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Abstract

Bisimulations are equivalence relations between transition systems which assure that certain aspects of the behaviour
of the systems are the same in a related pair. For many applications it is not possible to maintain such an equivalence
unless non-observable (stuttering) behaviour is ignored. However, existing bisimulation relations which permit the
removal of non-observable behaviour are unable to preserve temporal logic formulas referring to the next step operator.
In this paper we propose a family of next-preserving branching bisimulations to overcome this limitation.

Next-preserving branching bisimulations are parameterised with a natural number, indicating the nesting depth of
the X operators that the bisimulation preserves, while still allowing non-observable behaviour to be reduced. Based
on van Glabbeek and Weijland’s notion of branching bisimulation with explicit divergence, we define the novel pa-
rameterised relation for which we prove the preservation of CTL∗ formulas with an X operator-nesting depth that is
not greater than the specified parameter. It can be shown that the family of next-preserving bisimulations constitutes
a hierarchy that fills the gap between branching bisimulation and strong bisimulation.

As an example for its application we show how this definition gives rise to an advanced slicing procedure that
creates a formula-specific slice, which constitutes a reduced model of the system that can be used as a substitute
when verifying this formula. The result is a novel procedure for generating slices that are next-preserving branching
bisimilar to the original model for any formula. We can assure that each slice preserves the formula it corresponds to,
which renders the overall verification process sound.
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1. Introduction

A bisimulation relation defines an equivalence between two transition systems. Two models are bisimilar if their
observable behaviours are indistinguishable and thus satisfy the same properties. A variety of bisimulation relations
have been defined in the literature and they vary in what is considered observable and what is not. The meaning of
“observable” is relative to the type of bisimulation relation. For example, strong bisimulation [1, 2] considers all steps
to be observable whereas weak forms of bisimulation relations regard silent or stuttering steps (i.e., steps that do not
change the state of the model) as non-observable.

Strong bisimulation is known to preserve all temporal properties specified in the logic CTL∗, the super-set of
the linear and branching time temporal logics, LTL and CTL (see [3]). However, the properties that are preserved
through weak forms of bisimulation are only those temporal properties which do not contain the temporal next-step
operator X (we refer to these as CTL∗−X formulas). This is due to the fact that stuttering steps can affect the validity
of formulas that contain the next-step operator. On the other hand, using strong bisimulation is not always suitable,
since some applications rely on the fact that stuttering steps can be neglected. An example of this is slicing [4], a
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technique in which a program or model is reduced by eliminating parts which are irrelevant according to a given
criterion. The sliced model and the original are related only through weak forms of bisimulation, since the irrelevant
(or stuttering) steps do not exist in the slice. Thus, the request for a bisimulation that relates a reduced model to its
original and guarantees preservation of all temporal logic properties seems contradictory and, to our knowledge, none
of the existing notions of bisimulation satisfies it.

In this paper we define a novel form of bisimulation, referred to as the family of next-preserving branching bisim-
ulations, which is based on van Glabbeek and Weijland’s branching bisimulation [5]. The relations contained in this
family are parameterised with a natural number which indicates the number of stuttering steps that are preserved at
critical points in the system. This number indicates which formulas are preserved by the bisimulation. It can be shown
that any formula with a nesting depth of X operators smaller than or equal to the specified parameter is preserved in the
parameterised next-preserving bisimilar system: we give a proof that next-preserving branching bisimulation of depth
xd preserves any CTL∗ formula with a X -nesting depth of xd or less. The next-preserving bisimulations are stronger
than weak forms of bisimulation and weaker than strong bisimulation. In fact, they can be ordered into a hierarchy of
bisimulations enclosed by branching bisimulation (at the weak end of the spectrum) and strong bisimulation (at the
strong end). These results are useful in any application that aims for a reduction of the model, such as slicing (e.g.,
[4, 6]) or partial order reduction [7].

In our context, the driving force behind the definition of the next-preserving branching bisimulation was the
intention of improving the slicing algorithm used for temporal logic verification, namely model checking [8, 9]. The
aim of slicing is to reduce (prior to model checking) a large model to a bisimilar slice which can be model checked
instead of the original model, to combat the state explosion problem inherent to model checking. Based on our past
experience in the domain of safety analysis (e.g., [10, 11, 12]), we found that there are many cases in which the
temporal logic formula of interest includes the next-step operator, and hence these formulas must be preserved by the
slice. In the second part of this paper we introduce the resulting new slicing approach for the Behavior Tree modelling
notation, which is a graphical formal notation aiming to support the user in capturing informal requirements ([13, 14]).
Once a model has been derived from the requirements, it can be analysed using a model checker. To guarantee
soundness of the approach we need to ensure that the same temporal logic formulas are satisfied in the slice as in the
original model. As a vehicle to prove the soundness of our slicing approach, the notion of next-preserving branching
bisimulation with respect to a particular formula is used, which guarantees the preservation of this formula (even if
it contains the next-step operator). Our approach for deriving a next-preserving slicing algorithm for Behavior Trees,
we believe, can also be used to derive similar slicing algorithms for other notations.

The paper is organised into two parts, where the first part (Section 2) constitutes the core of our work. Firstly,
preliminary concepts used throughout the paper are introduced, such as doubly labelled transition systems (Sec-
tion 2.1), CTL∗ (Section 2.2) and branching bisimulation (Section 2.3). Following from there we introduce our notion
of a family of next-preserving branching bisimulations (Sections 2.4 and 2.5) and Section 2.6 provides the required
preservation results. Section 2.7 proposes a specialisation for next-preserving bisimulations where parameterisation
is extended so that a next-preserving bisimulation becomes specific for a particular formula. Section 2.8 presents the
family of next-preserving bisimulations as a hierarchy that fills the gap between strong bisimulation and branching
bisimulation.

In the second part of the paper, these results are then applied in the context of slicing for Behavior Trees. In
Section 3 we provide the definitions on which basic slicing of Behavior Trees are built. This summarises the results
from [15] and gives the background. In Section 4 we demonstrate how the definition of the family of next-preserving
branching bisimulations gives rise to a new sophisticated slicing procedure which generates a next-preserving bisimilar
slice for a specific formula. Section 5 relates our work to other results in the literature and we conclude in Section 6.

2. Next-preserving Branching Bisimulation

This section introduces the family of next-preserving branching bisimulations, beginning with a brief introduction
to doubly-labelled transition systems, the temporal logic CTL∗ and existing bisimulation relations. Following this is
the main contribution of the paper, namely the definition of the family of next-preserving branching bisimulations and
the proof that each member preserves any CTL∗ formula with a matching depth of X operators.
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2.1. Doubly-labelled Transition Systems
Bisimulations are equivalence relations, normally defined either between labelled transition systems, which have

labels on transitions, or Kripke structures, which have labels on states. For our purposes, we have chosen to use
doubly-labelled transition systems, as introduced by de Nicola and Vaandrager in [16], which are transition systems
containing labels on both edges and states. As a consequence, the results of this paper apply to Kripke structures as
well as labelled transition systems.

Definition 1 (Doubly-labelled Transition System). A doubly-labelled transition system, L2TS, is a structure
(S,AP, I,L,A,→) where S is a set of states, AP is a set of atomic propositions, I ⊂ S is a set of initial states, L
is a state labelling function (i.e., L : S → 2AP ), A is a set of actions which includes a special action τ (stuttering
action), and→: S ×A× S is the transition relation. (The notation s a→ s′ is used as a shorthand for (s, a, s′) ∈→
and if the transition label is irrelevant it may be omitted.)

For our purpose, we also assume the consistency of the L2TS in the sense that the labelling of states is consistent
with the transition relation. We assure this with the following consistency condition (cf. [16]).

Definition 2 (Consistent L2TS). An L2TS L = (S,AP, I,L,A,→) is consistent if there exists an injective function
α : (2AP × 2AP )→ A such that for any sets of atomic propositions A,B,C : 2AP the following holds:

i.) (s, a, t) ∈→ implies a = α(L(s),L(t)) (any action modifies the labelling of the pre-state into the labelling of
the post-state of the step consistently with α.)

ii.) α(A,A) = τ (if the labelling of two consecutive states does not change, then the applied action is a stuttering
action)

iii.) α(A,B) = α(A,C) implies B = C (performing an action in a state cannot result in two different successor
states)

A consistent doubly-labelled transition system L = (S,AP, I,L,A,→) can be viewed as a Kripke structure
ks(L) = (S,AP, I,L,→′) with→′: S × S such that s→′ s′ if and only if there exists an a ∈ A such that s a→ s′. It
can also be viewed as a labelled transition system when we ignore the labels on states, i.e., lts(L) = (S,AP, I,A,→).
It follows that any equivalence defined on a labelled transition system∼lts or a Kripke structure∼ks can be lifted into
an equivalence ∼l2ts on a consistent doubly-labelled transition system as defined above. Hence, for any states s and t
in S, s ∼l2ts t ⇔ s ∼lts t ⇔ s ∼ks t. In the following we assume consistency for any doubly-labelled transition
system that is considered, without further mention.

A run in a doubly-labelled transition system is a sequence of states alternating with actions, starting and (if finite)
ending at states, ρ = 〈s0, a1, s1, a2, s2, . . .〉 (or alternatively we may write ρ = s0

a1→ s1
a2→ s2 . . .). A path on the

other hand is a sequence of states, π = 〈s0, s1, s2 . . .〉 (alternatively, π = s0 → s1 → s2 . . .), which can be derived
from a run by removing all actions from the sequence. If π is derived from ρ we write π = path(ρ). Vice versa, for
each path π there exists a unique run ρ (following from function α Definition 2 being injective), referred to as run(π).
The length of a path π is given through length(π); if π is infinite then length(π) =∞.

The notation ρ〈〈si] denotes the prefix of the run ρ ending with (and including) si, while ρ[si〉〉 returns the suffix of
ρ starting at (and including) si. The same notation will be used for paths. The concatenation of two paths π1 and π2,
where π1 is finite, is denoted as π_1 π2. Any path (or run) can be split into segments πi (for any 0 ≤ i < n) such that
π = π0_π1_ . . . πn. We indicate that a path πi is a segment of π using the notation πi ⊆ π.

The set of paths starting at a state s is denoted as paths(s). A path is said to be maximal if either its last state,
last(π), has no possible successor defined through→ (i.e., there exists no state s′ ∈ S such that last(π) → s′), or if
it ends in a cycle (i.e., it reaches a state that it has visited earlier).

We denote a transition step that performs a stuttering action as p 99K q. A path consisting entirely of stuttering
steps is referred to as a stuttering path, denoted as p 99Kn q if it consists of n stuttering steps, or p 99K∗ q if it consists
of an arbitrary number of stuttering steps.

2.2. Branching Time Computation Tree Logic, CTL∗

In this paper, we consider the preservation of formulas of the logic CTL∗, as introduced by Emerson and Halpern
([17]), who used it as a vehicle for the comparison between both sub-logics LTL and CTL. Our results are therefore
applicable to the sub-logics as well.
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CTL∗ includes the linear temporal operators (X and U ), as well as the temporal operators of branching-time (E and
A ) of the sub-logics, but it does not constrain their combination. Let AP be the set of atomic propositions, then the
syntax of CTL∗ is defined in the following manner, distinguishing state and path formulas in the usual way:

Definition 3 (Syntax of CTL∗).
State formulas:

i.) If ϕ is true, then ϕ is a state formula.
ii.) If ϕ ∈ AP , then ϕ is a state formula.

iii.) If ϕ and ψ are state formulas, then ¬ϕ and ϕ ∧ ψ are state formulas.
iv.) If ϕ is a path formula, then Eϕ is a state formula.

Path formulas:

i.) If ϕ is a state formula, then ϕ is also a path formula.
ii.) If ϕ and ψ are path formulas,

then ¬ϕ, ϕ ∧ ψ, Xϕ and ϕ Uψ are path formulas.

Additionally, the state operator A is derived as follows: Aϕ = ¬E¬ϕ. The path operators F and G are derived
as follows: Fϕ = trueUϕ and Gϕ = ¬F (¬ϕ). The ∨ (disjunction) operator is derived for both state and path
formulas as ϕ∨ψ = ¬(¬ϕ∧¬ψ). The semantics of CTL∗ is given in terms of states and maximal, but possibly finite,
paths.

Definition 4 (Semantics of CTL∗). Let T be a doubly-labelled transition system such that T = (S,AP, I,L,A,−→).
A CTL∗ state formula ψ holds in a state s ∈ S, denoted T, s � ψ or simply s � ψ, according to the following, where
ψ1 and ψ2 are CTL∗ state formulas and ϕ is a path formula:

i.) s � true,

ii.) s � a, where a ∈ AP , iff a ∈ L(s),
iii.) s � ¬ψ1 iff s 2 ψ1,

iv.) s � ψ1 ∧ ψ2 iff s � ψ1 and s � ψ2,

v.) s � Eϕ iff there exists a maximal path π = 〈s0, s1, . . .〉, such that s0 = s and π � ϕ.

A CTL∗ path formula ϕ holds for a path π = 〈s0, s1, . . .〉, denoted π � ϕ, according to the following, where ϕ1 and
ϕ2 are CTL∗ path formulas and ψ1 is a CTL∗ state formula:

i.) π � ψ1 iff s0 � ψ1,

ii.) π � ¬ϕ1 iff π 2 ϕ1,

iii.) π � ϕ1 ∧ ϕ2 iff π � ϕ1 and π � ϕ2,

iv.) π � Xϕ1 iff π[s1〉〉 � ϕ1,

v.) π � ϕ1Uϕ2 iff ∃ 0 ≤ j < length(π) such that π[sj〉〉 � ϕ2 and ∀ i, where 0 ≤ i < j, π[si〉〉 � ϕ1.

The transition system T satisfies a CTL∗ formula ψ, denoted by T � ψ, iff T, si � ψ, for all si ∈ I .

We denote the set of atomic propositions comprised in formula ϕ as ap(ϕ), and refer to a restricted labelling
function of T which only considers the atomic propositions used in ϕ, using the notation L|ϕ : S → 2AP∩ap(ϕ).

Definition 5 (Observable actions). An action a ∈ A is referred to as an observable action, denoted as obs(a), if and
only if for any s, s′ ∈ S with s a→ s′ it holds that L(s) 6= L(s′). This predicate can be restricted further to observable
with respect to ϕ, denoted as obsϕ(a), if and only if L|ϕ(s) 6= L|ϕ(s′).

Every action is either observable or a stuttering action, i.e., for any a ∈ A, obs(a) or a = τ . In the context of a
specific formula ϕ, stuttering may be considered with respect to ϕ such that ¬obsϕ(a) (and hence L|ϕ(s) = L|ϕ(s′))
if and only if a = τϕ where τϕ denotes a stuttering action with respect to ϕ.
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2.3. Bisimulation

Bisimulation establishes equivalence between two systems. It can be divided into the strong and weak forms.
The strong form requires that every step made by one transition system must be matched by an identical step in the
other. On the other hand, the weak forms of bisimulation allow for the presence of stuttering steps, denoted by τ ,
which do not have to be matched by the other system. For many applications, these relaxed requirements are essential
and weak forms of bisimulation are the only possible form of equivalence which can be established. One weak form
of bisimulation, known as branching bisimulation ([5]), is particularly of interest as it distinguishes between two
systems which perform the same observable actions but have different branching structures. This property is essential
for relating it to branching-time logics.

CTL∗ requires a variant of branching bisimulation known as divergence-sensitive branching bisimulation. Diver-
gence refers to infinite stuttering paths. The divergence-sensitive variant of branching bisimulation distinguishes
between systems with and without divergent paths. This notion is necessary in order for CTL∗ properties to be
preserved, as CTL∗ is normally defined over maximal paths. Divergent-sensitive branching bisimulation preserves
CTL∗−X ([16]). However, divergence-sensitive branching bisimulation as defined in ([16]) does not directly incorpo-
rate the notion of divergence into the definition. Instead, an extra state is created in the transition system to represent
divergence and all divergent states are linked to that new state. As noted in [18], using this method, livelocked
states cannot be distinguished from deadlocked states. Livelocked states are ones which have self loops, while dead-
locked states are ones which have no outgoing transitions. Branching bisimulation with explicit divergence, proposed
by Van Glabbeek and Weijland ([5]), incorporates the divergence requirement into the definition itself, instead of
making modifications to the transition system. The definition for branching bisimulation with explicit divergence is
given in Definition 6, which is adapted to our context from the definition in [18]. Branching bisimulation with ex-
plicit divergence preserves CTL∗−X ([19]). Our next-preserving branching bisimulation relation is based on branching
bisimulation with explicit divergence.

Definition 6. Let T1 and T2 be doubly-labelled transition systems such that Ti = (Si, APi, Ii,Li,Ai,→i) for
i ∈ {1, 2}, and S = S1 ] S2 be the disjoint union of both sets of states. A relation is a branching bisimulation
with explicit divergence, denoted as bb , if and only if it is symmetric and for all s, s′, t ∈ S such that bb(s, t) the
following holds:

• L1(s) = L2(t) and

• s a→ s′ implies a = τ ∧ bb(s′, t) or
there exist t′, t′′ ∈ S such that t 99K∗ t′ a→ t′′, bb(s, t′), and bb(s′, t′′) and

• if there exists an infinite stuttering path s 99K s1 99K . . ., such that bb(si, t) for all i > 0, then there exists
an infinite stuttering path t 99K t1 99K . . ., such that bb(si, tj) for all i, j > 0.

Two states s and t are branching bisimilar with explicit divergence, denoted s , t, iff there exists a branching
bisimulation with explicit divergence, bb , such that bb(s, t).

This relation can be made more specific by relating it to a specific formula ϕ, denoted as ,ϕ. To achieve this, in
the above definition the occurrence of Li is replaced by Li|ϕ (for i ∈ {1, 2}), τ by τϕ, and any bb by bbϕ. As an
effect of this, the induced equivalence relation becomes coarser as less transitions affect ϕ specifically. In particular,
the set of actions for which obsϕ(a) holds is smaller than the set for which obs(a) holds; more steps can be considered
to be τϕ than τ . Hence more states fall into the same equivalence class.

2.4. Preserving the Next Step Operator

The next step operator, denoted by X, is used in CTL∗ and its sub-logics LTL and CTL for describing properties
which hold at the next step. This allows one to specify a requirement that something will occur within a certain period
of time, represented by a specific number of steps in the transition system. Although some authors argue against the
use of the next step operator (e.g., [20]), it has many uses in practical applications. In particular, it is often used when
specifying safety properties of the form p⇒ X q, to indicate that some action must follow immediately after another.
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The closest alternative would be to use the eventually operator (F), but for some requirements this is too weak, as
it does not provide any guarantee of the period in which something will occur. Further supporting evidence for the
usefulness of X is that it occurs in many of the commonly-used safety property patterns provided in [21].

Unfortunately, the weak forms of bisimulation are unable to preserve properties containing the X operator since
systems related by such forms of bisimulation may differ in the number of stuttering steps. This presents a difficulty
when checking properties containing X, because such properties require a distinct number of steps to be performed.

Nevertheless, it is possible to preserve properties containing X while still maintaining a weak form of bisimulation.
This result arises from the observation that only the stuttering steps occurring at certain locations can influence the
value of a property, so these stuttering steps are the only ones which need to be present in both systems. In particular,
the only stuttering steps necessary are those that occur immediately before an observable action is performed or
immediately before a branching point in the transition system, where an observable action is possible by selecting
one path but is not possible within the same number of steps along another path. Furthermore, it is only necessary to
preserve a small number of stuttering steps, bounded by the nesting depth of the X operators present in the formula.
Next-preserving branching bisimulation preserves properties with X by ensuring that the essential stuttering steps are
present in both transition systems. This form of bisimulation is stronger than branching bisimulation while still being
a form of weak bisimulation, as most stuttering steps can still be ignored. The following two examples demonstrate
cases where stuttering steps impact the validity of the formula.

t0

t2

t3

τ

a

u0

u3

a

T3T2

s3

s1

s2
a

T1

s0

τ

p

τ

¬p ¬p ¬p

p

p

p

p p

Figure 1: Two branching bisimilar transition systems performing an observable action

Example . Consider the three transition systems, T1, T2 and T3 shown in Figure 1. Assume that in T1, the
steps from s0 to s1 and from s1 to s2 are stuttering steps and the step from s2 to s3 performs an observable action
(i.e., obs(a)). The three transition systems are branching bisimilar, as they both perform the same observable action
and have the same branching structure; they could in fact stem from a reduction procedure that eliminates stuttering,
i.e., T2 results from T1 through eliminating one stuttering step whereas T3 results from T1 having eliminated both
stuttering steps before the observable action is performed.

Now, assume the property to be verified is AX p, where p is an atomic proposition. In T1, s0 � AX p as the system
performs two stuttering steps before the observable action occurs and p becomes invalid. In T2, t0 � AX p since there
is one stuttering step before the observable action occurs. In T3, however, u0 2 AX p as the observable action occurs
immediately and invalidates p.

The validity of the property AX p changes only when the validity of p is changed at the next step. In this next step
the system must perform an observable action to change the validity of p. It can be seen that at least one stuttering
transition before the observable action is necessary in order to satisfy the formula. In general, the number of stuttering
transitions required appears to be dependent on the number of nested X operators in the formula that is considered.

/

This example demonstrates that the number of stuttering steps preceding an observable action influences the
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validity of a formula containing X . However, if T1 contains fewer stuttering steps than the nesting depth of the
formula, it is only necessary for T2 and T3 to precisely match the number of stuttering steps that T1 has.

Although this example has used one particular property, most properties are influenced by the occurrence of ob-
servable actions. The only exceptions are properties which change their validity depending on the existence of a
particular path. This is demonstrated by the following example.

s1

s4

s2

s3

p

a

t0

t4t2

t3
T1 T2

s0

τ

¬p

τ

τ τ

s5

¬p

¬p

¬p¬p

τ

¬p

t1

ττ

a

¬p

¬p¬p

p

u3u1

u2
T3

u0

ττ

a

¬p

¬p¬p

p

Figure 2: Three branching bisimilar transition systems with an observable action performed on one path only

Example . Consider the transition systems shown in Figure 2 and assume the formula is AX (E F p). In T1, there
are two possible paths from s0: the path 〈s0, s1, s2, s3, s4〉 and the path 〈s0, s1, s2, s5〉. The formula holds at state s0,
because on all of the paths from s0, the next state is s1, and from s1 there exists a path on which p is eventually true.
A similarly reasoning applies to system T2 which has one less initial stuttering step. The property holds for the initial
state t0 as its only next state is t1 from which there exists a path (namely along t2 and t3) which eventually satisfies p.

However, in T3, the formula does not hold at u0. As in T1 and T2 there are still two possible paths, but this time
the next step after u0 differs on each path. On one path the next state is u1, from which there exists a path where
eventually p holds, but on the other path the next state is u3, from which there is no possible way to reach a state
where p holds. This problem occurs when a state has multiple paths emanating from it, where p eventually holds on
some of the paths but not on others. Note that the problem would not occur if both paths were still possible after one
branch was chosen, for example, if u2 and u3 had outgoing edges looping back to u0. /

This example illustrates another location at which stuttering steps may be required, namely where there is a
branching point such that on one path an observable action occurs and on the other path the observable action does not
occur at all or not within the same number of steps. In the following, we refer to these points in a system’s behaviour
as critical branching points. They constitute a point from which any next step is observable, even if it is a stuttering
step and no observable action is performed, because the behaviour that is possible after this step is not the same as the
behaviour that is possible before this step (i.e., at the branching point).

2.4.1. Observable steps
Both examples above together illustrate what constitutes an observable step in next-preserving branching bisimilar

systems, referred to as a next-preserving-branching observable step. It is a step which either

– performs an observable action (i.e., changes the labelling of the pre-state), or

– passes a critical branching point, or

– performs a stuttering step that is relevant with respect to a particular formula.
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In all cases we can see that what is satisfied in the state before the observable step might not be satisfied in the state
after the observable step and vice versa. In the first case, an observable action occurs and changes the labelling of
the state. In the second case, the branching structure of the possible behaviours has changed from the pre- to the
post-state, which has an effect on the validity of formulas containing the E and A path quantifiers. In the third case,
the number of relevant stuttering steps before an observable action or critical branching point differs and therefore the
validity of a formula containing the X operator has changed.

The concept of an “observable step” is not new and also inherent in the notion of branching bisimulation (although
it is not called an observable step), as any bisimilar system is required to match any observable step in the original
system. However, branching bisimulation considers only observable steps of the first two kinds (namely covering
observable actions and critical branching points). Hence, the pre- and post-state of an observable step of the first two
kinds are not branching bisimilar (according to Definition 6). We introduce the term of a bb-observable step.

Definition 7 (bb-observable step). A step s → s′ is a branching bisimilar observable step, or short bb-observable
step, if s 6, s′. If the bb-observable step is labelled with an action a we also use the notation obsbb(a), i.e., s a→ s′

and s 6, s′ iff obsbb(a) (note that obsbb(a) does not necessarily imply that a 6= τ ).

On the other hand, the pre- and post-state of an observable step of the third kind (performing a relevant stuttering
step) are not “next-preserving” bisimilar. That is, in the context of next-preserving branching bisimulations, we
additionally have to ensure that the number of stuttering steps preceding any bb-observable step in the bisimilar
system is sufficient. The examples above demonstrate how a violation of this condition has its effect on the validity
of a given formula containing any X operators.

The validity of a formula depends not on the number but on the nesting depth of X operators in the formula. We
define this notion inductively as the xdepth of a formula as follows. A similar definition for LTL formulas is given in
[22].

Definition 8 (xdepth). Assume ψ1 and ψ2 are state or path formulas and ϕ, ϕ1 and ϕ2 are path formulas. The xdepth
of a CTL∗ formula is then given as follows,

xdepth(ϕ) = 0, where ϕ ∈ AP ,
xdepth(ψ1 ∧ ψ2) = max(xdepth(ψ1), xdepth(ψ2)),
xdepth(¬ψ1) = xdepth(ψ1),
xdepth(Eϕ) = xdepth(ϕ),
xdepth(ϕ1Uϕ2) = max(xdepth(ϕ1), xdepth(ϕ2)),
xdepth(Xϕ) = xdepth(ϕ) + 1.

As could be seen in the examples above, the notion of the xdepth of a formula gives rise to the number of stuttering
steps required to be present in the paths of two next-preserving bisimilar systems in order to preserve the validity of
the formula in both systems. If a behaviour has more than xdepth(ϕ) stuttering steps before a bb-observable step
then the validity of ϕ does not change along the excess stuttering steps (i.e., all stuttering steps that are further than
xdepth(ϕ) steps away from the bb-observable step); these stuttering steps are not observable with respect to ϕ. If
the number of stuttering steps before a bb-observable step is less than xdepth(ϕ) then the validity of ϕ potentially
changes along one of the stuttering steps; the stuttering step is observable with respect to ϕ, or any formula with
an xdepth equal to xdepth(ϕ). Hence, we have a dependency between the xdepth (of a class of formulas) and the
number of stuttering steps present before each bb-observable step in both systems. To be next-preserving bisimilar
with respect to formulas with X -nesting depth xd, both systems have to coincide in the number of stuttering steps, but
only up to xd.

In the following we refer to a next-preserving-branching observable step that performs a stuttering step relevant
for maintaining formulas of nesting X -depth xd, i.e. the third kind of observable step listed above, as an xd-relevant
stuttering step.

2.5. A Family of Next-preserving Branching Bisimulations
To capture the requirements on next-preserving bisimilar systems as laid out in the previous section, we param-

eterise the definition of a next-preserving branching bisimulation with a natural number. This leads us to a family of
bisimulations such that each of its members is characterised by the depth up to which stuttering steps are considered
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observable. We refer to each of the bisimulations as next-preserving branching bisimulation of depth xd where xd is
a natural number.

The requirement to maintain some stuttering before some steps leads to a definition that not only considers the
next step following a state (as in Definition 6) but instead a sequence of non-bb-observable stuttering steps possibly
followed by a bb-observable step. Two states are next-preserving branching bisimilar if their labelling is identical and
also the following conditions on every possible progression from both states are satisfied:

1. If the sequence of steps following from one of the next-preserving branching bisimilar states does not contain
any npbb-observable steps (i.e., all steps are stuttering steps which constitute neither critical branching nor
an xd-relevant stuttering step), then these steps do not need to be matched by any progression from the other
next-preserving branching bisimilar state.

2. If the sequence consists of some non-bb-observable steps (i.e., stuttering steps that are not critical branching
but may be xd-relevant stuttering steps) followed by a bb-observable step (performing an observable action or
passing a critical branching point) then this bb-observable step needs to be present in some progression from
the next-preserving branching bisimilar state, and also each xd-relevant stuttering step before the bb-observable
step needs to be matched.

The definition is given as follows.

Definition 9 (Next-preserving Branching Bisimulation of depth xd over states). Let T1, T2 be doubly-labelled
transition systems such that Ti = (Si, APi, Ii,Li,Ai,−→i), for i ∈ {1, 2}, and S = S1 ] S2 be the disjoint union
of both sets of states. A relation over states in S is a next-preserving branching bisimulation of depth xd, denoted as
npbxd , if and only if it is symmetric and for states s, t,∈ S with npbxd(s, t) the following holds

• L1(s) = L2(t) and

• on any successor states from s we pose the following conditions

a.) for any s′ ∈ S such that s 99K s′ and npbxd(s, s
′) it follows that npbxd(s

′, t)

b.) for any j ∈ N and s′, s′′ ∈ S such that s 99Kj s′ a→ s′′ and for all si ∈ 〈s . . . s′〉 si , s and s′ 6, s′′, it
follows that there exists k ∈ N and t′, t′′ ∈ S such that t 99Kk t′ a→ t′′ and for all ti ∈ 〈t . . . t′〉 ti , t,
and npbxd(s

′, t′) as well as npbxd(s
′′, t′′) and

– if j < xd then k = j

– if j ≥ xd then k ≥ xd

and

• if there exists an infinite stuttering path s 99K s1 99K . . ., such that npbxd(si, t) for all i > 0,
then there exists an infinite stuttering path t 99K t1 99K . . ., such that npbxd(tj , si) for all i, j > 0.

Two states s and t are next-preserving branching bisimilar of depth xd, denoted as s ?
=xd t, if and only if there exists

a next-preserving branching bisimulation of depth xd, npbxd , such that npbxd(s, t).

Figure 3 pictures the two cases outlined in Definition 9: On the left, if a τ step occurs after state s, which is not
xd-relevant or passes a critical branching point, and results in a state s′ which is next-preserving branching bisimilar
of depth xd to state t, then this step does not have to be matched by a step after t (this describes the first case in
the definition where a = τ and npbxd(s

′, t)). On the right the second case is depicted, where any bb-observable
step, (which is a step on which the performed action is observable, or a step that emanates from a critical branching
point, i.e., obsbb(a)), possibly preceded by some non-bb-observable stuttering steps, needs to be matched by the same
step, also possibly preceded by some non-bb-observable stuttering steps, following state t. Of the preceding non-bb-
observable stuttering steps we need to preserve those that are xd-relevant. In the figure, we mark the next-preserving
bisimilar states with (solid-line) ellipses. As can be seen, the states before and after the stuttering sequence are in
npbxd . In the right graphic, a dotted-line ellipse marks the bb relation between states s′ and t: for two states to be
(standard) branching bisimilar, an arbitrary number of additional stuttering steps may be present (see Definition 6).
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Figure 3: Two cases summarising Definition 9 with the required npbxd relation between states marked by solid-line ellipses (the dotted-line ellipse
indicates the bb relation)

The notion of next-preserving branching bisimulation of a particular depth can be lifted from states to paths in the
obvious way. For two paths to be next-preserving bisimilar of depth xd, the relation requires the existence of related
states on both paths, as well as the stuttering before the occurrence of a bb-observable step on both paths to be equal
up to the depth xd.

To achieve this, we split each path into sub-paths which consist of a step performing a bb-observable step and its
preceding (non-bb-observable) stuttering steps. For two paths to be next-preserving branching bisimilar it is required
that each sub-path in one path is matched by a similar sub-path in the other path (and vice versa), such that it performs
the same bb-observable step and mimics the same number of stuttering up to the depth xd.

That these matching sub-paths occur in the same order on both paths is guaranteed by the fact that we require that
the matching sub-paths end in states from which the progression (i.e., the suffixes from these state) are also in the
npbxd relation. The definition formalises this as follows.

Definition 10 (Next-preserving Branching Bisimulation of depth xd over paths). A path π1 is next-preserving
branching bisimilar of depth xd to a path π2, denoted as π1

?
=xd π2, if and only if

(π1
→
=xd π2) ∧ (π2

→
=xd π1)

where (πi
→
=xd πj) with πi = 〈s0, s1, . . .〉 and πj = 〈t0, t1, . . .〉 if and only if s0

?
=xd t0 and

• s0 99Kj s′ a→ s′′ ⊆ run(πi) with j ≥ 0 and for all si ∈ 〈s0 . . . s′〉 si , s0 and s′ 6, s′′ implies there
exist k ≥ 0 and t′, t′′ ∈ Sj such that t0 99Kk t′

a→ t′′ ⊆ run(πj) and for all ti ∈ 〈t0, . . . , t′〉 ti , t0,
and s′ ?=xd t

′ and πi[s′′〉〉 ?=xd πj [t
′′〉〉 and

– if j < xd then k = j

– if j ≥ xd then k ≥ xd

or

• if πi is a finite or infinite stuttering path then πj is a finite or infinite stuttering path, respectively.

The possible scenarios for bisimilar sub-paths arising through this definition are depicted in Figure 4. On the
left, the sub-path from state s to state s′′, consisting of j stuttering steps before a bb-observable step is performed,
where j < xd (and hence all stuttering steps are xd-relevant), is matched by a sub-path from t to t′′ containing the
same number of xd-relevant stuttering steps. On the right, the sub-path from s to s′′ includes more than or exactly xd
stuttering steps (i.e., j ≥ xd ), and it has to be matched by a sub-path from t to t′′ with at least xd stuttering steps before
the bb-observable step occurs. Note that the ellipses around two states indicate that these states are next-preserving
branching bisimilar of depth xd to each other. Notably, this includes the state pairs (s, t(k−xd)), and (s(j−xd), t), since
those states are more than xd stuttering steps away from the next bb-observable step being performed (and hence the
steps do not change the equivalence classes from one state to the next), and in fact it holds for all state pairs in between,
i.e, npbxd(s, tk−n) for xd ≤ n < k and npbxd(sj−m, t) for xd ≤ m < j.
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Figure 4: Two cases for matching sub-paths within two npbxd paths that are covered in Definition 10

This picture invites us to an alternative formalisation of next-preserving branching bisimulation over paths in
which we do not prescribe the shape of sub-paths consisting of stuttering steps followed by a bb-observable step.
Instead we can characterise a path through its ?

=xd-induced partitioning. Then each single partition in one path has to
be matched by a partition in the next-preserving bisimilar path.

We say an ?
=xd-induced partitioning of path π results in i xd-equivalent partitions [π]ixd, each being a maximal

sub-sequence of π such that for all si, sj ∈ [π]ixd, si
?
=xd sj . Since we require maximality it follows that for the last

state in the sub-sequence, its successor, sn, is not npbb-bisimilar to the states in the sequence (i.e., for all si ∈ [π]ixd,
si 6 ?=xd sn) and hence the next step in π that follows the sub-sequence is an npbb-observable step.

Lemma 11. If path π1
?
=xd π2 then each xd-equivalent partition of π1, [π1]ixd is matched by an xd-equivalent partition

of π2, [π2]ixd such that for all s ∈ [π1]
i
xd and t ∈ [π2]

i
xd, s ?

=xd t.

Proof. As depicted in Figure 4, each sub-path in π1 of the form s0 99Kj s′
a→ s′′ consists of the following xd-

equivalent partitions:

– ifj ≥ xd then
[π1]

0
xd = {s0, . . . , sj−xd}, [π1]

i
xd = {sj−xd+i} for 0 < i < xd, [π1]

xd
xd = {s′}, and [π]

(xd+1)
xd = {s′′}

– if j < xd then
[π1]

i
xd = {si} for 0 ≤ i < j, [π1]

j
xd = {s′}, and [π1]

(j+1)
xd = {s′′}.

Each sub-path in π2, of the form t0 99Kk t′
a→ t′′ will be similarly partitioned. With Definition 9 it follows that

– if j ≥ xd then for all 0 ≤ i ≤ (xd+ 1), for all states s ∈ [π1]
i
xd and t ∈ [π2]

i
xd, s ?

=xd t,

– if j < xd then for all 0 ≤ i ≤ (j + 1), for all states s ∈ [π1]
i
xd and t ∈ [π2]

i
xd, s ?

=xd t.

The notion of next-preserving branching bisimulation can furthermore be raised to the level of systems in the
following way.

Definition 12 (Next-preserving Branching Bisimulation of depth xd of transition systems). Let T1, T2 be doubly-
labelled transition systems such that Ti = (Si, APi, Ii,Li,Ai,−→i), for i ∈ {1, 2}. T1 and T2 are next-preserving
branching bisimilar of depth xd , denoted as T1

?
=xd T2, if and only if

• for all s0 ∈ I1 there exists t0 ∈ I2 such that s0
?
=xd t0 and

• for all t0 ∈ I2 there exists a s0 ∈ I1 such that s0
?
=xd t0.

The definition of next-preserving branching bisimulation of depth xd is set out in such a way that standard branch-
ing bisimulation with divergence can be considered as a special case. In fact we can deduce the following correlation.
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Lemma 13. For xd = 0 the equivalence ?
=xd coincides with ,.

Proof. This follows obviously from Definitions 6 and 9. The additional condition on the number of stuttering steps
required before the occurrence of a bb-observable step is only restricting for xd > 0. If xd = 0 then for any j ≥ xd it
implies that k ≥ xd , and in particular k ≥ 0. Hence, the number of stuttering steps is unrestricted (as it is in standard
branching bisimulation).

Furthermore, our parameterised bisimulation gives rise to a hierarchy of bisimulations such that the larger the
number of preserved stuttering steps, (i.e., the larger the parameter xd ), the stronger the bisimulation. That is, any
next-preserving branching bisimulation with a larger parameter includes any next-preserving branching bisimulation
with a smaller parameter. The following lemma formalises this dependency.

Lemma 14. For any n,m ∈ N such that n > m it holds that ?
=n⊆ ?

=m.

Proof. The dependency of the depths of a next-preserving branching bisimulation is apparent in the number of stut-
tering steps required before the occurrence of a bb-observable step in the matching path of a bisimilar system. That
is, for s ∈ S1 and t ∈ S2 such that s ?

=n t and bb-observable step s′ a→ s′′ such that s 99Kj s′ a→ s′′ we are assured
that the bb-observable step is mimicked in the progression from t and hence there exist k ∈ N and t′, t′′ ∈ S2 such
that t 99Kk t′ a→ t′′ and j ≥ n ⇒ k ≥ n and j < n ⇒ k = j. If s ?

=m t then we require that j ≥ m ⇒ k ≥ m
and j < m ⇒ k = j.

Assume s ?
=n t. Then

j ≥ n ⇒ k ≥ n ⇒ k ≥ m ⇒ s
?
=m t or

j < n ⇒ k = j ⇒ j < m or m ≤ j < n

− j < m ∧ k = j ⇒ s
?
=m t

−m ≤ j < n ∧ k = j ⇒ k ≥ m ⇒ s
?
=m t.

We can also establish the following lemma which guarantees the existence of two paths being next-preserving
branching bisimilar of depth xd within two systems that are next-preserving branching bisimilar of depth xd.

Lemma 15. Let T1, T2 be doubly-labelled transition systems such that Ti = (Si, APi, Ii,Li,Ai,−→i), for i ∈
{1, 2}. Then T1

?
=xd T2 implies that for any paths π1 = 〈s0, s1, . . .〉 ∈ T1 with s0 ∈ I1, there exists a path

π2 = 〈t0, t1, . . .〉 ∈ T2 with t0 ∈ I2 such that π1
?
=xd π2. If π1 is maximal π2 will be maximal too.

Proof. Splitting π1 into sub-paths πi1 = 〈si, . . . s′i, s′′i 〉 such that si 99Kji s′i
ai→ s′′i where obsbb(ai) for any i > 0,

possibly followed by an infinite or finite maximal stuttering sub-path, provides us with an inductive argument over the
number of sub-paths within π1.

Let π[s〉〉n denote the path starting at state s that consists of n sub-paths of the form si 99Kji s′i
ai→ s′′i with sj , si

(for all sj ∈ 〈s1, . . . , s′i〉) and obsbb(ai) for 0 < i ≤ n, and π[s〉〉0 = 〈s〉. Furthermore, let πτ [s〉〉 denote the finite
but maximal or infinite stuttering paths starting from s (i.e., no bb-observable step can occur afterwards).

Any path π1 can be described as either:

a.) π1 = π1[s0〉〉n or

b.) π1 = π1[s0〉〉n _ πτ1 [s
′′
n〉〉 assuming n is finite

The proof is based on the induction over n:

• Base case: For n = 0, there are two cases

a.) π1 = 〈s0〉 and with Definitions 9 and 10 it follows that there exists t0 ∈ S2 such that s0
?
=xd t0 and for

the path π2 = 〈t0〉 it holds that π1
?
=xd π2;

b.) π1 = πτ1 [s0〉〉 and with Definition 9 it follows that there exists t0 ∈ S2 such that s0
?
=xd t0 and if

– πτ1 [s0〉〉 is an infinite sub-path then there exists an infinite stuttering path πτ2 [t0〉〉 such that
πτ1 [s0〉〉

?
=xd π

τ
2 [t0〉〉 or
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– πτ1 [s0〉〉 is a maximal but finite sub-path (i.e., it cannot be extended to perform a bb-observable step),
then for all states si ∈ πτ1 [s0〉〉 it holds that si

?
=xd t0.

• Inductive step: Assume the lemma holds for n. Again we consider two cases:

a.) Assume for any paths π1 = π1[s0〉〉n there exists a path π2 = π2[t0〉〉n such that π1
?
=xd π2. It follows that

s′′n
?
=xd t

′′
n and with Definition 9 we can conclude that for any continuation s′′n 99K

jn+1 s′n+1

an+1→ s′′n+1

there exist a kn+1 and t′n+1, t
′′
n+1 such that t′′n 99K

kn+1 t′n+1

an+1→ t′′n+1 and furthermore if jn+1 < xd then
kn+1 = jn+1 and if jn+1 ≥ xd then kn+1 ≥ xd . From this it follows with Definition 10 that for the path
π2[t0〉〉n+1 = π2[t0〉〉n _ πn+1

2 (where πn+1
2 is the sub-path of the form t′′n 99K

kn+1 t′n+1

an+1→ t′′n+1) it
holds that π1[s0〉〉n+1 ?

=xd π2[t0〉〉n+1.

b.) Assume for any paths π1 = π1[s0〉〉n _ πτ1 [s
′′
n〉〉 there exists a path π2 such that π1

?
=xd π2. The

same argument for the case above applies for the non-stuttering sub-paths such that for any contin-
uation π1[s0〉〉n+1 there exists a sub-path π2[t0〉〉n+1 such that π1[s0〉〉n+1 ?

=xd π2[t0〉〉n+1. With
s′′n+1

?
=xd t

′′
n+1 it follows from Definition 9 (similarly to the inductive base case part b) that either there

exists a matching infinite stuttering sub-path πτ2 [t
′′
n+1〉〉 such that πτ1 [s

′′
n+1〉〉

?
=xd πτ2 [t

′′
n+1〉〉, and hence

π1[s0〉〉n+1 _ πτ1 [s
′′
n+1〉〉

?
=xd π2[t0〉〉n+1 _ πτ2 [t

′′
n+1〉〉, or otherwise if πτ1 [s

′′
n+1〉〉 is a finite maximal path

then for all si ∈ πτ1 [s′′n+1〉〉 it holds that si
?
=xd t

′′
n+1, and hence π1[s0〉〉n+1 _ πτ1 [s

′′
n+1〉〉

?
=xd π2[t0〉〉n+1.

For next-preserving bisimilar paths we can also deduce that the suffix of one path, gained by omitting the first
step, is next-preserving branching bisimilar of a reduced depth to the suffix of the bisimilar paths, gained by omitting
the first step. This is formalised in the following lemma.

Lemma 16. For any paths π1 = 〈s0, s1, . . .〉 and π2 = 〈t0, t1, . . .〉, if π1
?
=xd π2 then π1[s1〉〉 ?=(xd−1) π2[t1〉〉.

Proof. From Definition 10 and π1
?
=xd π2 it follows that

a.) if s0
a→ s1 and obsbb(a) then t0

a→ t1 and π1[s1〉〉 ?=xd π2[t1〉〉. With Lemma 14 it follows that
π1[s1〉〉 ?=(xd−1) π2[t1〉〉.

b.) if s0 99Kj s′
a→ s′′ and j > 0 and obsbb(a) then there exists k and t′, t′′ such that t0 99Kk t′

a→ t′′ and

– 0 < j < xd implies k = j and xd > 1, and hence (j − 1) < (xd− 1) and (j − 1) = (k − 1)

from which follows π1[s1〉〉 ?=(xd−1) π2[t1〉〉,
– j ≥ xd implies k ≥ xd, and hence (j − 1) ≥ (xd− 1) and (k − 1) ≥ (xd− 1)

from which follows π1[s1〉〉 ?=(xd−1) π2[t1〉〉.

c.) if π1 is a finite stuttering path, then for all si ∈ π1 and tj ∈ π2, si
?
=xd tj . Thus, π1[s1〉〉 ?=xd π2[t1〉〉 and with

Lemma 14 it follows that π1[s1〉〉 ?=(xd−1) π2[t1〉〉.

d.) if π1 is an infinite stuttering path, then π2 is also an infinite stuttering path and since s0
?
=xd t0, it follows that

s1
?
=xd t1 and thus π1[s1〉〉 ?=xd π2[t1〉〉. With Lemma 14 it follows that π1[s1〉〉 ?=(xd−1) π2[t1〉〉.

Furthermore, for two next-preserving bisimilar paths we can show that for each state in one path there exist a state
in the other path that is next-preserving bisimilar, and also their corresponding suffixes are next-preserving bisimilar.
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Lemma 17. For any two paths π1 and π2, π1
?
=xd π2 implies that for all states s ∈ π1 there exists a state t ∈ π2

such that s ?
=xd t and π1[s〉〉 ?=xd π2[t〉〉, and vice versa.

Proof. This result follows from the construction in Lemma 11. Path π1 can be partitioned into imaximal xd-equivalent
partitions [π1]ixd and similarly path π2 can be partitioned into i maximal xd-equivalent partitions [π2]ixd. Each [π1]

i
xd

is matched by [π2]
i
xd in the sense that for all si ∈ [π1]

i
xd and ti ∈ [π2]

i
xd, si

?
=xd ti.

Every state s ∈ π1 falls into one xd-equivalent partition, i.e., there exists an i such that s ∈ [π1]
i
xd. With Lemma 11

it follows that there exists an xd-equivalent partition in π2, [π2]ixd (which is non-empty) such that [π1]ixd
?
=xd [π2]

i
xd.

We can choose any t ∈ [π2]
i
xd such that s ?

=xd t.
As a consequence of Definition 10 it follows that the continuation from s in path π1, π1[s〉〉, may either start

with some stuttering steps that are not xd-relevant (if [π1]ixd contains more than one element) or performs an npbb-
observable step which leads to the next xd-equivalent partition [π1]

(i+1)
xd . In both cases the suffix from t in path π2,

π2[t〉〉, consists of matching partitions, and hence π1[s〉〉 ?=xd π2[t〉〉.

2.6. Preservation of CTL∗

The preservation of a CTL∗ formula depends on the nesting depth of X operators it contains. We can see that the
standard branching bisimulation does not preserve formulas containing the X operator. Hence, only formulas with an
xdepth of 0 are preserved in a branching bisimilar system. To preserve any formula of an xdepth greater than 0, the
additional requirements of a next-preserving branching bisimulation of depth xd, where xd is equal to the xdepth of
the formula, are required.

We formulate the following theorem to establish the relation between the xdepth of a formula and the parameter
xd of the next-preserving branching bisimulation to guarantee the preservation of the formula.

Theorem 18 (Next-Preserving Branching Bisimulation of depth xd preserves CTL∗ formulas of xdepth xd). For
any ψ ∈ CTL∗and two doubly-labelled transition systems T1 and T2, such that Ti = (Si, APi, Ii,Li,Ai,−→i), for
i ∈ {1, 2},

(xdepth(ψ) = xd ∧ T1
?
=xd T2) ⇒ (T1 � ψ ⇔ T2 � ψ)

.

Proof. The proof is shown by induction over the formula ψ and comprises two cases: (i) if two states are next-
preserving branching bisimilar of depth xd, they satisfy the same CTL∗ state formulas of xdepth xd, and (ii) if two
paths are next-preserving branching bisimilar of depth xd, they satisfy the same CTL∗ path formulas of xdepth xd.

Assume T1
?
=xd T2. It is required to show that:

(i) For all state formulas ψ ∈ CTL∗ with xdepth(ψ) = xd and states s ∈ I1 and t ∈ I2,

s
?
=xd t⇒ (s � ψ ⇔ t � ψ)

(ii) For all path formulas ϕ ∈ CTL∗ with xdepth(ϕ) = xd , states s ∈ I1 and t ∈ I2, and paths π1 ∈ paths(s) and
π2 ∈ paths(t),

π1
?
=xd π2 ⇒ (π1 � ϕ⇔ π2 � ϕ).

Assume that statement (i) holds for the state formulas ψ1 and ψ2 and statement (ii) holds for the path formulas ϕ1

and ϕ2.

(i) For state formulas:

ψ ∈ AP :
Since s ?

=xd t implies that L1(s) = L2(t), it obviously follows that s � ψ ⇔ t � ψ for any atomic proposition ψ.
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ψ = ψ1 ∧ψ2:
For xdepth(ψ) = 0 the result follows immediately from Lemma 13.
If xdepth(ψ) > 0 we apply the following reasoning. Let xdepth(ψ) = n, xdepth(ψ1) = n1 and xdepth(ψ2) = n2.
From Definition 8 it follows that n ≥ n1 and n ≥ n2. Hence, s ?

=n t implies s ?
=n1 t and s ?

=n2 t (with Lemma 14).
s � ψ if and only if s � ψ1 and s � ψ2. Since s ?

=n1
t and s ?

=n2
t, with the induction assumption (i), it follows that

t � ψ1 and t � ψ2, from which follows t � ψ, so s � ψ ⇔ t � ψ.

ψ = ¬ψ1:
s � ψ if and only if s 6� ψ1. From Definition 8, xdepth(ψ) = xdepth(ψ1), so from the induction assumption, t 6� ψ1

and hence t � ¬ψ1. Therefore s � ψ ⇔ t � ψ.

ψ = Eϕ1, for some path formula ϕ1:
s � ψ if and only if there exists a maximal path π1 ∈ paths(s) such that π1 � ϕ1. From Definition 8,
xdepth(ψ) = xdepth(ϕ1), so with Lemma 15 it follows that there exists a maximal path π2 ∈ paths(t) such that
π1

?
=xd π2. From the induction assumption, π1 � ϕ1 ⇔ π2 � ϕ1 so therefore s � ψ ⇔ t � ψ.

(ii) For path formulas:

Let π1 = 〈s0, s1, . . .〉 where s = s0 and π2 = 〈t0, t1, . . .〉 where t = t0.

ϕ = ϕ1 ∧ϕ2:
The proof for this case is similar to the ψ1 ∧ ψ2 case above. Let xdepth(ϕ) = n, xdepth(ϕ1) = n1 and
xdepth(ϕ2) = n2. From Definition 8 it follows that n ≥ n1 and n ≥ n2. Hence, π1

?
=n π2 implies π1

?
=n1

π2 and
π1

?
=n2 π2 (with Lemma 14). With the induction assumption (ii) it follows that π1 � ϕ1 ⇔ π2 � ϕ1 and similarly

for ϕ2. Therefore, π1 � ϕ1 ∧ ϕ2 ⇔ π2 � ϕ1 ∧ ϕ2.

ϕ = ¬ϕ1:
π1 � ϕ if and only if π1 6� ϕ1. From Definition 8, xdepth(ϕ) = xdepth(ϕ1), so from the induction assumption,
π2 6� ϕ1 and hence π2 � ¬ϕ1. Thus, π1 � ϕ⇔ π2 � ϕ.

ϕ = ϕ1Uϕ2:
π1 � ϕ1Uϕ2 if and only if there exists a j with 0 ≤ j < length(π1) such that π1[sj〉〉 � ϕ2 and for all i with
0 ≤ i < j, π1[si〉〉 � ϕ1.
With Lemma 17 it follows that there exists a state tj ∈ π2 such that tj

?
=xd sj and π1[sj〉〉 ?=xd π2[tj〉〉. With the

given assumption we can deduce that π2[tj〉〉 � ϕ2, using xdepth(ϕ) ≥ xdepth(ϕ2) and Lemma 14. Similarly, we
can reason that for all si ( 0 ≤ i < j) there exists a state ti ∈ π2 such that ti

?
=xd si and π1[si〉〉 ?=xd π2[ti〉〉, and

hence, with xdepth(ϕ) ≥ xdepth(ϕ1) and Lemma 14, π2[ti〉〉 � ϕ1.
It remains to show that there does not exist a state tn ∈ π2, 0 ≤ n < j, such that π2[tn〉〉 2 ϕ1. This follows from
the concept of an xd -induced partitioning: each state in the prefix π2〈〈tj−1] belongs to one xd-equivalent partition,
hence tn ∈ [π2]

m
xd for some m with 0 ≤ m < j, and with Lemma 11 we know that [π2]mxd matches some partition

[π1]
m
xd. With the assumption that for all i with 0 ≤ i < j, π1[si〉〉 � ϕi, it follows also that π1[sm〉〉 � ϕ1 for any

sm ∈ [π1]
m
xd and hence π2[tn〉〉 � ϕ1.

ϕ = Xϕ1:
π1 � ϕ if and only if π1[s1〉〉 � ϕ1; with Lemma 16, π1

?
=xd π2 implies π1[s1〉〉 ?=(xd−1) π2[t1〉〉; since

xdepth(ϕ1) = (xd − 1) it follows from the assumption (ii) that π2[t1〉〉 � ϕ1 and hence π2 � ϕ.
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2.7. Formula-specific Next-preserving Branching Bisimulations
The previous section introduces a family of next-preserving branching bisimulations in which each class is param-

eterised with a natural number indicating which nesting depths of X operators is preserved. For some applications, the
notion of next-preserving bisimulation can be even more specific if we additionally parameterise the bisimulation with
a sub-set of atomic propositions that are considered to be relevant. To be more specific, we can demand a model to
be next-preserving bisimilar with respect to a particular formula. For example, in the domain of slicing it is common
practice to produce a slice (which is a bisimilar system with less stuttering steps) specifically for a particular formula,
which is computationally inexpensive, for the resulting model to be as small as possible.

To make the necessary changes to the definitions we need to reflect on the notion of observable with respect to
formula ϕ. Generally, any change in the labelling of two states is observable. However, with respect to a formula ϕ
only those atomic propositions are observable that are present in ϕ. Hence, we restrict the labelling of any state s,
L(s) to L(s)|ϕ. Moreover, we extend the notion of bb-observable step s → s′ with s 6, s′, to bb-observable with
respect to ϕ, denoted as s 6,ϕ s′, or if the step is labelled with an action, i.e., s a→ s′, using the notation obsϕ bb(a),
i.e., obsϕ bb(a) if and only if s 6,ϕ s′.

The resulting definition is given as follows.

Definition 19 (Next-preserving Branching Bisimulation with respect to ϕ over states). Let T1, T2 be doubly-
labelled transition systems such that Ti = (Si, APi, Ii,Li,Ai,−→i), for i ∈ {1, 2}, S = S1]S2 be the disjoint union
of both sets of states, and ϕ a CTL∗ formula. A relation over states in S is a next-preserving branching bisimulation
with respect to ϕ, denoted as npbϕ, if and only if it is symmetric and for states s, t ∈ S with npbϕ(s, t) the following
holds

• L1|ϕ(s) = L2|ϕ(t) and

• on any successor states from s we pose the following conditions

a.) for any s′ ∈ S such that s 99K s′ and npbϕ(s, s
′) it follows that npbϕ(s

′, t)

b.) for any j ∈ N and s′, s′′ ∈ S such that s 99Kj s′ a→ s′′ and for all si ∈ 〈s . . . s′〉 si ,ϕ s and s′ 6,ϕ s′′,
it follows that there exists k ∈ N and t′, t′′ ∈ S such that t 99Kk t′

a→ t′′ and for all ti ∈ 〈t . . . t′〉
ti ,ϕ t, and npbϕ(s

′, t′) as well as npbϕ(s
′′, t′′) and

– if j < xdepth(ϕ) then k = j

– if j ≥ xdepth(ϕ) then k ≥ xdepth(ϕ)
and

• if there exists an infinite stuttering path s 99K s1 99K . . ., such that npbϕ(si, t) for all i > 0,
then there exists an infinite stuttering path t 99K t1 99K . . ., such that npbϕ(tj , si) for all i, j > 0.

Two states s and t are next-preserving branching bisimilar with respect to ϕ, denoted as s ?
=ϕ t, if and only if there

exists a next-preserving branching bisimulation with respect to ϕ, npbϕ, such that npbϕ(s, t).

Next-preserving bisimulation with respect to ϕ over paths and whole systems can be defined in a similar fashion.
Based on these new definitions we rephrase the notion of soundness in the following theorem.

Theorem 20 (Next-Preserving Branching Bisimulation with respect to ϕ preserves ϕ). For two doubly-labelled
transition systems T1 and T2, such that Ti = (Si, APi, Ii,Li,Ai,−→i), for i ∈ {1, 2} and any CTL∗ formula ϕ,

T1
?
=ϕ T2 ⇒ (T1 � ϕ⇔ T2 � ϕ)

The proof is similar to the proof of Theorem 18 and hence omitted here. In fact, the theorem can be generalised
stating that for any CTL∗ formulas ϕ and ψ:

(L1|ϕ = L1|ψ ∧ xdepth(ϕ) = xdepth(ψ)) ⇒ (T1
?
=ϕ T2 ⇒ (T1 � ψ ⇔ T2 � ψ))

That is, two systems T1 and T2 for which T1
?
=ϕ T2 satisfy the same CTL∗ formulas that are in the same class of

formulas as ϕ, where we consider a class of formulas to collect all formulas of the same xdepth and containing the
same atomic propositions.
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2.8. A Hierarchy of Next-preserving Branching Bisimulations
The results from the previous sections lead to a hierarchy of next-preserving branching bisimulations as depicted

in Figure 5.

strong bisimulation

bb

npb1

npb2

npb3

npb4

...

npbxd

npbϕ1

npbϕ2

npbϕ3

...

⊇
⊇

⊇
⊇ ⊇

⊇
⊇

⊇

Figure 5: The hierarchy of next-preserving branching bisimulations

The order on the left depicts the hierarchy of next-preserving bisimulation of a certain depth. From Lemma 13 it is
known that bb ≡ npb0, which is the weakest next-preserving bisimulation in our hierarchy. Any increase in the depth
which is taken into account results in a stronger bisimulation, as follows from Lemma 14. Eventually, the concept of
next-preserving branching bisimulation coincides with strong bisimulation [1, 2], i.e., npbb∞ ≡ strong bisimulation.

When we zoom in to a next-preserving bisimulation of a particular depth (in the figure we chose xd = 2), we
discover a hierarchy within this class which considers the next-preserving bisimulations with respect to particular
classes of formulas. This is depicted on the right. Assuming that xdepth(ϕ1) = xdepth(ϕ2) = xdepth(ϕ3) = . . . =
xd and L|ϕ1

⊆ L|ϕ2
⊆ L|ϕ3

⊆ . . . it follows that npbϕ1
⊇ npbϕ2

⊇ npbϕ3
and for any ϕn such that L|ϕn

= L we
have npbϕn

≡ npbxd.
This concludes the section on next-preserving branching bisimulations. The following section presents an appli-

cation for this particular bisimulation, namely slicing.

3. Slicing Behavior Tree models

Slicing is a technique for reducing the size of a model, which may be a program or any (formal) description
of a system’s behaviour [4]. It has been developed for various contexts, such as debugging and understanding of
programs and for supporting program analysis. The reduced artefact, called a slice, can be computed algorithmically
with little computational effort, even for very large models. The technique utilises flow information of the model and
dependencies between its elements to eliminate parts which are not relevant to a specific criteria, called the slicing
criteria. Slicing has been defined for various programming languages (for an overview see [23, 24]) and lately also
for a number of formal modelling notations (e.g., [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]). Slicing of a formal model
is of particular interest if an automated analysis of the model is intended, for example, using a model checker. Slicing
as a reduction technique pushes the limits of a model checker, allowing larger models to be automatically analysed.

In [15] we have defined standard slicing for Behavior Tree models which preserves LTL−X formulas (i.e., linear
temporal formulas that do not contain the X operator). In this section we briefly introduce the Behavior Tree notation
and the basic concepts of standard slicing for this language.

3.1. The Behavior Tree Notation
The Behavior Tree1 (BT) notation [35, 13] is a graphical notation to capture the functional requirements of a

system provided in natural language. The semantics of the notation has been formalised in [14] using an extension

1Geoff Dromey introduced the name Behavior Trees and chose the American spelling. Although this manuscript is written following the British
spelling rules we respect Dromey’s naming decision and deliberately sacrifice consistency at this point.
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of CSP, called CSPσ [36]. The novel (and from a modeller’s perspective appealing) idea of BTs is that the notation
allows the user to merge sub-trees on a graphical level, and hence supports the integration of single requirements (each
modelled by a sub-tree) into a full model. A formal discussion on the integration process can be found in [37].

Details on the syntax of the notation and its well-formedness conditions can be found in [38]. Here we simply
provide an example to give the reader a flavour of the notation. In Figure 6 an integrated tree is shown modelling the
behaviour of a light switch system which can be operated manually or switched off by a timer.

User
???switch_on???

R1

Switch
[ on ]R1

Light
[ on ]R1

Switch
[ wait ]

R1

User
???switch_off???

R2

Switch
[ off ]R2

Light
[ off ]R2

Switch
[ wait ]

R2

Timer
> time_out <

R3

Switch
[ off ]R3

Switch
[ wait ]

[ ]

Timer
[ check ]

@

Power
[ on ]

R1
@

Timer
[ increase ]

R4

Timer
[ check ]R4

Timer
>> time_up <<

R5

Timer
[ increase ]R5

Timer
[ reset ]R5

Timer
< time_out >

R5

Timer
[ check ]

R3

@
User

>> enter <<
R6

User
[ switch_on ]R6

User
>> exit <<R6

User
[ switch_off ]

R6

User
>> enter <<

R6

--

Figure 6: Example Behavior Tree modelling a hypothetical light switch system

Integration. The example is fictive but we assume that the system’s requirements were given as six individual
requirements (labelled as R1 to R6), each of which is modelled as a sub-tree (the labels in the nodes of each sub-tree
refer to the corresponding requirement label). These sub-trees are then merged at nodes they have in common and
hence form a single (integrated) tree, modelling the system as a whole.

Components. The system is comprised of five components (Power, Switch, Light, Timer, and User)
and receives external input from an unspecified environment. The behaviour of each component is captured via
nodes and their types (specified as bracketing symbols, e.g., < >) such that a sequence of nodes can refer to different
components. This way the model can be captured closer to common functional requirements given in natural language.

Branching Structure. Our example model consists of three main threads operating concurrently: the Switch
thread (on the left in Fig. 6), the Timer thread (in the middle), and the User thread (on the right). The Switch
thread models three alternative behaviours of which only one is executed: either the user is executing a switch (i.e.,
the first two branches are guarded by a guard node which becomes satisfied as soon as the User changes into the
corresponding state), or a time-out occurs, modelled by the third branch which is guarded by an internal event sent
from the Timer. In each case the state of Switch and Light is set correspondingly as a consequence. Alternatively,
behaviour can also be guarded by a selection node which specifies a condition on the state of a component which
needs to be satisfied in order to pass control to the successor node. If the condition is not satisfied (i.e., the component
is not in this state) the behaviour terminates at this node.

Flags. The leaf nodes of most branches are reversion nodes (carrying the flag ‘ˆ’), modelling that the behaviour
reverts back to the matching node and thus repeats the sub-tree. A matching node is a node that has the same com-
ponent name, the same type and qualifier (e.g., Switch, [ ] and wait). As a side-effect of reversion, all parallel
threads are terminated (if they have branched off below the matching node) as to prevent infinite thread creation. As
the behaviour of the time-out case is the same as in the situation where the user switched the light off, we use a refer-
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ence node (carrying the flag ‘=>’) which substitutes the sub-tree below the matching node. Nodes in different parallel
threads can also carry a synchronisation flag (marked by ‘=’) which enforces the synchronisation of the threads. This
feature, however, has not been used in our model.

The Timer thread is modelled abstractly here with two parallel threads, one repeatedly increasing an abstract
counter which is not specified here, and one awaiting an external input indicating that the set maximum time has
expired. Once this external input occurs, a kill node, carrying the ‘−−’ flag, terminates the parallel counting thread
(i.e., the thread that follows the node matching the kill node). Note that these first two nodes of the thread are linked
and build an atomic block which specifies that the execution occurs in one atomic step. After the counting thread is
killed, the timer resets, sends an internal time out event (read by the Switch thread) and reverts back to the root
of the Timer thread.

The User thread models toggling behaviour, which is triggered by an external input indicating a Person entering
or exiting the room.

Tags and Parameterisation. Besides component names, types, qualifier and flags, a node might also carry a tag
(e.g., R1) which indicates the requirement (from a given requirements document) it models. The symbol @ can be
used to indicate points of integration. The syntax also provides constructs for parameterisation of sub-trees in a BT
such that the sub-tree is to be performed on all members (do-forall) or one member (do-forone) of a reference set S.
This feature, however, has not been used in the example above.

The system modelled here is a hypothetical one which could have been modelled in many different ways and on
various levels of abstraction. Our aim here was to give a concise example which covers most of the common features
of the BT syntax, namely various node types (state realisation, guard, selection, internal input, internal output, external
input and external output), flags that manipulate the control flow (reversion, reference, synchronisation, thread kill),
as well as concurrent and alternative branching, and atomic blocks.

3.2. Behavior Tree Models as Transition Systems

BT models can obviously be interpreted as transition systems in the sense that the nodes prescribe possible tran-
sitions from pre- to post-states. States are understood in the usual way as evaluations of state variables. The state
variables of a BT model represent the components and the possible values represent the “states” that a component
might “realise” (e.g., the state realisation node Switch[on] can be interpreted as the assignment Switch := on). Ad-
ditional variables are used for marking the position in the BT and thus for capturing the control flow, such as program
counters and Boolean flags to indicate sending or receiving of messages.

Since in BTs we encounter both the notion of labelling of states by variable/value pairs as well as the labelling
of transitions by actions (i.e., BT nodes), we base our results on the concept of doubly-labelled transition systems,
as described in the previous section. We denote the doubly-labelled transitions system that represents a BT model
B with the state labelling function LB . The set of actions in LB is given through the nodes (or atomic blocks) in
B. Each of these nodes (or atomic blocks) change at least the program counter variable associated with the node’s
thread. Some nodes also change other state variables, namely those nodes of type state realisation, internal input
or output, and external output. That is, s n→ s′ can occur if s is a possible pre-state of node n (i.e., the value of
the program counter of n’s thread in s corresponds to the position of n in the BT) and will lead to an updated post-
state s′. i.e., LB(s′) = (LB(s)⊕ ctrlUpd(n))⊕ update(n), where ctrlUpd(n) specifies the update of the program
counter variable of the thread to which node n belongs, update(n) specifies the variable changes specified by n and⊕
denotes a functional override2. All other nodes (i.e, nodes of type guard, selection, external input and internal input)
function as a guard on the transition, i.e., s n→ s′ can only occur if the pre-state s satisfies the condition imposed
by the “guarding” node n, i.e., guard(n) ∈ LB(s) where guard(n) specifies the condition on the state variables
other than the program counter imposed by node n. When the transition occurs, the state remains unchanged apart
from the program counter variable for that thread, indicating that the control flow has progressed beyond node n, i.e.,
LB(s′) = LB(s)⊕ ctrlUpd(n).

2For two (partial) functions f : A → B and g : A → B, the functional override f ⊕ g is defined as a function h : A → B such that
∀a ∈ dom(g) · h(a) = g(a) ∧ ∀b 6∈ dom(g) · h(b) = f(b).
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3.3. Standard Slicing of Behavior Trees

Slicing of BTs is performed in a similar manner as program slicing. As a first step we create a control flow graph
of the BT model (CFG-BT), which indicates the flow of control between single nodes. The CFG-BT is generated
from the BT model by adding the following edges and nodes to the BT model:

• an edge from each reversion and reference node to its matching target node;

• a terminal node and a false edge for each selection node such that the new edge leads to the terminal node
(modelling termination in the case where the selection is not satisfied);

• a false edge from each guard and input event node that loops back to itself (modelling blocking behaviour when
the guard is not satisfied or the input event has not yet occurred).

Control flow graphs of BTs are different to control flow graphs for programs in that a node can have more than
two successors (due to concurrent and alternative branching structures). Moreover, threads are not necessarily syn-
chronised at the beginning and the end. A terminal node thus only terminates the behaviour of one thread only, while
other threads might still be running. Therefore, a CFG-BT can have multiple terminal nodes. We consider threads to
start at the root node of the BT and thus all threads contain the same initial nodes.

3.3.1. Node Dependencies
In a second step, a Behavior Tree Dependence Graph (BTDG) is generated from a given CFG-BT. A BTDG

(similar to a Program Dependence Graph [39, 40]) is a graph in which all (BT) nodes are linked according to their
dependencies. The dependencies specifically defined for BTs are control dependence (cd), data dependence(dd),
message dependence (md) (between internal input and output nodes), synchronisation dependence (sd) (between
synchronisation nodes), interference dependence (id) (a dependence across parallel threads), and termination depen-
dence (td) (between a node which terminates another thread, such as a reversion or thread kill node, and a node in the
thread to be terminated). The definitions of these dependencies, as well as examples, can be found in [15, 41]. The

edges in the BTDG are denoted as p
d
� q where d ∈ {cd, dd,md, sd, id}, indicating that node q depends on node

p and the dependency is of type d. A path in a BTDG is a sequence of nodes such that for every pair of consecutive

nodes ni and ni+1 there is a dependency of some type d, i.e., ni
d
� ni+1.

3.3.2. The Slicing Criterion
For each BT we will compute only one general BTDG which is independent of the property to be verified but

covers all dependencies between all components and attributes. From this general BTDG a slice is created with respect
to a specific temporal logic formula ϕ. The formula ϕ gives rise to the slicing criterion, which is defined as the set
of nodes which modify one of the variables included in ϕ. Let Def (n) be the set of all components (or component
attributes) that are defined or modified at node n (through a state realisation), then we define the slicing criterion as
Cϕ = {n | ∃v ∈ vars(ϕ) · v ∈ Def (n)}. The nodes in the criterion set form the starting points for simultaneous
backwards traversals in the dependence graph. Using each of the criterion nodes as a starting point, the dependence
graph is traversed in reverse, collecting all nodes that are encountered via dependence edges. The algorithm checks
whether a node has previously been encountered before adding it to the slice, in order to prevent infinite cycles caused
by cyclic or symmetric dependencies. The set of nodes encountered by the simultaneous traversals of the dependence
graph is referred to as the slice set.

The second phase involves identifying which reversion and reference nodes to add back into the slice. These
reversion and reference nodes are then used as the starting points for another reverse exploration of the dependence
graph, in order to locate any further dependencies. Finally, the nodes collected in the slice set so far are re-formed
into a syntactically correct Behavior Tree, forming the slice.

3.3.3. Observable and Stuttering Nodes
The nodes in the slicing criterion n ∈ Cϕ are referred to as observable nodes whereas all nodes m /∈ Cϕ are

stuttering nodes. The function obsϕ(n) returns true if and only if the node n is observable. Note that the backwards
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traversal in the dependence graph reaches stuttering as well as observable nodes, so while all observable nodes must
be included in the slice, stuttering nodes may or may not be included in the slice.

Each stuttering node in a BT B gives rise to a stuttering step (with respect to ϕ) in LB . Similarly, observable
nodes lead to steps performing an observable action, also referred to as observable transitions.

3.3.4. A Layered Approach to Slicing
Due to the fact that the interference dependency relation is intransitive, the traversal through the BTDG leads to

slices that include nodes along infeasible paths in the BTDG. That is, there is no true dependency to these nodes and
– although there is no harm in including them – the slice can be reduced by eliminating the nodes along infeasible
paths. Thus, a slice Ss that is created using the standard slicing technique (as outlaid above) can be further optimised
using an algorithm for detecting infeasible paths (infPath), described in detail in [41]. We denote this process as
infPath(Ss) = Sinf .

For formulas which contain the next-step operator X, we propose a new algorithm in this paper which modifies
a slice in such a way that the satisfiability of all CTL∗ formulas is preserved, including formulas containing the
X operator. We call this algorithm next-preserving slicing, denoted as function nsp. This algorithm can be applied to
standard slices or optimised slices, i.e., nsp(Ss) = Snsp or nsp(infPath(Ss)) = nsp(Sinf ) = Sinsp. Applied to a
BT model B we can depict the following chain of steps if all the procedures are applied:

B
standard−−−−−−→ Ss

infPath−−−−−→ Sinf
nsp−−→ Sinsp

More details on our approach of standard slicing of BTs, including the full definitions of the dependencies and a
proof of soundness, can be found in [41, 15]. The next section describes the next-preserving slicing function.

4. Next-preserving Slicing of BT models

The standard BT slicing procedure described in the previous section only preserves CTL∗−X . This section presents
a slicing algorithm which preserves properties containing the X operator. The technique is derived from the given
definition of next-preserving branching bisimulation, by ensuring that stuttering nodes are retained at places in the BT
where it is required by the relation. In order to find these locations, the nodes corresponding to observable transitions
must be identified, as well as nodes that may execute before a critical branching point.

4.1. Where to place stuttering nodes
The first step is to determine the locations at which these stuttering nodes must be placed. From the definition

of next-preserving branching bisimulation, stuttering nodes may need to be placed before observable transitions and
critical branching points. Locating observable transitions is straightforward, since these simply correspond to the
observable nodes in the tree.

Finding the nodes corresponding to critical branching points requires a more careful examination of the various
Behavior Tree constructs. A state before a critical branching point will have at least two branches emanating from it.
Branching only occurs in the transition system when there is non-determinism in the Behavior Tree. Furthermore, to
be classified as a critical branching point, one branch must lead to an observable node which is not possible on all
paths via another branch, within the same number of steps (up to the nesting depth of the X operator in the formula
considered). The Behavior Tree constructs to be considered in more detail are alternative branching, concurrent
branching and conditional nodes. The remaining constructs, state realisations, thread kills, reversions, reference and
synchronisation nodes, can only result in non-determinism when executed in parallel, so are covered by the discussion
on concurrent branching in Section 4.1.2.

4.1.1. Alternative Branching
This is perhaps the most obvious Behavior Tree construct which exhibits non-deterministic behaviour, since one

branch is chosen and the others are terminated. Since there may be an observable node in one branch that is unreach-
able on the other branch, the state immediately before a set of alternative branches may be a critical branching point.
Note that the exception is if the root nodes of each of the alternative branches are selections or guards with mutually
exclusive conditions, in which case the choice is deterministic.
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4.1.2. Concurrent Branching
Concurrent branches may also have non-determinism, arising from the interleaved execution of nodes in different

threads. Hence, any node in a concurrent branch is a branching point of behaviour and there is a non-deterministic
choice before every step. In most cases such states are not critical branching points, since after executing a node in
one thread, it is still possible to execute the nodes in the other threads.

There are cases, however, where the execution of one or more nodes in one branch may preclude the execution of
nodes in another branch. For example, in the BT on the left of Figure 7, if B[f] executes, it prevents B?b? and its
descendent C[c] from executing. Another case is where one branch contains a thread kill node that terminates the
other branch. In general, the cases of interest are when an observable node is transitively dependent on a conditional
node, which is in turn dependent on a node in a parallel thread that negates the condition, or when an observable node
is in a thread that may be terminated by a thread kill in another thread. Note that even though reversions terminate
parallel threads, after reverting, the control flow can still reach those threads when they are re-started.

4.1.3. Conditional nodes
It may appear that conditional nodes produce branching in the transition system, since they produce branching in

the corresponding control flow graph. However, this is not the case. At any particular state, the values of the atomic
propositions are already known. Therefore, if the next node which is to execute is a conditional node, it is already
known whether or not the condition is satisfied by that state, so there is no non-determinism involved. For example,
consider the Behavior Tree shown on the left of Figure 7. The selection B?b? may or may not hold, depending on
whether or not the state realisation B[f] has executed. That is, the location between A[a] and B?b? corresponds
to multiple states in the transition system. The diagram on the right of Figure 7 shows the corresponding transition
system. Both states s2 and s6 correspond to the location between A[a] and B?b? in the Behavior Tree. At s2, the
component B is still set to b, so the condition is satisfied, whereas at s6, the component B is now set to f, so the
condition is not satisfied. At both states, the values of the components are known, so there is no non-determinism.

B
[ b ]

s1

s2 s5

s3

s4

A
[ a ]

B
[ f ]

B
? b ?

C
[ c ]

B [ b ]

A [ a ]

B ? b ?

B [ f ]

C [ c ]

s0

s7

B [ f ]

s8

B [ f ]

s9

C [ c ]

s6

A [ a ]

Figure 7: Example with a selection node

The exception is external input nodes, which are controlled by the external environment and thus may or may not
hold regardless of the current state of the system. Nevertheless, even external input nodes do not result in critical
branching points. Recall that in the control flow graph, the false branch from an external input node loops back to the
node again. Figure 8 shows an example Behavior Tree with an external input node and the corresponding transition
system. Assume that C[c] is an observable node. Therefore, after taking the false branch, it is still possible to take
the true branch on a subsequent iteration. Even though there is one possible path consisting of an infinite loop of false
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steps, the state s1 will not be a critical branching point, since it does not have a successor from which all paths do not
reach the observable node.

s1

s2

s3

A
[ a ]

B
>> m <<

C
[ c ]

A [ a ]

B >> m <<

C [ c ]

s0

true
false

Figure 8: Example with an external input node

In summary, the only Behavior Tree constructs that produce critical branching points in the transition system are
the nodes followed immediately by alternative branches which are not guarded by mutually exclusive selections and
nodes in concurrent branches which prevent nodes in other branches from executing.

To produce a next-preserving bisimilar slice we need to add stuttering nodes before each of the nodes that are
either observable or positioned before a critical branching point.

4.2. Slicing Algorithm

The following algorithm produces a next-preserving slice from a given Behavior Tree B. The algorithm starts by
creating the normal slice S, according to the algorithm given in [41]. The rest of the algorithm searches for locations
requiring extra stuttering nodes, specifically observable nodes and nodes corresponding to the steps before a critical
branching point. For each of these locations, the algorithm selects suitable stuttering nodes to be returned to the
slice. The algorithm maintains a set finalSet, which initially contains the nodes present in the normal slice. When
the algorithm terminates, finalSet contains the nodes which belong to the new next-preserving slice, consisting of the
normal slice set with additional stuttering nodes as required.

The set of observable nodes are identified at Line 5, using the function obs. For each of these nodes, stuttering
nodes are located, using the function findStuttering. This function identifies suitable stuttering nodes which can
execute immediately before the given node and returns the correct number of them according to the xdepth of the
formula and the number of stuttering nodes which were present in the original BT. These stuttering nodes are then
added to the slice finalSet. The observable node is marked as visited to prevent infinite traversals in later parts of the
algorithm.

As discussed in the previous section, there are two situations which result in critical branching points in the
transition system: alternative branches and nodes in concurrent branches which prevent an observable node from
executing.

Lines 11 to 15 repeat the process of selecting stuttering nodes for all the nodes which are root nodes of an alterna-
tive branch. Although there are cases where alternative branching groups do not result in critical branching points, i.e.
when the conditions of the root nodes are mutually exclusive, all alternative branching nodes are included. Computing
each condition is undecidable in general, so it is not possible to identify which groups of alternative branches have
mutually exclusive conditions. Including user input at this stage could produce a smaller slice by eliminating such
cases.

From line 17, the algorithm locates the nodes which require stuttering steps in concurrent branches. The goal is to
locate any nodes that can prevent an observable node from executing (i.e., falsifies the execution condition). For each
of these nodes, referred to as falseNodes, the state (or states) in the transition system before it executes is a critical
branching point, because there is a choice between a path where an observable node executes and another on which
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Algorithm 1 Next-preserving slicing of Behavior Tree B
1: Compute the normal slice S of B
2: x = xdepth(ϕ)
3: finalSet = {}
4: %- - - - - - - - Observable nodes - - - - - - - - %
5: for all n in nodes(B) such that obs(n) do
6: stuttSet = findStuttering(n, x )
7: Mark n as visited
8: finalSet = finalSet ∪ stuttSet
9: end for

10: %- - - - - - - - Critical branching points due to alternative branching - - - - - - - - %
11: for all n in nodes(B) such that n is the root node of an alternative branch do
12: stuttSet = findStuttering(n, x )
13: Mark n as visited
14: finalSet = finalSet ∪ stuttSet
15: end for
16: %- - - - - - - - Critical branching points due to concurrent branching - - - - - - - - %
17: for all n in nodes(B) such that obs(n) do
18: for all d in depChains(n) do
19: falseNodes = findFalseDep(n, d)
20: for all m in falseNodes do
21: workingSet = {m}
22: while workingSet ! = {} do
23: tempSet = {}
24: for all p in workingSet such that execBefore(p, falseNode) and p is not marked as visited do
25: stuttSet = findStuttering(p, x )
26: tempSet = tempSet ∪ stuttSet
27: Mark p as visited
28: end for
29: finalSet = finalSet ∪ workingSet
30: workingSet = tempSet
31: end while
32: end for
33: end for
34: end for

it does not. Therefore, the nodes which can execute immediately before each of the falseNodes are locations where
extra stuttering is required. Lines 17 to 34 find these locations in the following fashion: for every observable node, the
algorithm traverses each chain of dependencies from that node in the dependency graph, using the function depChains
at line 18, which returns the set of such chains. The function findFalseDep, at line 19, returns the set of nodes that
negate a condition which the observable node is dependent on. For example, in Figure 7, if C[c] is an observable
node, then B[f] would be returned by the findFalseDep function.

For each of the falseNodes, the loop at lines 20 to 32 searches for nodes which can execute before it, given by the
function execBefore at line 24. The function returns the parent, as well as any nodes in parallel threads which are able
to execute immediately prior to the falseNode. This is computed by exploring the dependency graph to ensure that
there are no dependencies preventing the parent/parallel node from executing before the falseNode. In the example,
B[b] and A[a] are both such cases. For each of the nodes returned by execBefore, stuttering nodes are selected at
lines 24 to 28 and stored in a temporary set, tempSet.

The process is then repeated for the new stuttering nodes, since including these nodes might result in a new critical
branching point in the transition system. At each iteration, the nodes in the current working set are added to the finalSet
and the working set is updated to tempSet, the set of additional stuttering steps found. When a fixed point is reached
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and there are no more unexplored nodes in the working set, the loop ends.
The nodes in the finalSet must then be re-formed into a syntactically correct Behavior Tree, according to the

procedure described in [41]. The resulting slice is next-preserving branching bisimilar to the original BT as follows
from its construction, since stuttering steps were inserted before all observable nodes and critical branching points.

5. Related Work

Our work builds on the definition of branching bisimulation [5], in particular its variant that takes infinitely stut-
tering paths into account, introduced in [5] as divergence-sensitive branching bisimulation. A similar bisimulation
relation has also been introduced in [16] as divergence-sensitive stuttering bisimulation. Both notions are weak forms
of bisimulation which disregard the number of stuttering steps in a system (and are hence suitable for reduction tech-
niques such as slicing or partial order reductions) but take into account the branching structure of a system (hence
suitable for linear and branching time temporal logics). Both bisimulation relations, however, do not preserve formu-
las containing the next-step temporal operator.

Bergstra et al. in [42] define the notion of orthogonal bisimulation equivalence, which refines van Glabbeek and
Weijland’s branching bisimulation and allows a sequence of stuttering steps to be collapsed into one stuttering step, to
compress internal activity for the purpose of abstraction. The stuttering actions are thus not totally discarded; hence
this notion provides a step into the same direction as our approach. The modal logic that characterises the equivalence
relation, however, does not contain the next-step operator (only one stuttering action is preserved) and therefore would
not be suitable for our purpose.

Kuc̆era and Strejc̆ek in [22] characterise the temporal logic LTL in terms of the nesting depths of the two modal-
ities X (the next-step operator) and U (the until operator), which leads to a hierarchy of LTL formulas. They for-
mulate a stuttering theorem which principally provides a similar result to our work using the notion of (m,n) −
stutter closedness of languages for LTL formulas containing at most m U operators and at most n X operators.
From this theorem one can conclude that if n is the nesting depth of the X operator in the formula then at least n
stuttering steps have to remain in each path, and if m is the nesting depth of the U operator in the formula then at least
m copies of repeated sub-paths have to remain in each path. However, their paper is mainly interested in theoretical
aspects of LTL. Our work on the other hand is based on a branching bisimulation and thus the relations preserve
formulas of linear and branching-time temporal logics. Furthermore, our results are driven by the application which
lead to a definition of next-preserving branching bisimulations which are more specific and hence gives rise to an
algorithmic approach to generate next-preserving branching bisimilar systems of particular depth.

Slicing has been applied to other languages in the context of temporal logic model checking where preservation of
temporal formulas is required. However, only few approaches are formalised and include the full proof of correctness.

For instance, Brückner and Wehrheim in [43] slice Object-Z for verification and in [31] extend the approach to
CSP-OZ, a language that combines CSP and Object-Z. A further extension to CSP-OZ-DC, a combination of CSP,
Object-Z and Duration Calculus, is given in [44]. In their approach, the slice preserves formulas of a temporal logic
which is invariant to stuttering (e.g., LTL−X ). Similarly, Rakow in [45] develops an approach for slicing Petri Nets
which is guaranteed to preserve LTL−X properties. Bordini et al. in [46] slice agent-based systems written in the
AgentSpeak language and prove that their approach preserves LTL−X using stuttering equivalence. Hatcliff et al.
in [47] show the correctness of the Indus slicer, which slices Java programs, using a notion of projection similar to
Weiser’s projection [4] to demonstrate that their approach preserves LTL−X properties.

Several other authors have proposed slicing approaches for reducing state explosion without providing full proofs
of correctness. For example, Odenbrett et al. in [34] present an approach for slicing AADL (Architecture Analysis
and Design Language) specifications in order to reduce them prior to translation into Promela, the input language of
the SPIN model checker [48]. They claim that CTL∗−X properties are preserved, but the proof is left for future work.
Also, Schäfer and Poetzsch-Heffter in [49] slice specifications of adaptive systems as part of the MARS framework.
They use consistent bisimulation to show that the approach preserves a variant of CTL∗ that does not contain the U or
X operators, but details of the proof are not provided. Finally, van Langenhove and Hoojewijs in [50] present an
approach for slicing UML models for verification. The approach is claimed to preserve LTL−X properties, although
again a full proof is not given.
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6. Conclusion

In this paper we have proposed a novel notion of bisimulations, called a family of next-preserving branching
bisimulations, which takes into account the branching structure of paths and disregards stuttering steps along the paths
unless they are significant with respect to a temporal logic formula. Each bisimulation in this family is parameterised
by a natural number, referred to as its depth, which specifies the number of stuttering steps that are required to be
present in both bisimilar systems. With this feature, the relation is stronger than weak forms of bisimulation but weaker
than strong bisimulation. In particular, each bisimulation guarantees the preservation of temporal logic formulas
containing next-step operators up to a nesting depth which coincides with the specified depth of the bisimulation.

The family of next-preserving bisimulations is useful in any application requiring formulas with the next-step
operator but in which strong bisimulation is too restrictive. As an example of such an application, we designed a
novel slicing approach based on next-preserving branching bisimulations, to reduce the size of models that we want
to model check. The definition of the family of next-preserving branching bisimulations gives rise to an algorithm for
slicing in that it advises which stuttering steps can be sliced away and which need to be preserved. The relation can
then be utilised to prove correctness of the approach. Few approaches have been published that provide a full proof of
correctness of their slicing technique. None of these preserve next-step formulas. To our knowledge our approach to
slicing which preserves satisfiability for any CTL∗ formula is novel and has not been proposed for any modelling or
programming language previously.

For future work it would be interesting to investigate whether our notion of next-preserving branching bisimula-
tion can be incorporated into the Sigref Bisimulation Tool Box [51]. This would provide us with a signature-based
approach to compute a bisimilar model that preserves the next-step operator for a given class of formulas.
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