, although similar 

in spirit, is slightly different from that of [BCG88]. 

Browne, Clarke and Griimberg assume to deal always with 

structures whose states are never deadlocked; if systems 

have to be modelled which contain states without any 

outgoing transition they assume the presence of a 

transition from the final state to itself, thus all maximal 

runs of a system are infinite. We will take a somewhat 

complementary approach and rather than avoiding 

deadlocked states, we do emphasize their presence. 

Actually, we will give two variants of stuttering 

equivalence which differ in the way they deal with 

divergent processes. These two variants will be proved to 

be in direct correspondence with the two interpretations of 

CIL * described above. 
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Definition 3.5. (Divergence blind stuttering equival.) 
Let 1G :::: (S, L, ~) be a Kripke structure. 

i) A relation R 1:: S x S is called a divergence blind 

stuttering bisimulation if it is symmetric and whenever 

r R s then: 

• L(r)=L(s) and 

• if r ~ r', then there exist so, s i, .. , sn such that so = s 

and for all i < n: Si ~ Si+ i. r R Si and r' R sn. 

ii) Two states r,s are divergence blind stuttering equivalent, 

abbreviated 1G: r "'dbs s or r ""dbs s, if there exists a 

divergence blind stuttering bisimulation relating rand s. 

iii) Two runs p,cr are divergence blind stutlering 

equivalent, notation 1G: p ""dbs cr or p ""dbs cr, if there is a 

partition B1B2 ... of states(p) and a partition B'1B'2 ... of 

states(cr) such that for all j, Bj and B'j are both non-empty 

and every state in Bj is divergence blind stuttering 

equivalent to every state in B'j. + 

Lemma 3.6. 
Let r ""dbs sand let p e run(r). Then there exists a cr e 

run(s) such that p "'dbs cr. • 

Theorem 3.7. 
If r ""dbs s, then for every CTL * -X fonnula cp: 

r I:::: cp iff s I= cp. + 

Theorem 3.8. 
Let x, = (S, L, ~) be a finite state Kripke structure and let 

s e S. Then there exists a CTL-X formula cp such that for 

all re S: r I= cp iff r "'dbs s. • 

Theorem 3.9. (Divergence blind stuttering, CTL * -X 

and CTL-X agree for I=) 
Let x, :::: (S, L, ~) be a finite state Kripke structure and let 

r, s e S. The following statements are equivalent: 

(i) r "'dbs s, 

(ii) for every CTL *-X formula cp: r I= cp iff s I:::: cp, and 

(iii) for every CTL-X fonnula cp: r I= <p iff s I= cp. • 



Now, we introduce the new version of stuttering 

equivalence which, for finite stare Kripke structures, can 

be proved to coincide with the original stuttering 

equivalence of [BCG88] and which does not ignore 

divergence. The new version is defined in terms of the 

previous one. 

Definition 3.10. (Extending Kripke frames with 

livelocked state) 

Let X = (S, L, ~)be a finite state Kripke structure, let so 
be a state not in S and let PO be an atomic proposition 

such that for all s E S we have PO ~ L(s). Define the 

Kripkestructure'.K1by 

:K1 = (S', L', ~·)where S' = s u SQ, L' =Lu <SQ, Po> 

and~·=~ u <S, so> Is has no outgoing transition or 

occurs in a cycle of states with the same label. • 

Definition 3.11. (Divergence sensitive stuttering 

equivalence) 

Let '.K = (S, L, ~) be a finite state Kripke structure. 

i) Two states r, s E S are stuttering equivalent, 

abbreviated '.K: r =s s or r =s s, if and only if '.K-1: r ""dbs s. 

ii) Two runs p, crare stuttering equivalent,abbreviated'.K: 

p =s er or p =s cr, if and only if '.K-1: p "'dbs cr. + 

The next example shows the different stress the two 

equivalences put on divergence (infinite repetition of the 

same state). 

Example 3.12. (Differences between =sand =dbs) 

~ 
s r • q ? ~dbs 

-:::f.s 

• q 
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Lemma 3.13. 
Let r =s s and let p e µrun(r). Then there exists a cr E 

µrun(s) such that p =s cr. • 

Theorem 3.14. If r =s s, then for every CTL *-X 

formula <p: r I=µ <p iff s I=µ <p. + 

Theorem 3.15. 
Let '.K = (S, L, ~) be a finite state Kripke structure and let 

s E S. Then there exists a CTL-X formula <p such that for 

all r e S: r I=µ <p iff r =s s. • 

By combining Theorems 3.14 and 3.15 we obtain the 

following: 

* Theorem 3.16. (Stuttering, CTL -X and CTL-X agree 

for I=µ) 

Let '.K = (S, L, ~) be a finite state Kripke structure and let 

r, s E S. The following are equivalent: 

(i) r =s s, 

(ii) for every CTL * -X formula <p: r I= µ cp iff s I= µ <p, and 

(iii) for every CTL-X formula <p: r I= µ <p iff s I= µ q>. + 

As a corollary of the above theorem, we have that our 

version of stuttering equivalence coincides with that of 

[BCG88] for finite state Kripke Structures without 

deadlocked states. 

3.2. Stuttering Equivalences and Branching 

Bi simulations 

In this section, we want to study the relationships between 

branching bisimulation and CTL * -X. We will do it, by 

exploiting the relationships between stuttering equivalence 

and this logic. Indeed, we will get the new logical 

characterization of branching bisimulation by relating it to 

the divergence blind stuttering equivalence studied above. 



We will need some preliminary work which allows us to 

relate the different structures on which branching and 

stuttering equivalence are defined, namely Kripke 

Structures and Labelled Transition Systems. 

We will introduce a new kind of structure which can be 

projected naturally on both Labelled Transition Systems 

and Kripke Structures. The new structure will be called 

Doubly Labelled Transition Systems (L 2-rs). 

Definition 3.17. (Doubly Labelled Transition Systems) 

Let AP be a fixed set of atomic proposition names. 

An LbrS is a structure (S, A,~. L) where (S, A,~) is a 

LTS and L: S ~ 2AP is a labelling function which 

associates a set of atomic propositions to each state. + 

This definition is far too general for our interests, indeed 

the generalized transition systems which we need have also 

to guarantee a certain degree of consistency between the 

labels of two adjacent states and the labels of the 

transitions connecting the states. Because of this, we 

introduce the class of Consistent L 2-rs. 

Definition 3.18. (Consistent L2TS) 

A L 2Ts (S, A, ~, L) is consistent if there exist two 

functions 

• effect: 2AP x A't ~ 2AP and 

• action: 2AP x 2AP ~ At 

such that 

i) effect(!, 't) = l 

ii) action(l, 1) = 't 

iii) s -ex~ r implies (L(r) = effect(L(s), a) and 

ex= action(L(s), L(r))). 

What this definition amounts to saying is that states 

which are connected by an invisible action have the same 

labels and the labels of adjacent states are consistent with 

the label of the transition connecting them. The above 

restriction on L 2TS, permits performing the first step 

* toward relating branching bisimulation and CTL -X, 
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because stuttering equivalence and branching bisimulation 

agree when they are defined on consistent L 2Ts·s. We do 

not give here the formal definitions of the two 

equivalences over the new structure; they are exactly the 

same as the original one for LTS and KS and completely 

ignore the label of the states and of the transitions 

respectively. 

Theorem 3.19. (Divergence blind stuttering and 

branching bisimulations agree on consistent L2TS' s) 

If .AX.= (S, A,~. L) is a consistent L2Ts then for any 

pair of state r, s in S we have: 

r ""dbs s if and only if r ""b s and L(r) = L.(s ). + 

An example of how to build a L 2TS from a given LTS 

can be found in [CLM89]. There, a given LTS is extended 

by labelling each state with the set of the labelling of the 

runs which lead to it; runs are labelled by the set of those 

actions which are performed an odd number of times. 

Unfortunately, this construction does not always lead to 

consistent L 2TS and is not able to cope with systems 

whose states can be reached via two paths which contain 

the same action an even and an odd number of times. 

Indeed, the authors restrict attention to those L TS 's which 

lead to unique labelling. This restricted class of LTS 's 

gives rise to consistentL2Ts·s only. 

We now propose a new transformation function which 

permits building a consistent L2TS from any LTS. The 

transformation involves the introduction of new states, but 

a simple example below shows that this is unavoidable. 

Definition 3.20. (From LTS' s to Consistent Doubly 

labelled LTSs) 

Let A = ~ I a E A and L = A u A. 
tr: LTS ~ L 2TS is a function which given an LTS A= 

(S, A.~) yields a L 2TS 

AX= (S', A.~', L) where 

• S' =SI Is E S, l E L; 

• ~· is the least relation induced by the following rules 



i) s-b~ rand a* b implies sa -b~' 1b and sa -b~' lb. 
ii) s -a~ r implies sa -a~· ra and sa -a~· ra 

iii) s -'t~ r implies sa -t~' ra and sa -'t~' ra 

• L(si) = {l} for every s e S, for every l e L. 

Now, we give two examples of translation of labelled 

transition systems into doubly labelled ones. The two 

translations should evidence how, by means of the 

underlined labels, we avoid labelling states with invisible 

actions but are still able to give different labels to states of 

systems which are intuitively different. Had we not 

introduced the underlined labels, the only consistent 

labelling for the translation of u1 was one which would 

associate an a also to the state in the t-cycle, but this 

would have lead to identifying, via stuttering equivalence, 

the translations of u 1 and of u2. 

Example 3.21 (Translating LTS' s into L2TS' s) 

a 
i:!: 

a a 

~ 

t 

Ul tr(u1) 

a 

ao ~ a • • i! 

"----/ ~ 

• 
i! 

u2 tr(u2) 

Proposition 3.22. (tr yields consistent L2TS' s) 

Given an LTS A., tr(A.) is a consistent L 2Ts. 

• 

• 

121! 

Proposition 3.23. (The structure of A and tr(A) are 

very similar) 
Ifs is a state of a LTS A. and s1 e tr(....l) then sand s1 

give rise to isomorphic unfoldings. 

Now, Proposition 3.23 and Theorem 3.19, together with 

Theorem 3.9, allow us to prove the main theorem of this 

section. 

Theorem 3.24. 

If A. = (S, A, ~) is a finite state LTS then for any pair of 

states r, s in S we have 

A.: s '"'b r if and only if\>' <p E 

s1 I= <p <=> tr(A.): r1 I= <p. 

Example 3.25. 

* CTL -X, \>'l E L, ti-(A.): 

Let p, q, rand s be as in Example 2.11, and supposed is 

an element of A not in a, b, c. 
If we define cp = 3 (3 Fb) U a then sd I= cp but rd l:t:. <p. 

Ifwe define cp' = 3 ((d v VG-, c) U b) then~ I= cp' but 

Pd l:t:. cp'. + 

Clearly, we can also replace CTL *-X with CTL-X in the 

above theorem. 

We conclude this section by introducing a new version of 

branching bisimulation which is in full agreement with 

the stuttering equivalence of [BCG88] and thus with the 

equivalence induced by the standard interpretation of CTL * 
and CTL without the next-time operator. What we need is 

nothing more than a divergence sensitive version of the 

original definition of Section 2. We pedantically follow 

the approach we took to define stuttering equivalence from 

its divergence blind version. 

Definition 3.26. (Extending LTS' s with live locked 

state) 

Let A. = (S, A, ~) be a Labelled Transition System, let 

so be a state not in S and let o be a distinct action not in 



A. Define the Labelled Transition System 

AS= (S', A',~·) where S' =Su so. A'= Au Sand 

~· = ~ u <S, s, so> I s has no outgoing transition or 

occurs in a t-cycle. + 

Definition 3.27. (Divergence sensitive branching 

bi simulation) 

Let A= (S, A,~) be a Labelled Transition System. Two 

states r, s in S are divergence sensitive branching 

bisimilar, abbreviated .A: r -=dsb s or r ""dsb s, if and only 

if AS: r-=b s. + 

Theorem 3.28. (Stuttering and divergence sensitive 

branching bisimulation agree on consistent L2TS' s) 

If A'.JG. = (S, A,~. L) is a consistent L2TS then for any 

pair of states r, sin S we have 

r =s s if and only if r ""dsb sand L(r) = L(s). + 

Theorem 3.29. 

If A= (S, A,~) is a LTS then for any pair of states r, s 

* in S we have: .A: s -=dsb r if and only if 'v'<p e CTL -X, 
'v'l e L, tr(A): s1 I=µ cp <=> tr(....l): r1 I=µ <p. + 
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