

An O(mlog n) algorithm for computing stuttering equivalence
and branching bisimulation
Citation for published version (APA):
Groote, J. F., Jansen, D. N., Keiren, J. J. A., & Wijs, A. J. (2017). An O(mlog n) algorithm for computing
stuttering equivalence and branching bisimulation. ACM Transactions on Computational Logic, 18(2), Article 13.
https://doi.org/10.1145/3060140

Document license:
TAVERNE

DOI:
10.1145/3060140

Document status and date:
Published: 01/06/2017

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://doi.org/10.1145/3060140
https://doi.org/10.1145/3060140
https://research.tue.nl/en/publications/1855caf3-5280-4f44-b294-5c5b76d93443

13

An O (mlog n) Algorithm for Computing Stuttering Equivalence
and Branching Bisimulation

JAN FRISO GROOTE, Eindhoven University of Technology
DAVID N. JANSEN, Radboud Universiteit Nijmegen
JEROEN J. A. KEIREN, Open University of the Netherlands and Radboud Universiteit Nijmegen
ANTON J. WIJS, Eindhoven University of Technology

We provide a new algorithm to determine stuttering equivalence with time complexity O (mlog n), where n
is the number of states and m is the number of transitions of a Kripke structure. This algorithm can also be
used to determine branching bisimulation in O(m(log |Act| + log n)) time, where Act is the set of actions in a
labeled transition system.

Theoretically, our algorithm substantially improves upon existing algorithms, which all have time com-
plexity of the form O (mn) at best. Moreover, it has better or equal space complexity. Practical results confirm
these findings: they show that our algorithm can outperform existing algorithms by several orders of mag-
nitude, especially when the Kripke structures are large.

The importance of our algorithm stretches far beyond stuttering equivalence and branching bisimulation.
The known O (mn) algorithms were already far more efficient (both in space and time) than most other
algorithms to determine behavioral equivalences (including weak bisimulation), and therefore they were
often used as an essential preprocessing step. This new algorithm makes this use of stuttering equivalence
and branching bisimulation even more attractive.

CCS Concepts: � Theory of computation → Formal languages and automata theory; Design and analysis
of algorithms;

Additional Key Words and Phrases: Branching bisimulation, algorithm

ACM Reference Format:
Jan Friso Groote, David N. Jansen, Jeroen J. A. Keiren, and Anton J. Wijs. 2017. An O (mlog n) algorithm
for stuttering equivalence and branching bisimulation. ACM Trans. Comput. Logic 18, 2, Article 13 (June
2017), 34 pages.
DOI: http://dx.doi.org/10.1145/3060140

1. INTRODUCTION

Stuttering equivalence [Browne et al. 1988] and branching bisimulation [van Glabbeek
and Weijland 1996] were proposed as alternatives to weak bisimulation [Milner 1980].
Weak and branching bisimulation are defined on labeled transition systems where
some transitions are labeled with the hidden label τ . Stuttering equivalence is defined

Authors’ addresses: J. F. Groote (corresponding author) and A. J. Wijs, Department of Mathematics and
Computer Science, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands;
email: {J.F.Groote, A.J.Wijs}@tue.nl; D. N. Jansen (Current address), Institute of Software, Chinese Academy
of Sciences, Room 215, Building 5, Zhongguancun South Fourth Street #4, Beijing 100190, PR China; email:
dnjansen@ios.ac.cn; J. J. A. Keiren, Open University of the Netherlands, Faculty of Management, Science
& Technology, P. O. Box 2960, 6401 DL Heerlen, The Netherlands, and Radboud Universiteit, Institute
for Computing and Information Sciences, P. O. Box 9010, 6500 GL Nijmegen, The Netherlands; email:
Jeroen.Keiren@ou.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1529-3785/2017/06-ART13 $15.00
DOI: http://dx.doi.org/10.1145/3060140

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

http://dx.doi.org/10.1145/3060140
file:dnjansen@ios.ac.cn
file:Jeroen.Keiren@ou.nl
http://dx.doi.org/10.1145/3060140

13:2 J. F. Groote et al.

on Kripke structures where all transition labels are hidden, and the states are labeled.
All these equivalences define whether two states exhibit the same visible behavior,
where occurrences of hidden transitions cannot be observed.

The essential difference between branching bisimulation and stuttering equivalence
on the one hand and weak bisimulation on the other hand is that in the former, when
mimicking an a-transition, all states in a mimicking sequence τ ∗a τ ∗ must be related
to the state either before or directly after the a from the first system. This means that
branching bisimulation and stuttering equivalence are slightly stronger notions than
weak bisimulation.

Groote and Vaandrager [1990] proposed an O (mn)-time algorithm for stuttering
equivalence and branching bisimulation, where n is the number of states and m is
the number of transitions. We refer to this algorithm as GV. It is based on the O (mn)
algorithm for strong bisimulation equivalence by Kanellakis and Smolka [1990]. Both
algorithms require O (m) space. They calculate for each state whether it is (stuttering)
bisimilar to another state.

The basic idea of both algorithms is to partition the set of states into blocks. The
algorithms start from a (coarse) initial partition, which is iteratively refined. States
that are stuttering equivalent/branching bisimilar invariantly reside in the same block.
Whenever there are some states in a block B from which a transition is possible to some
block SpB, which is called a splitter, and there are other states in B from which such a
step is not possible, B is split accordingly, refining the partition. When no splitting is
possible anymore, the partition is called stable, and two states are in the same block if
and only if they are stuttering equivalent/branching bisimilar.

In order to determine whether a block Bcan be split, one needs to investigate whether
there are sequences of transitions from states in block B to states in a splitter block
SpB. A crucial observation by Groote and Vaandrager [1990] is that for stuttering
equivalence and branching bisimulation, it is possible to determine this by only in-
vestigating single transitions from so-called bottom states. A bottom state is a state
that has no outgoing transitions with a hidden label to a state in the same block. A
prerequisite for the observation is that there are no cycles with hidden labels in a block.
Fortunately, such cycles can be eliminated as a preprocessing step in linear time. It
is noteworthy that for weak bisimulation, the notion of a bottom state does not help,
making it far more expensive to determine whether blocks can be split.

Another important insight is the “process the smaller half” technique proposed
by Hopcroft [1971] and Aho et al. [1974] and used by Paige and Tarjan [1987] and
Fernandez [1990] for strong bisimulation. This allowed formulating partitioning algo-
rithms with O (mlog n) worst-case time complexity. The essential idea is that a state
with its incoming and outgoing transitions will only be revisited whenever it resides
in a block of at most half the size of the current block. In particular, in the first visit,
the state resides in a block with at most n/2 states. This implies that a state can only
be visited �log2 n� times.

In this article, we present the first algorithm for stuttering equivalence and branch-
ing bisimulation with O (mlog n) time complexity, in which all techniques mentioned
earlier are combined. First, we select a splitter and establish which blocks it splits by
combining the approach using bottom states from GV with the “process the smaller
half” detection approach of Paige and Tarjan [1987]. Subsequently, we use the “pro-
cess the smaller half” technique again to split each splittable block by only traversing
transitions in a time proportional to the size of the smaller resulting subblock. As it
is not known which of the two subblocks is smaller, the transitions of both subblocks
are processed alternatingly, such that the total processing time can be attributed to
the smaller block. For checking behavioral equivalences, applying such a technique is
entirely new. We are only aware of one similar approach for an algorithm in which the

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:3

smallest bottom strongly connected component of a graph needs to be found [Chatterjee
and Henzinger 2011].

Groote and Vaandrager [1990] conjectured that the algorithm GV could be improved
to time complexity O (mni + min + mlog n), where ni is the number of states that become
bottom states and mi is the number of hidden transitions, using the “process the smaller
half” technique. Our results are much better than the improvement foreseen in this
conjecture.

Although the basic sketch of the algorithm is relatively straightforward, meeting the
complexity bound of O (mlog n) requires most operations in the algorithm to be O (1)
time. In order to achieve this, the algorithm heavily relies on auxiliary data structures
with subtle operations. We provide a detailed overview of the data structures and a
pseudo-code description of the algorithm to facilitate implementation.

We implemented the algorithm and we used the implementation for two purposes.
The first purpose was to increase our confidence that the algorithm is correct by running
it on many thousands of randomly generated transition systems comparing the results
with those of the classical GV algorithm. While carrying out these experiments, we
checked a large number of invariants establishing that the integrity of the auxiliary
data structures was maintained during all runs. We also carefully measured that the
complexity of the algorithm was correct by assigning time budgets to each task in the
algorithm and by monitoring that these were never depleted.

The second purpose of the implementation was to get an impression of the practical
running times. From a theoretical viewpoint, our algorithm outperforms its prede-
cessors substantially. But the theoretical bounds are complexity upper bounds, and
depending on the transition systems, the classical algorithms could be much faster
than the upper bound suggests. Furthermore, the increased bookkeeping to maintain
the auxiliary data structures in the new algorithm may be such a burden that all
gains are lost. We applied the algorithms on a substantial benchmark set and we found
that our algorithm matches the best running times when transition systems are small.
When the transition systems get large, our algorithm tends to outperform existing
algorithms by several orders of magnitude.

The improved algorithm that we present here can also have a profound effect on
the practical complexity to establish other behavioral equivalences. The existing al-
gorithms for branching bisimulation/stuttering equivalence were already known to be
practically very efficient. This is the reason that they are being used in multiple explicit-
state model checkers, such as CADP [Garavel et al. 2012], the MCRL2 toolset [Groote
and Mousavi 2014; Cranen et al. 2013], and TVT [Virtanen et al. 2004]. In particular,
they are being used as preprocessing steps for other equivalences (weak bisimula-
tion, trace-based equivalences) that are much harder to compute. By using the new
algorithm, this preprocessing step can be sped up. Note that for weak bisimulation, an
O (mn) algorithm was devised [Li 2009; Ranzato and Tapparo 2008], but until that time
an expensive transitive closure operation of at best O (n2.373) was required. Addition-
ally, the algorithms for deciding orthogonal bisimulation [Vu 2007] and the algorithm
for governed stuttering bisimulation for parity games [Cranen et al. 2012] are based
on GV, albeit more complicated. They might also be susceptible to the improvements
presented in this article.

A preliminary version of this article appeared as Groote and Wijs [2016]. Compared
to that version, the main changes in this article are found in Sections 5 and 6. In par-
ticular, Jansen and Keiren [2016] showed that the original algorithm did not meet the
acclaimed O (mlog n) running time in certain degenerate cases. These problems have
been resolved in this article. Furthermore, in this article, a detailed pseudocode de-
scription of the algorithm is presented, whereas Groote and Wijs [2016] gave a detailed,
textual description. The data structures have been changed in order to obtain a cleaner

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:4 J. F. Groote et al.

representation while maintaining the required time complexities for all operations.
The implementation reported on in Section 8 of this article is completely independent
of the one reported on in Groote and Wijs [2016]. But the implementations performed
comparably, with a major difference that the new one is on average 20% faster.

Related Work. The most relevant related work has already been mentioned [Groote
and Vaandrager 1990; Kanellakis and Smolka 1990; Hopcroft 1971; Aho et al. 1974;
Paige and Tarjan 1987]. There have been other attempts to improve upon GV. Blom
and Orzan [2003] observed that GV only splits a block into two parts at a time. They
proposed to split a block into as many parts as possible, reducing the burden of moving
states and transitions to new blocks. They do this by computing signatures of states,
capturing which blocks can be reached via outgoing transitions, and partitioning the
states using a hash table based on those signatures. Furthermore, their algorithm does
not explicitly replace blocks of the old partition with new blocks. Their worst-case time
and space complexities are worse than those of GV; in particular, the algorithm runs in
O (mn2) time and O (mn) space, but in certain practical cases this algorithm performs
much better than GV. Blom and van de Pol [2009] refined the ideas from Blom and
Orzan [2003] to inductive signatures, improving the time complexity to O (n2 + m) and
the space complexity to O (m).

There is also work on improving the running times of these bisimulation reduction
algorithms by employing multiple processors. For multicore CPUs, van Dijk and van de
Pol [2016] provided an algorithm inspired by Blom and van de Pol [2009] for symbolic
branching bisimulation minimization. Wijs [2015] proposed an algorithm for computing
strong and branching bisimulation on Graphics Processing Units based on both GV
[Groote and Vaandrager 1990] and the signature-based algorithms [Blom and Orzan
2003; Blom and van de Pol 2009]. These parallel and symbolic algorithms improve the
required running time considerably in general, but they do not imply any improvement
to the single-threaded algorithms.

Outline. Kripke structures and (divergence-blind) stuttering equivalence are intro-
duced in Section 2. The rest of the article introduces our algorithm in increasing detail.
First, in Section 3, we present a high-level description of the partition refinement
approach due to Groote and Vaandrager [1990]. Next, the main ideas required to de-
velop our O (mlog n) algorithm are introduced in Section 4. More details of how this
complexity is achieved is described in Section 5. The algorithm requires most basic op-
erations to be in O (1) time; we therefore introduce the necessary data structures and
explain how the time bounds for these basic operations can be achieved in Section 6.
We describe how our algorithm can be applied to compute branching bisimulation in
Section 7. Finally, we evaluate the performance of our algorithm and compare it to
existing algorithms in Section 8.

The reader who only wants to get a basic understanding of the key ideas in our
algorithm can safely skip Sections 5 and 6. If the intent is to understand the details of
the algorithm but not to implement it, Section 6 can safely be skipped.

2. PRELIMINARIES

We introduce Kripke structures and (divergence-blind) stuttering equivalence. Labeled
transition systems and branching bisimulation will be addressed in Section 7. Note that
in contrast to the standard definition [Kripke 1963], we do not require the transition
relation of a Kripke structure to be total. On the one hand, our algorithm does not
depend on the transition relation being total, and on the other hand, requiring it to be
total would complicate our presentation in various places.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:5

Definition 2.1 (Kripke Structure). A Kripke structure is a quadruple (S, AP,→, L),
where

(1) S is a finite set of states,
(2) AP is a finite set of atomic propositions,
(3) → ⊆ S × S is a transition relation, and
(4) L : S → 2AP is a state labeling.

We use n = |S| for the number of states and m = |→| for the number of transitions.
We generally restrict our attention to Kripke structures where n is in O (m) as other-
wise, the Kripke structure would necessarily contain uninteresting states without any
incoming or outgoing transitions. The substructure containing the interesting states
can be extracted in O (m) time. For sets of states B, B′ ⊆ S, we write s → B if and only
if there is some s′ ∈ B such that s → s′, B → s if and only if there is some s′ ∈ B such
that s′ → s, and B → B′ if and only if there are states s ∈ B, s′ ∈ B′ such that s → s′.
We write s 	→ s′, s 	→ B, and B 	→ B′ if and only if it is not the case that s → s′, s → B,
and B → B′, respectively. We generally use the abbreviations in(s) = {s′ | s′ → s} and
out(s) = {s′ | s → s′}. Similarly, for a set of states B ⊆ S, we say that in(B) = {s | s → B}
and out(B) = {s | B → s}.

Definition 2.2 (Divergence-blind Stuttering Equivalence). Let K = (S, AP,→, L) be
a Kripke structure. A symmetric relation R ⊆ S × S is a divergence-blind stuttering
equivalence if and only if for all s, t ∈ S such that s R t:

(1) L(s) = L(t), and
(2) for all s′ ∈ S, if s → s′, then there are t0, . . . , tk ∈ S for some k ∈ N such that t = t0,

s R ti, ti → ti+1 for all i < k, and s′ R tk.

We say that two states s, t ∈ S are divergence-blind stuttering equivalent, notation
s ↔dbs t, if and only if there is a divergence-blind stuttering equivalence relation R
such that s R t.

An important property of divergence-blind stuttering equivalence is that divergent
states (i.e., states with the same label on a loop) are divergence-blind stuttering equiv-
alent. Furthermore, all such states are divergence-blind stuttering equivalent to a
nondivergent state that can mimic all steps of the states on the loop. Stuttering equiv-
alence is equal to divergence-blind stuttering equivalence, except that in addition, it
distinguishes divergent and nondivergent states. We define stuttering equivalence in
terms of divergence-blind stuttering equivalence by transforming the given Kripke
structure.

Definition 2.3 (Stuttering Equivalence). Let K = (S, AP,→, L) be a Kripke structure.
Define the Kripke structure Kd = (S ∪ {sd}, AP ∪ {d},→d, Ld), where d is an atomic
proposition not occurring in AP and sd is a fresh state not occurring in S. Furthermore,

(1) →d = → ∪ {〈s, sd〉 | s is on a cycle of states all labeled with L(s), or s = sd}, and
(2) for all s ∈ S, we define Ld(s) = L(s) and Ld(sd) = {d}.
States s, t ∈ S are stuttering equivalent, notation s ↔s t, if and only if there is a
divergence-blind stuttering equivalence relation R on Sd such that s R t.

Note that an algorithm for divergence-blind stuttering equivalence can also be used to
determine stuttering equivalence by employing only a linear-time and -space transfor-
mation of the Kripke structure: According to Definition 2.3, we have to visit at most m
transitions to find the self-loops and then add a single state sd and at most min{m, n}

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:6 J. F. Groote et al.

transitions to sd. Therefore, we only concentrate on an algorithm for divergence-blind
stuttering equivalence.

3. PARTITIONS AND SPLITTERS: A SIMPLE ALGORITHM

Our algorithm to determine divergence-blind stuttering equivalence is based on parti-
tion refinement of partitions of the set of states S. Such a partition P = {Bi ⊆ S | 1 ≤
i ≤ k} is a set of nonempty subsets of states such that Bi ∩ Bj = ∅ for all 1 ≤ i < j ≤ k
and S = ⋃

1≤i≤k Bi. Each Bi is called a block.
If s → s′ with states s and s′ in the same block B, we call transition s → s′ inert w. r. t.

P. We say that a partition P coincides with divergence-blind stuttering equivalence
when s ↔dbs t if and only if there is a block B ∈ P such that s, t ∈ B. We say that
partition P respects divergence-blind stuttering equivalence if and only if for all s, t ∈ S,
if s ↔dbs t, then there is some block B ∈ P such that s, t ∈ B. The goal of the algorithm
is to calculate a partition that coincides with divergence-blind stuttering equivalence.
This is done starting from an initial partition P0 consisting of blocks Bsatisfying s, t ∈ B
if and only if L(s) = L(t). Constructing the initial partition takes time O (n). Note that
this initial partition respects divergence-blind stuttering equivalence.

We say that a partition P is cycle-free if and only if there is no block B ⊆ S with states
s0, . . . , sk ∈ B for some k ∈ N, such that s0 = sk and s0 → · · · → sk. It is easy to make the
initial partition P0 cycle-free by merging all states on a cycle in each block into a single
state and removing self-loops. This preserves divergence-blind stuttering equivalence
and can be performed in linear time employing standard algorithms to find strongly
connected components (see, e.g., Aho et al. [1974, Algorithm 5.4]).

We explain how partitions are refined. Given a block RfnB of the current partition
and the union SpC of some of the blocks in the partition, we define

split(RfnB, SpC) = {s ∈ RfnB | ∃k ∈ N, s0, . . . , sk ∈ S.

s = s0 ∧ (∀i < k.si → si+1 ∧ si ∈ RfnB) ∧ sk ∈ SpC}
cosplit(RfnB, SpC) = RfnB \ split(RfnB, SpC)

as the two blocks into which RfnB is split. We sometimes call split(RfnB, SpC) the red
subblock and cosplit(RfnB, SpC) the blue subblock of RfnB. Note that if RfnB ⊆ SpC,
then RfnB is completely red since we can choose k = 0 in the definition. It is common
to split with respect to single blocks, that is, SpC being a single block SpB ∈ P [Groote
and Vaandrager 1990; Kanellakis and Smolka 1990], and we write split(RfnB, SpB) in
that case. However, to obtain an O (mlog n) algorithm, Paige and Tarjan [1987] also
split under the union of some of the blocks in P.

We say that a block RfnB is unstable under SpC if and only if both split(RfnB, SpC) 	=
∅ and cosplit(RfnB, SpC) 	= ∅. In that case, we call SpC a splitter of RfnB. A partition
P is unstable under SpC if and only if there is at least one RfnB ∈ P that is unstable
under SpC. If P is not unstable under SpC, then it is called stable under SpC. If P is
stable under all SpC, then it is simply called stable.

A refinement of RfnB ∈ P under SpC consists of the two new blocks split(RfnB, SpC)
and cosplit(RfnB, SpC). A partition P ′ is a refinement of P under SpC if and only if
all unstable blocks RfnB ∈ P have been replaced by new blocks split(RfnB, SpC) and
cosplit(RfnB, SpC).

The following lemma expresses that if a partition is stable, then it coincides with
divergence-blind stuttering equivalence. It also says that during refinement, the en-
countered partitions respect divergence-blind stuttering equivalence and remain cycle-
free.

LEMMA 3.1. Let K = (S, AP,→, L) be a Kripke structure and P a partition of S.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:7

(1) For all states s, t ∈ S, if s, t ∈ B with B a block of the partition P, P is stable, and P
is a refinement of the initial partition P0, then s↔ dbs t.

(2) If P respects divergence-blind stuttering equivalence, then any refinement of P under
the union of some of the blocks in P also respects it.

(3) If P is a cycle-free partition, then any refinement of P is also cycle-free.

PROOF.

(1) We show that if P is a stable partition, the relation R = {〈s, t〉 | ∃B ∈ P.s, t ∈ B}
is a divergence-blind stuttering equivalence. It is clear that R is symmetric. Assume
s R t. Obviously, L(s) = L(t) because s, t ∈ B ∈ P and P refines the initial partition.
For the second requirement of divergence-blind stuttering equivalence, suppose s → s′.
There is a block B′ such that s′ ∈ B′. So s ∈ split(B, B′) by definition of split. As P is
stable, also t ∈ split(B, B′), so there exist some k ∈ N, t0, . . . , tk−1 ∈ B and tk ∈ B′ with
t = t0 → t1 → · · · → tk. This clearly shows that for all i < k, we have s R ti and s′ R tk.
So, R is a divergence-blind stuttering equivalence, and therefore it holds for all states
s, t ∈ S that reside in the same block of P that s↔ dbs t.

(2) The second part can be proven by reasoning toward a contradiction. Let us
assume that a partition P ′ that is a refinement of P under an arbitrary union of
blocks SpC does not respect divergence-blind stuttering equivalence, although P
does. Hence, there are states s, t ∈ S with s ↔ dbs t and a block RfnB ∈ P with
s, t ∈ RfnB and s and t are in different blocks in P ′. Given that P ′ is a refinement
of P under SpC, w. l. o. g. s ∈ split(RfnB, SpC) and t ∈ cosplit(RfnB, SpC). By def-
inition of split, there are s0, . . . , sk−1 ∈ RfnB (for some k ∈ N) and sk ∈ SpC such
that s = s0 → s1 → · · · → sk. Then, either k = 0 and RfnB ⊆ SpC, but then
t /∈ cosplit(RfnB, SpC) = ∅, which is a contradiction, or k > 0, and since s ↔ dbs t,
we can construct a sequence t = t0 → · · · → t1 → · · · → tk starting in t such that
si ↔ dbs ti for all i ≤ k. In particular, for i < k, there are ti = ti,0 → · · · → ti,ni ∈ RfnB
such that si ↔ dbs ti, j for j ≤ ni, and ti,ni → ti+1,0 = ti+1. For sk−1 → sk, similarly, a path
tk−1 = tk−1,0 → · · · → tk−1,nk−1 → tk can be constructed such that tk−1,i ↔ dbs sk−1 for all i,
and tk ↔ dbs sk. Therefore, tk ∈ SpC, but this means that we have t ∈ split(RfnB, SpC),
again contradicting that t ∈ cosplit(RfnB, SpC).

(3) If P is cycle-free, this property is straightforward, since splitting any block of
P will only change inert transitions to noninert ones, and will thus not introduce
cycles.

This suggests Algorithm 1, which has time complexity O (mn) and space complexity
O (m). It essentially was presented by Groote and Vaandrager [1990].

ALGORITHM 1: Basic partition refinement

By Lemma 3.1, it is an invariant of this algorithm that P respects divergence-blind
stuttering equivalence and P is cycle-free. In particular, P = P0 satisfies this invariant
initially. If P is not stable, a refinement under some block SpB exists, splitting at least
one block. Therefore, this algorithm finishes in at most n− 1 steps, as during each iter-
ation of the algorithm the number of blocks increases by at least one, and the number
of blocks can never exceed the number of states. When the algorithm terminates, P is
stable, and therefore, two states are divergence-blind stuttering equivalent if and only

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:8 J. F. Groote et al.

if they are part of the same block in the final partition. This end result is independent
of the order in which splitting took place.

In order to see that the time complexity of this algorithm isO (mn), we must show that
we can both detect that P is unstable and carry out splitting in time O (m). The crucial
observation to efficiently determine whether a partition is stable stems from Groote
and Vaandrager [1990]. They showed that it is enough to look at the bottom states of a
block, which always exist for each block because the partition is cycle-free. The bottom
states of a block are those states that do not have an outgoing inert transition, that is,
a transition to a state in the same block. They are defined by

bottom(B) = {s ∈ B | s 	→ B}.
The following lemma presents the crucial observation concerning bottom states.

LEMMA 3.2. Let K = (S, AP,→, L) be a Kripke structure and P be a cycle-free partition
of its states. Partition P is unstable under union SpC of some of the blocks in P if and
only if there is a block RfnB ∈ P such that

split(RfnB, SpC) 	= ∅ and bottom(RfnB) ∩ cosplit(RfnB, SpC) 	= ∅.

PROOF.

⇒ If P is unstable under SpC, then split(RfnB, SpC) 	= ∅ and cosplit(RfnB, SpC) 	= ∅.
The first conjunct is identical to the first part of the right-hand side of the lemma.
If cosplit(RfnB, SpC) 	= ∅, there is a state s ∈ cosplit(RfnB, SpC). As the blocks
RfnB ∈ P do not have cycles, there is an RfnB-path from s to some bottom state s⊥ ∈
RfnB. We claim that s⊥ ∈ cosplit(RfnB, SpC). Otherwise, s⊥ would have a (strong)
transition to SpC, so s⊥ ∈ split(RfnB, SpC) and therefore s ∈ split(RfnB, SpC),
which is a contradiction.

⇐ It follows from the right-hand side that split(RfnB, SpC) 	= ∅ and cosplit(RfnB,
SpC) 	= ∅.

This lemma can be used as follows to find a block to be split. Consider each SpB ∈ P.
Traverse its incoming transitions and mark the states that can reach SpB in zero or
one step. If a block RfnB has marked states, but not all of its bottom states are marked,
the condition of the lemma applies, and it needs to be split. As shown by Groote and
Vaandrager [1990], it is at most needed to traverse all transitions to carry this out, so
its complexity is O (m).

If SpB is equal to RfnB, no splitting is possible. We implement it by marking all
states in SpB, as each state in SpB can reach itself in zero steps. In this case, condition
bottom(RfnB) ∩ cosplit(RfnB, SpC) 	= ∅ is not true. This is different from Groote and
Vaandrager [1990], where a block is never considered as a splitter of itself. Our approach
is more convenient in the algorithm in the next sections.

If a block RfnB is unstable and all states from which a state in SpB can be reached in
one step are marked, then a straightforward recursive procedure is required to extend
the marking to all states in split(RfnB, SpB), and those states need to be moved to a
new block. This takes time proportional to the number of incoming transitions of RfnB;
that is, extending the marking in all unstable blocks and if needed moving the states
to a new block take at most O (m) time.

4. OUTLINE OF THE O (mlog n) ALGORITHM

The crucial idea to transform the algorithm from the previous section into an O (mlog n)
algorithm stems from Paige and Tarjan [1987]. In addition to the current partition
P, a coarser partition C is maintained. We call the elements of C constellations. A

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:9

constellation is the union of a set of blocks in P. If it corresponds with a single block,
the constellation is called trivial. The algorithm maintains the following invariant:

INVARIANT 4.1. The current partition P is stable under each constellation in C.

The initial set of constellations C0 contains a single constellation with all states,
which satisfies the invariant. The desire is to make every constellation trivial, as this
implies that the partition P is stable, allowing the algorithm to finish. So, assume that
some constellation SpC is not trivial, which means it consists of two or more blocks,
among which SpB ∈ P. We want to split SpC into SpB and SpC \ SpB. We then have
to refine P under both SpB and SpC \ SpB to re-establish the invariant.

According to the “process the smaller half” principle, it is only allowed to spend time
proportional to the smaller splitter (SpB or SpC\SpB) and its transitions to determine
whether the current partition can be refined under both splitters. We always select SpB
such that |SpB| ≤ 1

2 |SpC|. Determining the blocks that must be split by SpB can be
performed in exactly the same way as in the O (mn) algorithm.

We now turn our attention to identifying the blocks that must be split under SpC \
SpB. By the invariant, only blocks of the shape split(RfnB, SpB) can be unstable under
SpC \ SpB. When investigating a transition from RfnB to SpB, it is stored whether
there are also transitions from its source state in RfnB to SpC\SpB. This is possible as
the data structures allow quickly finding all transitions from a state to a constellation.
When all such transitions into SpB have been investigated, it is easy to find out whether
there are bottom states in split(RfnB, SpB) from which SpC \ SpB cannot be reached
(Lemma 3.2, right-hand side). Efficiently checking whether there are other (possibly
nonbottom) states in split(RfnB, SpB) with a transition to SpC \ SpB (Lemma 3.2, left-
hand side) is not trivial and requires additional data structures. The main observation
is that in order to check that the current partition is stable under SpC \ SpB, we only
need to check the stability of split(RfnB, SpB) under SpC \ SpB, and this can be done
in time linear in the size of SpB.

The part of the algorithm explained previously is provided in detail as Algorithm 2,
which we discuss completely in Section 5. As observed before, the order in which
splitting is performed does not affect the correctness of its outcome. Based on Groote
and Vaandrager [1990], we therefore immediately get the following result.

THEOREM 4.2. The algorithm is correct; that is, the final partition P coincides with
divergence-blind stuttering equivalence.

From the previous description, it should be clear that every individual state is part
of some splitter SpB at most �log2 n� times, so refining C and detecting whether blocks
in the current partition can be split fit in the O (mlog n) bound. Actually carrying out
the splitting with the same time complexity requires solving two more issues.

(1) To refine a block RfnB in the setting of strong bisimulation, it is enough to move
the smaller subblock, either the marked states (the red states) or the unmarked states
(the blue states), to a new block and leave the other states in the old block. In the setting
of stuttering equivalence, not only the marked states are red but also the states that
can reach marked states through inert transitions in the block RfnB. Therefore, the
marking has to be extended. This extension must be carried out in time proportional to
the size of the smaller subblock of RfnB to comply with the “process the smaller half”
principle. A priori it is not known whether the red or the blue subblock is the smaller
one. Even worse, when the red subblock is larger, there is not even time available to
mark all red states.

We solve this problem using a remarkable technique consisting of two coroutines
running alternatingly to identify the smaller block resulting from the refinement. For

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:10 J. F. Groote et al.

Fig. 1. After splitting RfnB under SpB, RedB is not stable under C.

the red states, the marking is extended with a simple recursive algorithm. For the
blue states, it is determined that they cannot be marked by establishing that all the
outgoing inert transitions go to blue states. The whole operation stops when either all
red or all blue states have been found and therefore runs in time proportional to the
number of transitions of the smaller block. The new block is created from this smaller
block.

This procedure ensures that whenever a state is split off from a block RfnB, it
becomes part of a block that is at most half the size of RfnB. Therefore, each state can
be split off at most �log2 n� times. The details are in Algorithm 3, which is explained in
detail in the next section.

(2) If blocks are split, the new partition is not automatically stable under all constel-
lations. This is contrary to the situation in Paige and Tarjan [1987] and was already
observed by Groote and Vaandrager [1990]. Figure 1 illustrates this situation. Block
RfnB is stable under constellation C. But if RfnB is split under block SpB into RedB
and BlueB, block RedB is not stable under C. In general, a refined partition may not
be stable under all constellations if and only if the refinement introduced new bottom
states. In Figure 1, the top state in RedB was a nonbottom state in RfnB but became
a bottom state in RedB = split(RfnB, SpB). Blocks in which no new bottom states are
introduced remain stable, as shown by the following lemma.

LEMMA 4.3. Let K = (S, AP,→, L) be a Kripke structure with cycle-free partition P
and refinement P ′. If P is stable under a constellation C and RfnB ∈ P is refined into
RfnB1, . . . , RfnBk ∈ P ′, then for each RfnBi whose bottom states are also bottom states
in RfnB, it holds that RfnBi is also stable under C.

PROOF. Assume RfnBi is not stable under C. This means that split(RfnBi, C) 	= ∅
and bottom(RfnBi) ∩ cosplit(RfnBi, C) 	= ∅. Hence, there is a state s ∈ RfnBi such that
s → C and there is a bottom state t ∈ RfnBi with t 	→ C. As RfnB is stable under C
and s → C, all bottom states in RfnB must have at least one transition to a state in
C. Therefore, t cannot be a bottom state of RfnB and must have become a bottom state
after splitting RfnB.

This means that if a block B̂ is the result of a refinement and some of its states have
become new bottom states, it must be checked whether B̂ is stable under the constel-
lations. Typically, from the new bottom states, a subset of the constellations reachable
from the original block can be reached. We first separate, in a similar refinement step
as described previously, the new bottom states from the old ones. Then we have to
refine the subblock containing the new bottom states under all constellations it can
reach. To do these refinements in an orderly manner, the reachable constellations are
inserted into and removed from a search tree. The complexity of determining how B̂
must be split is O (log n) times the number of outgoing transitions of the new bottom
states. The details are in Algorithm 4 and are discussed in Section 5.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:11

The time complexity calculation of our algorithm is based on the following theorem,
which we prove along with explaining the details of the algorithm in the next section.

THEOREM 4.4. Every step in the algorithm falls under one of the following three cases:

(1) Every state s is moved to a new constellation (while identifying which blocks are
unstable under this new constellation) at most �log2 n� times. Whenever this happens,
O(|in(s)| + |out(s)|) time is spent on this state.

(2) Similarly, every state s is moved to a new block during a refinement of a block at
most �log2 n� times. Whenever this happens, O(|in(s)| + |out(s)|) time is spent on this
state.

(3) Every state s becomes a new bottom state at most once. Whenever this happens,
O((|in(s)| + |out(s)|) log n) time is spent on this state.

Aggregating these complexities over all states implies that the total time complexity is
O (mlog n).

ALGORITHM 2: Main loop of partition refinement for divergence-blind stuttering
equivalence

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:12 J. F. Groote et al.

Fig. 2. DBSTUTTERINGEQUIVALENCE marks predecessor states and blocks.

5. DETAILED EXPOSITION OF THE O (m log n) ALGORITHM

In the previous section, we have given a high-level description of the algorithm, and
we have illustrated the main ideas to obtain the O (mlog n) bound on time complexity.
In the current section, we explain the details of our algorithm using the pseudocode in
Algorithms 2, 3, and 4.

The pseudocode is annotated with time budgets. For time complexities, we write
|in(B)| = ∑

s∈B max {1, |in(s)|} and |out(B)| = ∑
s∈B max {1, |out(s)|}. To meet the desired

complexity bound, most basic operations need to run in O (1) time; when a basic opera-
tion is slower, we mention its complexity separately. Treatment of the data structures
used to achieve this complexity is deferred to Section 6. We use the abbreviations inτ (s)
and outτ (s) to denote the incoming and outgoing transitions that are inert according to
the current partition P, respectively.

5.1. Refining Constellations

After initialization, Algorithm 2 refines the partition P in lines 2.4 to 2.32 until it
coincides with C and therefore has become stable. If the partition is not stable, there
is at least one nontrivial constellation SpC (a constellation that contains more than
one block). We select one block SpB ⊂ SpC that is at most half the size of SpC in
line 2.5. We first move SpB from SpC to a new trivial constellation NewC and reduce
the constellation SpC to contain the states in SpC \ SpB.

Since we have split SpC, Invariant 4.1 may be violated now. To re-establish the
invariant, we refine the current partition under SpB and SpC \ SpB. First, we mark
all states that can reach SpB in zero or one step by traversing all incoming, noninert
transitions of SpB (lines 2.10 to 2.19). Each block that contains a marked state possibly
needs to be split; we call these refinable blocks. We visit all such blocks RfnB in
lines 2.20 to 2.31. If we look closely at these blocks, they contain marked and unmarked,
bottom and nonbottom states, constituting four subsets. Each block can possibly be split
into multiple subblocks.

Example 5.1. In Figure 2, a typical situation is depicted. The constellation SpC
consists of four blocks B6, B7, SpB, and B8. The block SpB is moved out of SpC to
its own constellation NewC. The states that can reach SpB in zero or one transition
are marked in red . Note that blocks B1 and B2 are not touched, and these can be
ignored as their stability is untouched when refining constellation SpC: block B1 has
no transition to SpC at all, and all transitions from B2 to SpC go to SpC \ SpB. Blocks
B3 and B8 must be split as they contain some states that can reach SpB and some
states that cannot. The blocks B4, B5, and also SpB are stable under SpB, but perhaps

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:13

they still need to be split as they may be unstable under SpC\SpB. It is described next
how this is done. Concretely, B4 and SpB are stable, but B5 needs to be split further.

Refining a block RfnB with marked states under splitter NewC = SpB is done in
REFINE in line 2.22. We rely on the markings of the states here: the marked states are
known to be in split(RfnB, SpB), and the unmarked bottom states are known to be in
cosplit(RfnB, SpB). For the remaining states, REFINE determines to which subset they
belong and splits RfnB accordingly. Intuitively, the states that become red in REFINE

are the states that can reach SpB, and the blue states are those that cannot reach it.
The time taken by REFINE is proportional to the number of transitions of the smaller
subset, and REFINE returns split(RfnB, SpB) and cosplit(RfnB, SpB). We elaborate on
the details of REFINE in Section 5.2.

As noted by Paige and Tarjan [1987], the blue subblock cosplit(RfnB, SpB) after the
first call to REFINE is stable under SpC \ SpB. Therefore, only RedB = split(RfnB, SpB)
needs to be refined further under SpC \ SpB. Even if RfnB is stable under SpB, it is
not necessarily stable under SpC \ SpB. In line 2.26, we refine RedB under SpC \ SpB.
In this block, all states can reach SpB, and we need to identify those states that can
also reach SpC \ SpB. Here, the marking does not provide enough information to start
the refinement as we need to identify the bottom states in RedB that have a transition
to SpC \ SpB to determine the initially known red and blue states. Therefore, we take
all transitions from RedB to SpC \ SpB as a starting point. The amount of work we
need to do is limited by the number of transitions of the smaller resulting block, as we
illustrate next.

We maintain a special data structure to recall for any block B and constellation C
which transitions go from B to C. While visiting transitions from RfnB to SpB to mark
states, we adapt this data structure to distinguish the transitions to NewC = SpB from
those to SpC\SpB in lines 2.14 and 2.17. Note that in line 2.17, the program may spend
O(|out(s)|) time. We use this data structure to traverse the transitions from RedB to
SpC \ SpB; the sources of these transitions are known to be in split(RedB, SpC \ SpB),
and they are the states that are initially red in the second call to REFINE. On the
other hand, we also traverse all bottom states of RedB and check whether they have
outgoing transitions to SpC \ SpB. For marked states, in particular all bottom states
in RedB, this information is stored in lines 2.15 and 2.18, so this takes O (1) time
per bottom state in RedB. This provides us with the bottom states known to be in
cosplit(RedB, SpC \ SpB), the initially blue states in the second call to REFINE. Note
that all bottom states in RedB have been marked before the first call to REFINE, so we can
traverse them once more without increasing the time complexity. REFINE will traverse
these states and transitions as earlier to compute the initially red and blue states, then
decide whether the remaining states of RedB are red or blue (w. r. t. SpC \ SpB) and
refine the block as before.

As illustrated by Lemma 4.3, blocks that have not gained any new bottom states
are stable under the new partition. However, the remaining blocks—the ones that
did gain some new bottom states—may not yet be stable; we therefore need to apply
a postprocessing step to re-establish the invariant for these blocks. This is done in
lines 2.24 and 2.28. It boils down to again refining these blocks, and is described in
more detail in Section 5.3.

5.2. Refining Blocks

A description of procedure REFINE(RfnB, SpB, . . .) is given in Algorithm 3, where the two
columns present two separate coroutines. In the following discussion, we refer with 3.n�
to the operation in the left column of line n in Algorithm 3, and with 3.nr to the operation
in the right column of line n. Using the two coroutines, the algorithm simultaneously

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:14 J. F. Groote et al.

ALGORITHM 3: Refine a block under SpC

colors states in RfnB red or blue. Red means that there is a path from the state in
RfnB to a state in SpB. Red states will end up in split(RfnB, SpB). Blue means that
there is no such path and hence blue states will end up in cosplit(RfnB, SpB). For the
moment, ignore lines 3.6 to 3.13. These lines are skipped when REFINE is called from
line 2.22, since there, REFINE is called with FromRed = ∅. Initially, when called from
line 2.22, marked states are red and unmarked bottom states are blue. This coloring

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:15

is extended to all states in RfnB, spending equal time on each color. The procedure is
stopped as soon as all states of one of the colors have been visited; that is, that color
can no longer be extended. We color states red whenever they are a predecessor of a
red state; this requires time proportional to the number of inert incoming transitions
of red states. States are colored blue whenever it can be determined that all outgoing
inert transitions go to blue states and there is no direct transition to SpB. To do this
efficiently, for each state s′, we keep track of the number of inert transitions to nonblue
states that s′ has. Whenever we visit blue states, we decrement notblue(s′) for each
predecessor s′ in RfnB. A state s′ can be colored blue as soon as notblue(s′) = 0. Since
we only visit predecessors of blue states along inert transitions, and for each of these
states we do O (1) work, this requires time proportional to the number of inert incoming
transitions of blue states.

The algorithm balances the work by alternating between the two coroutines. Note
that one should take care where to interrupt a coroutine; in particular, it should not
be interrupted between lines 3.18� and 3.23�, because if during the execution of those
operations state s′ is being added to Red and FromRed is emptied in lines 3.9r to 3.10r,
s′ might erroneously also be colored blue. On the other hand, it is always safe to switch
at the end of a loop iteration before checking the loop condition.

The coroutine that finishes coloring first, provided that its number of colored states
does not exceed 1

2 |RfnB|, has completely colored the smaller block resulting from the
refinement; the other coroutine can be aborted. Since the work done so far has been
balanced between the two coroutines, all work can be attributed to the smaller block,
so the time used for the refinement so far is proportional to the number of incoming
transitions of the smaller resulting block. We move the states of this smaller block to a
newly created block.

Before returning, REFINE also may find new bottom states. These are states of which
all previously inert transitions now go from red to blue states (there cannot be transi-
tions from blue to red states). Depending on which subblock is smaller, these transitions
are visited forward or backward in lines 3.31 to 3.38, so the time used is proportional to
the transitions of the smaller subblock. When a new bottom state is found, lines 3.35�
and 3.36r move it from the nonbottom states to a separate part of the bottom states of
its block.

Example 5.2. The previous operation of REFINE is illustrated in Figure 3. Figure 3(a)
shows the situation when calling REFINE from line 2.22: states with a transition to
NewC are marked red , and other bottom states are blue . In Figure 3(b), every
coroutine has considered four transitions. (In a single-thread implementation, the se-
quence might be 1 × blue, 2 × red, 2 × blue, 2 × red, 1 × blue). The blue coroutine found
three states, indicated with “1,” with one inert transition each that do not (yet) point
to blue states, and one state, indicated with “0,” that has no such transition. The num-
bers correspond with the notblue-value of the respective state. When a notblue-value
becomes 0, the state changes its color to blue . The red coroutine has visited one state
without incoming transitions (indicated with “�”); for this state, no time is spent in
lines 3.18r to 3.26r, but still some time is spent in the outer loop (lines 3.15r to 3.27r).
The red coroutine also has found one more red state. In Figure 3(c), it has once
more found a red state; as now the total number of red states is at least nine, which
is larger than 1

2 |RfnB| = 17/2, it is aborted. The blue coroutine continued to handle
four transitions. In Figure 3(d), the situation immediately before splitting the block is
shown. Here also the blue coroutine handled one state without incoming transitions
(indicated with “�”). In Figure 3(e), the situation at the end of REFINE is shown: in the
red subblock, old bottom states are marked red , and new bottom states have been
identified (indicated with “nb”).

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:16 J. F. Groote et al.

Fig. 3. REFINE extends the red and blue markings.

We now consider lines 3.6 to 3.13, used when refining RedB = split(RfnB, SpB) under
SpC \ SpB in line 2.26. Because we cannot rely on the markings of states here, we look
for initial sets of red and blue states differently. Red states are the sources of transitions
from RedB to SpC \ SpB, given as parameter FromRed. Traversing these transitions
requires time proportional to the outgoing transitions of the red states. To determine
the initially blue states, we traverse all bottom states that are not yet known to be red
(these are the states in the set Test) and check whether they have outgoing transitions
to SpC \ SpB. This information was stored with each relevant state in lines 2.15 and
2.18. In addition to traversing the blue bottom states, we spend O (Test \ Blue) time.
Observe that all bottom states in RedB ⊇ Test \ Blue have been marked before the first
call to REFINE, so we can traverse them once more without increasing the total time
complexity. Other blue (nonbottom) states are found as described before; however, as
we might start looking for such blue states before all initially red states have been
found because of the balancing of work between the coroutines, we sometimes have to
check whether a potentially blue state s has a transition to SpC \ SpB. This is done by
traversing the outgoing transitions of s. The condition s′ 	→ SpC in line 3.23� is checked
in another small loop that needs to be taken into account for the time complexity. As
it may need O(|out(s′)|) time, we delay it as much as possible and execute it only when

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:17

Fig. 4. REFINE also finds the initially red and blue states.

there is no inert transition to a nonblue state left. If no transition to SpC \ SpB is
found, the state is blue, and the time spent on the test is proportional to its number of
outgoing transitions. Otherwise, the state is a new bottom state: it is a red nonbottom
state, but all its inert transitions go to blue states. As only nonbottom states undergo
this test, the latter outcome will be found at most once, and we consider the time spent
on this test to be part of the handling of the new bottom state (item (3) of Theorem 4.4).

To summarize, if the blue subblock is smaller, the refinement uses O(|Test \ Blue| +
|in(NewB)| + |out(NewB)| + |out(NewBott)|) time, with NewBott the set of new bot-
tom states; it uses O(|in(NewB)| + |out(NewB)|) time if the red subblock is smaller,
as |FromRed| ≤ |out(NewB)|. In both cases, it uses time proportional to the num-
ber of incoming and outgoing transitions of the smaller resulting block (item (2) of
Theorem 4.4) and possibly O(|Test\Blue|), which is attributed to an earlier state mark-
ing, and O(|out(NewBott)|), which is attributed to the new bottom states.

Example 5.3. Such a call of REFINE is illustrated in Figure 4. In Figure 4(a), we
see the situation when calling REFINE from line 2.26: no states are marked, but every
bottom state has a transition to NewC. So, it was marked previously, and it is known
whether it has a transition to SpC \ SpB, stored in lines 2.15 and 2.18. The three
bottom states are in Test.

In Figure 4(b), the situation is shown after each coroutine has taken two steps to find
the initially red and blue states: The red coroutine has checked two transitions
from RfnB to SpC \ SpB and found one red (bottom) state. The blue coroutine has
determined that one bottom state has no transition to SpC \ SpB, but another one has.
Therefore, the blue coroutine colored the latter state red : the state has to be removed
from Test and cannot be added to Blue. As now Test = ∅, the blue coroutine proceeds to
handling predecessors of blue states.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:18 J. F. Groote et al.

In Figure 4(c), it has found a state, indicated with “0,” without any inert transition to
nonblue states, but it cannot color this state blue : Because FromRed 	= ∅, it needs to
test slowly whether s′ 	→ SpC in line 3.23� by walking through the outgoing (noninert)
transitions, and it finds a transition that leads to SpC \ SpB. The red coroutine, in the
meantime, has handled more transitions, but not found more red states.

Finally, in Figure 4(d), the red and blue coroutines have found all their states: The
red coroutine empties FromRed and finds one more red state. The blue coroutine
finds the other blue states; for the top right state, one can test s′ 	→ SpC in line 3.23�
quickly because it has a transition to NewC, so it was marked. The top left state
was only found after FromRed was emptied by the red coroutine, so the test is not
necessary. Both coroutines have to do one last step, namely, check whether the last
state has incoming inert transitions. Depending on which coroutine goes first, one or
the other subblock is moved to NewB.

In Figure 4(e), the situation when REFINE returns is shown: the nonblue state for
which the test s′ 	→ SpC was executed slowly has become a new bottom state in the
red subblock.

5.3. Handling New Bottom States

As mentioned previously, new bottom states can be introduced in subblock RedB by
splitting. These are found in lines 3.31 to 3.38. Sometimes, such a new bottom state
can no longer reach all the constellations that were reachable from the original bottom
states, making the partition unstable under these constellations. In such a case, to
re-establish Invariant 4.1, we have to further refine the red subblock.

The extra refinements are executed in a separate procedure POSTPROCESSNEWBOTTOM,
which is shown in Algorithm 4. We have to test, for every constellation reachable from
block RfnB, whether there are new bottom states that cannot reach it. However, we
want to avoid doing useless work in handling old bottom states. We therefore first split
RfnB into a part that contains the new bottom states and another part containing
the old bottom states in line 4.3. The splitter cosplit(RedB, BlueB) used here is not
yet a constellation. However, as this refinement will have to be executed at some
point anyway, it is guaranteed not to separate states that are stuttering equivalent.
Close inspection of Algorithm 3 shows that the splitter constellation is only accessed if
FromRed 	= ∅, so it is not a problem for this particular call to REFINE.

We refine in this manner, since every new bottom state in RedB has a transition
to BlueB, but no old bottom state has such a transition. Therefore, all new bottom
states are in split(RedB, BlueB), while old bottom states are in cosplit(RedB, BlueB).
Still, nonbottom states in split(RedB, BlueB) with a transition to cosplit(RedB, BlueB)
actually can reach all relevant constellations via an inert path to some old bot-
tom state in RedB, so it is not strictly necessary to stabilize these nonbot-
tom states. The set cosplit(split(RedB, BlueB), cosplit(RedB, BlueB)) = cosplit(RedB,
cosplit(RedB, BlueB)) contains all new bottom states in RedB and only those nonbot-
tom states that do not have an inert path to some old bottom state in RedB. This is the
minimal set of states that we have to stabilize further.

LEMMA 5.4. If one calls REFINE in line 4.3, with old bottom states as initially red states
and new bottom states as initially blue states, the resulting blue subblock is exactly
cosplit(split(RedB, BlueB), cosplit(RedB, BlueB)). Furthermore, this call will not find
any new bottom states.

PROOF. It already has been argued that all new bottom states in RedB are in SRedB :=
split(RedB, BlueB) and all old bottom states are in CRedB := cosplit(RedB, BlueB). Some

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:19

ALGORITHM 4: Refine as required by new bottom states, called in lines 2.24 and 2.28

predecessors of old bottom states also end up in CRedB. Therefore, CRedB is a subset of
the red subblock resulting from the refinement in line 4.3.

Among the states in SRedB, those that can reach some old bottom state through
transitions that are inert in RedB can also reach some state in CRedB. Therefore, the
red subblock resulting from the refinement also contains split(SRedB, CRedB).

We still have to show that there are not more states in the red subblock. The blue
subblock resulting from the refinement contains all new bottom states, and whatever
the splitter, it must also contain all nonbottom states without an inert path to old
bottom states. These are the states in cosplit(SRedB, CRedB).

It remains to be shown that this call to REFINE does not find additional new bottom
states. This holds because all red nonbottom states have an inert transition to some
red bottom state; this transition will remain inert.

It should be noted that splitting RedB into SRedB and CRedB could introduce new
bottom states that have a direct transition to BlueB and a transition to some state in
CRedB. Because of the latter transition, these were not bottom states in RedB before the
splitting. However, the refinement proposed previously is guaranteed to not turn these
states into new bottom states, as splitting split(SRedB, CRedB) from CRedB is postponed
to the moment when BlueB is moved to a new constellation.

Having found the subblock RfnB that needs stabilization, we add all constellations
it can reach to a (sorted) search tree R of constellations that we have to check and
register the transitions that will be involved in these checks in lines 4.4 to 4.7. The
time budget (at most |out(NewBott)| iterations) may actually not be met if we only
count the new bottom states that RfnB currently has, but if some C is added to R

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:20 J. F. Groote et al.

without being reachable from a current (new) bottom state, the refinement under C
will definitely create a new bottom state—it is to this new bottom state that we ascribe
the work. Note that this requires that we do not repeatedly add the same constellation;
therefore, our data structures will need to provide a way to find exactly those Cs that
are not yet added.

After the loop in lines 4.4 to 4.7, we know that for each constellation added to R,
there is at least one (future) new bottom state that can reach it—ensuring |R| ≤
|out(NewBott)|, which is important for the time bounds; the blocks containing new
bottom states do not contain old bottom states; and these blocks only need to be refined
under constellations in R.

Next, we consider each constellation SpC ∈ R in lines 4.11 to 4.25 and refine the
relevant blocks under SpC. For each SpC ∈ R, we call REFINE for a normal refinement
in line 4.14. Because the original RfnB may have been refined already, we have to
ensure that all its subblocks B̂ are refined. Initially, the sources of transitions from B̂
to SpC are red, and the bottom states that do not have a transition to SpC are blue.
To allow checking for the existence of such a transition from a bottom state to SpC in
O (1) time, we introduce a current constellation pointer for each new bottom state b. It
always points to the first constellation ≥ SpC (in the sort order of R) reachable from
b. In other words, a new bottom state is blue if and only if its current constellation
pointer does not point to SpC. These pointers are initialized in lines 4.8 to 4.10. After
line 4.14, the new bottom states that end up in the red subblock need to have their
current constellation pointers advanced to the next constellation in lines 4.15 to 4.17,
so that these pointers point at the correct constellation the next time those states are
visited. Advancing the pointers altogether takes O(|out(NewBott)|) time.

One call to the blue coroutine of REFINE spends O(|out(NewBott) ∩ SpC|) time to skip
over the red new bottom states (i.e., Test \ Blue). As every pair 〈new bottom state,
constellation〉 is checked once in line 3.8� (when called from line 4.14), one execution
of POSTPROCESSNEWBOTTOM spends O(|out(NewBott)|) time to skip over the red new
bottom states. The remaining time for refinements is accounted as for refining under
other splitters under item (2) of Theorem 4.4.

There is one final complication: during these refinements, we may again find new
bottom states. To make sure that the partition is also stable for these new bottom
states, we have to backtrack to the beginning in line 4.21 and traverse all constellations
reachable from these new bottom states, even if they have been in R before. During
backtracking over such constellations, only the newly detected bottom states need to
be handled, so we first split these new bottom states from the ones handled earlier
in line 4.19. As mentioned earlier, the loop in lines 4.4 to 4.7 should not run another
time over constellations added earlier to R, so that future new bottom states are not
causing too much work. Therefore, as SpC is still in R, we have to add the transitions
RfnB → SpC separately in line 4.20 before actually restarting the procedure.

For the elements of R that have not been checked before backtracking, the newly
detected bottom states can be handled together with those found earlier. Consequently,
a pair 〈new bottom state, constellation〉 is still checked exactly once in line 3.8� (when
called from line 4.14), be it during a first call or during backtracking, so not too much
time is spent skipping over the red new bottom states.

Example 5.5. Postprocessing is illustrated in Figure 5. It continues where Figure 3
ended. First, in Figure 5(a), the new bottom states are separated from the old bottom
states (line 4.3). The part of RedB that cannot reach BlueB (i.e., the set CRedB) is
indicated in dark gray. If we would split RedB into SRedB and CRedB, state s would
become a new bottom state. We avoid this by adding the states that can reach CRedB to
ResultB; see Figure 5(b). Additionally, this simplifies the refinement, because it means
that we do not have to mark nonbottom states with a transition to BlueB, such as s. We

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:21

Fig. 5. POSTPROCESSNEWBOTTOM handles new bottom states.

need this first refinement because constellations like C3 in Figure 5(b) would otherwise
make postprocessing too slow: there is no new bottom state to which we could ascribe
the time spent on (necessarily trivial) refinements under C3.

The rest of POSTPROCESSNEWBOTTOM only operates on RfnB, the block containing all
new bottom states. In this example, we first stabilize under C1 in Figure 5(c). This
leads to the blocks drawn in Figure 5(d). Now every block with transitions to C2 (i.e.,
the left block) is stabilized under C2. This refinement leads to the situation Figure 5(e),
in which a new bottom state is found. To this new bottom state we can ascribe the work

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:22 J. F. Groote et al.

Fig. 6. An example Kripke structure and partition (left) and its refinable partition data structure (right).

for the refinement under C2. Note that in this case, the red subblock does not contain
any old bottom states. Because of this new bottom state, POSTPROCESSNEWBOTTOM has
to backtrack (line 4.18): again, it tries to separate the old from the new bottom states
(line 4.19) in Figure 5(f), but obviously the refinement is trivial. Then, this subblock
has to be stabilized under C1 again. This is what happens in Figure 5(g). Finally, a
one-state block containing yet another new bottom state is produced in Figure 5(h).
Before, between, or after the illustrated refinements, these blocks are also stabilized
under NewC and SpC\SpB. While originally it is superfluous to stabilize under NewC,
it may become necessary after some other refinement has found further new bottom
states. When postprocessing has finished, ResultB is returned, so that it can be further
refined in line 2.26, as shown in Figure 4.

6. DATA STRUCTURES

In earlier sections, the algorithm is presented without an explicit reference to the
data structures that have been used. Suitable data structures to achieve the required
complexity for all basic operations mentioned in the pseudocode are presented in this
section. Note that all data structures introduced are proportional either to the number
of states or to the number of transitions; hence, the memory complexity of our algorithm
is O (m).

6.1. Data Structure for States and Partitions

To maintain a partition of the states, we use the so-called refinable partition data
structure [Valmari and Lehtinen 2008]. It contains an array of states that are, in our
case, ordered in such a way that first of all, states belonging to the same block are
adjacent, and second of all, blocks belonging to the same constellation are adjacent.
We call this array permutation. In addition, a two-level hierarchy of what we call
descriptors is used to identify the block and constellation to which a state belongs and,
in the other direction, the slice of permutation containing the states of a particular
block or constellation. Finally, a second array is used to store additional information for
each state; unlike permutation, the elements in this array always remain in the same
order, allowing fast retrieval of information about a particular state. The information
for a state s indicates, among other things, the position of s in permutation, the
identity of the block containing s, and indices indicating where the incoming and
outgoing transitions of s are stored. How transitions are stored is explained in the next
subsection, and a detailed description of the information stored per state is given in
Section 6.3.

Figure 6 shows an example of the use of the refinable partition data structure. Each
descriptor for a block or constellation indicates which slice of permutation contains

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:23

its states; each block also indicates which slice of permutation contains its bottom
states. We place the bottom states always at the end of a block slice.

When a block RfnB is split, the new block NewB is placed either near the beginning
or near the end of RfnB, and the states of NewB are moved in permutation to the
beginning or end, respectively, of the states remaining in RfnB. The slice that contained
RfnB as a whole remains in the same position, so the constellation to which RfnB
belonged now automatically also contains NewB. Likewise, when a constellation SpC
is split into NewC and SpC \NewC, NewC is placed either near the beginning or near
the end of SpC in permutation.

In the following, we sometimes refer to sorting the constellations in an array or
sorting the elements in another array w. r. t. the constellations they refer to. In those
cases, we use as sort key the begin index of the slice of the constellation. This implies
that, when splitting a constellation as mentioned earlier, NewC becomes an immediate
predecessor or successor of SpC in the sort order, and the order of other constellations
does not change.

When refining, we avoid the need to move states when a splitter is moved to a new
constellation by always selecting either the first or the last block in a constellation as
the splitter.

6.2. Data Structure for Transitions

To enable fast retrieval, three copies of the transitions are stored in three different
arrays.

First, we store the lists of outgoing transitions of each state together in one array
out; that is, the transitions in this array are sorted by source state. Within each slice
of transitions belonging to a source state s, the transitions are sorted according to
their target constellation. While refining a constellation, we have to do O(|in(NewC)|+
|out(NewC)|) work to sort the transitions; this can be done in lines 2.14 and 2.17. For
this reason, line 2.17 spends O(|out(NewC)|) time.

Second, we need to store the lists of incoming transitions of each state, which we do
in a similar way to the outgoing transitions in an array in (but here, sorting for target
state is enough).

Third, the transitions from each block B to constellation C (used as parameter
FromRed in REFINE) are stored in an array B to C in slices indexed by their 〈block,
constellation〉 pair. We do not require a particular order in which these slices are stored
in B to C; it is enough to have transitions adjacent that belong to the same 〈block,
constellation〉 pair. This order of transitions allows splitting slices in B to C locally
whenever one refines a target constellation and when one refines a source block.

The three arrays out, in, and B to C need to distinguish noninert and inert transi-
tions; in each slice, we place the inert transitions at the end. We add descriptors to the
arrays that indicate their structure: for each source state s and target constellation C,
there is a descriptor indicating the corresponding slice of out containing exactly the
subset of transitions in out(s) leading to C. Furthermore, for each pair 〈source block,
goal constellation〉, there is a descriptor of the corresponding slice in B to C. Further
descriptors are stored in the array with additional information for each state.

We require for every block a list of reachable constellations; to this end, we equip the
〈source block, goal constellation〉 descriptors with a list structure. During some phases
of the algorithm, this list is ordered to store additional information.

All discussed data structures are illustrated in Figure 7 for the same Kripke structure
as in Figure 6. The three copies of the transitions should point to each other. As a result,
it is not necessary to store data more than once: In each in entry, only the source state
and a pointer to the corresponding entry in out is stored. In each entry of out, the
target state and a pointer to the corresponding entry in B to C is stored. Finally, in

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:24 J. F. Groote et al.

Fig. 7. The data structure for the transitions belonging to the example in Figure 6.

each entry of B to C, a pointer to the corresponding entry in in is needed. The latter
two entries also contain pointers to their respective descriptors. The rest of the tree
structures do not need to be stored explicitly; the gray arrows in Figure 7 indicate
redundant pointers.

6.3. Data Items Stored

We store the following information, where ↗blocktoconst and ↗statetoconst are point-
ers to the descriptors introduced in Section 6.2:

—An instance of the refinable partition data structure with an array permutation :
stateposition → state.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:25

—The three transition arrays out : succposition → state × ↗statetoconst ×
blockposition, in : predposition → state×succposition, and B to C : blockposition →
↗blocktoconst × predposition.

—For each nonempty set of transitions from block B to constellation C, a descriptor
indicating the slice of B to C containing these transitions. These records are desig-
nated by the type name blocktoconst.

—For each nonempty set of transitions from state s to constellation C, a descriptor
indicating the slice of out containing these transitions. These records are designated
by the type name statetoconst.

—As additional information for state s:
—The position in permutation where s resides.
—A pointer to the block it resides in.
—The slice of out containing the successors of s, and a subslice containing the

successors reached via inert transitions. If the state has no inert transitions, this
is the empty slice at the correct position. For example, in Figure 7, the inert
transitions of s3 ∈ C0 are sorted before the transition s3 → s7 because s7 ∈ C4 and
C0 is sorted before C4.

—The slice of in containing the predecessors of this state, and a subslice containing
the predecessors that reach s via an inert transition.

—The variable notblue (to keep track of notblue(s)).
—A current constellation pointer, as an index in out, always set to the boundary

between two slices of transitions to a single constellation. This pointer can be used
to verify in O (1) time that s can reach these two constellations and none in between
(in sort order). For example, in Figure 7, if the current constellation pointer of s2
points to the boundary between its transitions to C0 and C4, the pointer can
be used to show that s2 has no transition to C1. On the other hand, if the current
constellation pointer of s0 points to the boundary between its two transitions (to C1
and C4, respectively), it does not help to find out whether s0 has transitions to C0.

—For each block:
—The slice of permutation containing its elements and some subslices to indicate

its marked states, sorted by nonbottom and bottom states.
—A pointer to the constellation it resides in.
—For blocks marked as refinable (line 2.12), a pointer to the next refinable block.

The pointer is NULL if and only if the block is not refinable.
—The subslice in B to C containing the inert transitions of B, that is, the subslice at

the end of the slice belonging to 〈B, C〉 with B ⊆ C. If the slice belonging to 〈B, C〉
only has noninert transitions, this is the empty subslice at the end of that slice. If
the block has no transitions to its constellation at all (e.g., block B0 in Figure 6),
this is the empty slice at the very beginning of B to C.

—A list of blocktoconst descriptors to the transitions reachable from this block.
—For each constellation:

—The slice of permutation containing its elements.
—For nontrivial constellations, a pointer to the next nontrivial constellation. The

pointer is NULL if and only if the constellation is trivial.
—While postprocessing new bottom states, a slice in B to C that indicates which

transitions need postprocessing.

6.4. Basic Operations and Their Time Complexity

In this section, we list the required basic operations and their respective complexities.
Basic Operations in DBSTUTTERINGEQUIVALENCE. During execution of Algorithm 2, some

states in a refinable block are marked. The marked states are stored in separate
subslices of permutation; see the top lines of Figure 8 for the order of these subslices.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:26 J. F. Groote et al.

Fig. 8. Internal structure of a block during marking and refinement. In this example, the red subblock is
smaller, so it will become the new block.

Operations use the data structures as follows:

—C contains a nontrivial constellation SpC. Check whether the list of nontrivial con-
stellations is nonempty and pick the first element.—O (1)

—Choose a small splitter block SpB ⊂ SpC from P, that is, |SpB| ≤ 1
2

∣
∣SpC

∣
∣. Check the

blocks at the beginning and end of the slice of SpC and pick the smaller one.—O (1)
—Create a new constellation NewC and move SpB from SpC to NewC. Allocate a new

constellation descriptor; make the constellation pointer of SpB point to it; set the
slices in NewC and SpC accordingly. If necessary, it is possible to mark SpC as
trivial, as SpC is still the first element in the list of nontrivial constellations.—O (1)

—C := partition C where SpB is removed from SpC . . . Nothing needs to be done.
—Mark a block as refinable. If the pointer of the block to the next refinable block is

NULL, add the block to the respective list.—O (1)
—Mark a block as nonrefinable. This operation only needs to be done for the first

block in the list of refinable blocks, so the pointer to the head of the list needs to be
changed.—O (1)

—Mark state s′ as predecessor. If s′ is in the slice of unmarked nonbottom or bottom
states, enlarge the corresponding slice of marked states by decrementing its start
index and move s′ to that entry.—O (1) per state.

—Mark or unmark all states of a block as predecessors. Set the slices of marked states
to all elements or to zero elements, respectively.—O (1)

—Register that s′ → s goes to NewC (instead of SpC). In the correct slice of B to C,
move s′ → s to the beginning of the slice; if necessary, create a new slice descriptor
for transitions from the block of s′ to NewC; enlarge the slice of transitions to NewC
and reduce the slice of transitions to SpC by incrementing the end index and start
index of the slices, respectively. If the latter slice now has size 0, delete its descriptor.
Then, do a similar operation in out.—O (1)

—Store whether s′ still has some transition to SpC \SpB. We reuse the current constel-
lation pointer, introduced originally for postprocessing: Set the current constellation
pointer of s to the boundary between NewC and SpC \ SpB in out(s′). This bound-
ary is readily available because we just swapped a transition from SpC to NewC.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:27

Additionally, in the list of constellations reachable from the block of s′, move the
constellation SpC \ SpB to the first place (to prepare it to be used as FromRed later
on).—O (1)

—Register that inert transitions from s go to NewC (instead of SpC) and Store whether
s still has some transition to SpC \ SpB. Repeat the operations mentioned in the
previous two items for each inert transition from s in SpB.—O(|outτ (SpB)|)

—REFINE(RedB, SpC \ SpB,∅, {transitions RedB → SpC \ SpB}). In the list of constel-
lations reachable from RedB, the first element is SpC \ SpB. The refinements in
lines 2.22 and 4.3 should keep the first item of the list in place. This list element is
the descriptor of the desired FromRed.—O (1)

Basic Operations in REFINE. When a block RfnB is refined into red and blue states,
we move the red states to the end of its slice in permutation and the blue ones to the
beginning. See Figure 8 for an illustration of the refining steps. First, the bottom states
in Test are moved to either Blue or Red simultaneously; also, some nonbottom states
with transitions to SpB may already be added to Red based on transitions in FromRed.
Afterward, the nonbottom states are separated. To distinguish between states with
defined and undefined notblue value (see line 3.19�), we use two separate slices of
nonbottom states. After one of the two coroutines has finished, the states are moved
into their final positions, and new bottom states are searched in the red subblock.

—if s → SpC. Line 3.8� assumes that the current constellation pointer of s is set to
SpC or to the first constellation sorted after it. This was done in lines 2.15 and 2.18
for the call to REFINE in line 2.26 and in lines 4.9 and 4.16 for the call in line 4.14. If
this is the case, the test can be executed quickly.—O (1)

—Move s from Test to Red, Blue and similar operations. Enlarge the correct slice of
RfnB by one entry and move s to that entry. If s is a nonbottom state in the slice
“notblue > 0” and becomes red, a second move is needed to ensure that this slice is
not mixed up with the slice “notblue = ?”.—O (1)

—Mark s as visited. Unvisited states should be handled in a specific order, for example,
from beginning to end. It is enough to enlarge the correct slice of visited states in
RfnB by one.—O (1)

—if (. . .∨s′ 	→ SpC). Line 3.23� tries to use the current constellation pointer of s similar
to line 3.8�, but if that is not enough to determine whether s′ 	→ SpC, we do a binary
search through the transitions from s′ in out to find whether there is a transition to
SpC.—O(log |out(s′)|)

—Move Red or Blue to a new block NewB. This is the moment when the red nonbottom
states are swapped with the blue bottom states. Note that some states may stay
where they are (in Figure 8, a few red nonbottom states), so the number of swaps is
at most |NewB|. We also allocate a new block descriptor for NewB, change for each
state in NewB the pointer to its block descriptor, and split the slices in B to C for
these states. During postprocessing, the slice in B to C for the blue subblock should
always be moved toward the end.—O(|out(NewB)|)

—Destroy all temporary data. Nothing needs to be done.
—s → s′ is no longer inert. In B to C, in and out, move transition s → s′ to the

beginning of the slice of inert transitions and reduce that slice by incrementing its
start index.—O (1)

—s is a new bottom state. Move s to the last nonbottom state and enlarge the slice of
bottom states by decrementing its start index.—O (1)

—return . . .(with old and new bottom states separated). Before line 3.31, mark the old
bottom states in RedB and unmark all other states, so the new bottom states will be
the ones that are unmarked.—O (1)

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:28 J. F. Groote et al.

Basic Operations in POSTPROCESSNEWBOTTOM. During postprocessing, the list of con-
stellations reachable from a block RfnB will contain the constellations that are not in
R at the beginning and those in R at the end. Each refinement (that splits up this list
in two) has to maintain that bisection, to ensure that the for all loop in lines 4.4 to 4.7
does not use time for constellations that are already in R.

—Add C to R. In addition to inserting C in the search tree R, we also move the
descriptor for RfnB → C to the end of the list of B to C-descriptors of RfnB.—
O (log n)

—Delete SpC from R. Similarly, we also move the descriptor for RfnB → SpC to the
beginning of the list B to C-descriptors of RfnB.—O (log n)

—Register that the transitions RfnB → SpC need postprocessing. In the descriptor of
SpC, add a pointer to the slice in B to C containing these transitions. Later, even
though RfnB may have been refined, this slice still contains the same transitions. In
line 4.20, it may happen that there are already some transitions from other blocks
to SpC that need postprocessing. To ensure the correctness, these transitions should
be adjacent to the transitions RfnB → SpC. This is why we move the transitions of
the blue subblock in B to C toward the end.—O (1)

—Delete B̂ → SpC from the transitions that need postprocessing. If the for all loop
visits the transitions in the order that they are placed in B to C, we can reduce
the size of the slice of transitions associated with the descriptor of SpC that need
postprocessing by increasing the start index of that descriptor.—O (1)

—Destroy all temporary data. This should include unmarking the old bottom states of
all blocks involved.—O (1) per block involved in a refinement.

7. APPLICATION TO BRANCHING BISIMULATION

We show that the algorithm can also be used to determine branching bisimulation with
complexity O(m(log |Act|+ log n)). To obtain this result, we use the transformation from
De Nicola and Vaandrager [1995] and Reniers et al. [2014]. Branching bisimulation is
typically applied to labeled transition systems (LTSs).

Definition 7.1 (Labeled Transition System). A labeled transition system is a triple
A = (S, Act,→), where

(1) S is a finite set of states. The number of states is generally denoted by n.
(2) Act is a finite set of actions including the internal action τ .
(3) → ⊆ S × Act × S is a transition relation. The number of transitions is generally

denoted by m.

It is common to write t
a−→ t′ for (t, a, t′) ∈ →.

There are various, but equivalent, ways to define branching bisimulation. We use
the definition next.

Definition 7.2 (Branching Bisimulation). Consider the labeled transition system
A = (S, Act,→). We call a symmetric relation R ⊆ S × S a branching bisimulation
relation if and only if for all s, t ∈ S such that s R t, the following conditions hold for
all actions a ∈ Act: If s

a−→ s′, then

(1) either a = τ and s′ R t, or
(2) there is a sequence t

τ−→ · · · τ−→ t′ of (zero or more) τ -transitions such that s R t′ and
t′ a−→ t′′ with s′ R t′′.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:29

Two states s and t are branching bisimilar if and only if there is a branching bisimu-
lation relation R such that s R t.

Our new algorithm can be applied to an LTS by translating it to a Kripke structure.

Definition 7.3 (LTS Embedding). Let A = (S, Act,→) be an LTS. We construct the
embedding of A to be the Kripke structure KA = (SA, AP,→, L) as follows:

(1) SA = S ∪ {〈a, t〉 | s
a−→ t for some t ∈ S}.

(2) AP = Act ∪ {⊥}.
(3) → is the least relation satisfying (s, t ∈ S, a ∈ Act \ τ):

s
a−→ t

s → 〈a, t〉
s

a−→ t
〈a, t〉 → t

s
τ−→ t

s → t

(4) L(s) = {⊥} for s ∈ S and L(〈a, t〉) = {a}.
The following theorem stems from De Nicola and Vaandrager [1995].

THEOREM 7.4. Let A be an LTS and KA its embedding. Then two states are branching
bisimilar in A if and only if they are divergence-blind stuttering equivalent in KA.

If we start out with an LTS with n states and m transitions, then its embedding has
at most n+ m states and 2m transitions. Hence, the algorithm requires O(mlog(n+ m))
time. As m is at most |Act|n2, this is also equal to O(m(log |Act| + log n)).

Valmari [2009] describes an algorithm to find the (strong) bisimulation equivalence
classes of an LTS strictly within time O (m log n), which is in contrast to earlier algo-
rithms that depended on |Act|; for example, Fernandez [1990] includes a O (n |Act|) term
(according to Valmari [2009]). The main idea is to define a splitter not as a block, but
as a pair 〈block, action〉. This allows to skip refinements for actions that are irrelevant
for the current splitter block. We conjecture that a similar construction could be used
to make the present algorithm run on LTSs directly within time O (m log n).

A final note is that the algorithm can also easily be adapted to determine divergence-
sensitive branching bisimulation (dsbb) [De Nicola and Vaandrager 1995] and branch-
ing bisimulation with explicit divergence (sometimes referred to as divergence-
preserving branching bisimulation, dpbb) by van Glabbeek and Weijland [1996]. In
both cases, we amend the translation to a Kripke structure, and we use divergence-
blind stuttering equivalence on the resulting Kripke structure. The first, dsbb, can be
obtained by simply adding a state with a self-loop and a fresh proposition indicating
divergence, and a transition to this state from every state on a τ -loop, similar to the way
stuttering equivalence is calculated using divergence-blind stuttering equivalence.

For dpbb, the Kripke structure embedding from Definition 7.3 must be modified to
achieve totality by adding a new state with a fresh proposition indicating deadlock, and
a transition to this state from any state in the Kripke structure that otherwise would
be a deadlock (this is the deadlock extension described by van Glabbeek et al. [2009,
Section 8]). In addition, divergence must be indicated in the same way as for dsbb.

8. EXPERIMENTS

The new algorithm has been implemented as part of the mCRL2 toolset [Cranen et al.
2013]. The toolset already offered implementations of GV and the algorithm by Blom
and Orzan [2003], which distinguishes states by their connection to blocks via their
outgoing transitions. We refer to the latter as BO. We have extensively tested the new
algorithm by applying it to thousands of randomly generated LTSs and comparing
the results with those of the other algorithms. While running these tests, we verified
many invariants to guarantee the integrity of the data structures and we checked the

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:30 J. F. Groote et al.

Fig. 9. Running time results for (a · τ)size sequences (left) and trees of depth size (right).

complexity by inspecting that the algorithm never depleted the maximal time budgets
for each subtask in the algorithm.

This section reports on our experiments to compare the performance of GV, BO, and
the implementation of the new algorithm GJKW.1 The performance of GV and BO can
be very different on concrete examples. All experiments involve the analysis of LTSs,
which for GJKW are first transformed to Kripke structures using the translation of
Section 7. The reported running times do not include the time to read the input LTS
and write the output, but the time it takes to translate the LTS to a Kripke structure
and to reduce strongly connected components is included. Groote and Wijs [2016] ex-
perimentally compared implementations of GV, BO, and GW. Here, we do not include
results obtained with GW, since performance-wise, GW and GJKW are comparable for
the selected set of benchmarks. On average, the latter is about 20% faster. When the
red and blue coroutines are performed, our GJKW implementation switches between
the two after every step. We experienced that other balancing strategies speed up the
computation for some cases but slow it down for others.

All experiments have been performed on a machine running CENTOS LINUX 7.2, with
an INTEL E5-2698-v3 2.3GHz CPU and 256GB RAM. This machine is part of the DAS-5
cluster [Bal et al. 2016].

Figure 9 presents the running time results for two sets of experiments designed to
demonstrate that GJKW has the expected scalability. At the left are the results of
analyzing single sequences of the shape (a · τ)n. As the length 2n of such a sequence is
increased, the results show that the running times of both BO and GV increase at least
quadratically, while the running time of GJKW grows linearly. All algorithms require
n iterations, in which BO and GV walk over all the states in the sequence, whereas
GJKW only moves two states into a new block.

At the right of Figure 9, the results are displayed of analyzing trees of depth n that
up to level n − 1 correspond with a binary tree of τ -transitions. Each state at level
n − 1 has a uniquely labeled outgoing transition to a state at level n. This example is
particularly suitable for BO, which obtains the stable partition in a single iteration.
Still GJKW beats BO by repeatedly splitting off small blocks of size 2(k − 1) if a state
at level k is the splitter.

1For the experiments, we used version 201409.1.14573M of the mCRL2 toolset available at https://svn.win.
tue.nl/repos/MCRL2.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

https://svn.win.tue.nl/repos/MCRL2
https://svn.win.tue.nl/repos/MCRL2

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:31
Ta

bl
e

I.
R

un
ni

ng
T

im
e

an
d

M
em

or
y

U
se

R
es

ul
ts

fo
r

G
V,

B
O

,a
nd

G
JK

W

O
ri

gi
n

al
M

in
im

iz
ed

R
u

n
n

in
g

T
im

e
(i

n
s)

M
em

or
y

U
se

(i
n

M
B

)
M

od
el

n
m

n
m

G
V

B
O

G
JK

W
G

V
B

O
G

JK
W

va
sy

40
60

40
,0

06
60

,0
07

20
,0

03
40

,0
04

24
.0

0
19

6.
00

0.
06

60
59

70
va

sy
18

73
18

,7
46

73
,0

43
2,

32
6

9,
75

1
0.

21
0.

60
0.

08
52

56
50

va
sy

15
7

29
7

15
7,

60
4

29
7,

00
0

3,
03

8
12

,0
95

1.
60

2.
00

0.
30

10
3

10
2

13
0

va
sy

52
31

8
52

,2
68

31
8,

12
6

66
33

3
0.

29
1.

20
0.

20
75

98
87

va
sy

83
32

5
83

,4
36

32
5,

58
4

42
,1

95
19

7,
20

0
2.

40
1.

30
0.

60
11

0
11

3
24

0
va

sy
11

6
36

8
11

6,
45

6
36

8,
56

9
22

,3
98

87
,6

74
0.

90
6.

00
0.

50
92

12
0

13
0

va
sy

72
0

39
0

72
0,

24
7

39
0,

99
9

3,
27

8
11

6,
53

7
0.

25
1.

30
0.

50
10

9
11

6
19

0
va

sy
69

52
0

69
,7

54
52

0,
63

3
69

,7
53

52
0,

63
2

1.
20

5.
00

1.
40

14
5

16
8

36
9

cw
i

37
1

64
1

37
1,

80
4

64
1,

56
5

2,
13

4
5,

63
4

6.
00

7.
00

1.
10

17
0

24
8

20
0

va
sy

16
6

65
1

16
6,

46
4

65
1,

16
8

42
,1

95
19

7,
20

0
4.

50
3.

00
1.

20
15

0
16

5
37

1
cw

i
21

4
68

4
21

4,
20

2
68

4,
41

9
47

8
1,

61
2

1.
40

13
.0

0
0.

70
13

7
18

6
15

0
cw

i
14

2
92

5
14

2,
47

2
92

5,
42

9
23

49
1.

20
1.

40
0.

80
15

0
14

9
16

0
va

sy
38

6
11

71
38

6,
49

6
1,

17
1,

87
2

71
10

8
1.

40
4.

00
1.

08
22

2
25

4
28

4
va

sy
66

13
02

66
,9

29
1,

30
2,

66
4

51
,1

28
1,

01
8,

69
2

2.
20

9.
00

3.
00

22
4

33
4

67
0

va
sy

16
4

16
19

16
4,

86
5

1,
61

9,
20

4
99

2
3,

45
6

1.
70

12
.0

0
1.

60
20

0
29

7
26

0
va

sy
65

26
21

65
,5

37
2,

62
1,

48
0

65
,5

36
2,

62
1,

44
0

80
.0

0
32

.0
0

7.
90

50
0

70
0

1,
90

0
cw

i
56

6
39

84
56

6,
64

0
3,

98
4,

15
7

19
8

79
1

7.
00

11
.0

0
5.

00
40

0
52

3
55

8
va

sy
11

12
52

90
1,

11
2,

49
0

5,
29

0,
86

0
26

5
1,

30
0

8.
00

27
.0

0
7.

00
80

0
94

1
98

0
cw

i
21

65
87

23
2,

16
5,

44
6

8,
72

3,
46

5
4,

25
6

20
,8

80
24

.0
0

18
0.

00
20

.0
0

1,
40

0
2,

21
7

2,
26

8
va

sy
61

20
11

03
1

6,
12

0,
71

8
11

,0
31

,2
92

2,
50

5
5,

35
8

13
0.

00
16

0.
00

24
.0

0
2,

07
2

2,
16

3
4,

11
2

va
sy

25
81

11
44

2
2,

58
1,

37
4

11
,4

42
,3

82
70

4,
73

7
3,

97
2,

60
0

70
0.

00
23

0.
00

31
.0

0
1,

61
2

2,
21

6
4,

63
5

va
sy

57
4

13
56

1
57

4,
05

7
13

,5
61

,0
40

3,
57

7
16

,1
68

44
.0

0
31

0.
00

14
.0

0
1,

86
9

2,
11

4
1,

50
0

va
sy

42
20

13
94

4
4,

22
0,

79
0

13
,9

44
,3

72
1,

18
6,

26
6

6,
86

3,
32

9
1,

20
0.

00
46

0.
00

38
.0

0
2,

35
1

2,
88

2
6,

63
3

va
sy

43
38

15
66

6
4,

33
8,

67
2

15
,6

66
,5

88
70

4,
73

7
3,

97
2,

60
0

1,
80

0.
00

30
0.

00
41

.0
0

2,
59

1
2,

99
8

6,
63

4
cw

i
24

16
17

60
5

2,
41

6,
63

2
17

,6
05

,5
92

73
0

2,
89

9
30

.0
0

26
.0

0
19

.0
0

1,
60

0
2,

28
3

1,
74

8
va

sy
60

20
19

35
3

6,
02

0,
55

0
19

,3
53

,4
74

25
6

51
0

40
.0

0
41

.0
0

20
.0

0
2,

26
7

3,
14

7
2,

26
7

va
sy

11
02

6
24

66
0

11
,0

26
,9

32
24

,6
60

,5
13

77
5,

61
8

2,
45

4,
83

4
1,

90
0.

00
1,

30
0.

00
68

.0
0

4,
16

3
5,

02
3

10
,7

60
li

ft
6-

fi
n

al
6,

04
7,

52
7

26
,5

39
,3

68
1,

69
9

9,
87

0
59

.0
0

27
0.

00
51

.0
0

3,
30

0
9,

20
0

7,
25

0
va

sy
12

32
3

27
66

7
12

,3
23

,7
03

27
,6

67
,8

03
87

6,
94

4
2,

78
0,

02
2

2,
50

0.
00

1,
10

0.
00

77
.0

0
4,

23
6

5,
62

9
11

,9
30

va
sy

80
82

42
93

3
8,

08
2,

90
5

42
,9

33
,1

10
29

0
68

0
10

0.
00

45
0.

00
57

.0
0

7,
15

0
7,

25
4

7,
24

6
cw

i
78

38
59

10
1

7,
83

8,
60

8
59

,1
01

,0
07

62
,0

31
47

0,
23

0
26

0.
00

6,
50

0.
00

16
0.

00
6,

95
6

10
,8

37
16

,0
85

di
n

in
g

14
18

,3
78

,3
70

16
4,

32
9,

28
4

22
8,

48
6

2,
06

7,
85

6
73

0.
00

2,
00

0.
00

49
0.

00
20

,1
56

28
,7

63
24

,4
70

cw
i

33
94

9
16

53
18

33
,9

49
,6

09
16

5,
31

8,
22

2
12

,4
63

71
,4

66
62

0.
00

5,
60

0.
00

50
0.

00
22

,6
41

39
,7

42
42

,4
04

13
94

-fi
n

3
12

6,
71

3,
62

3
27

6,
42

6,
68

8
16

0,
25

8
53

8,
93

6
68

,0
00

.0
0

10
,0

00
.0

0
1,

00
0.

00
44

,0
50

82
,1

49
60

,2
35

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

13:32 J. F. Groote et al.

Table I contains performance measures for minimizing LTSs from the VLTS bench-
mark set2 and the mCRL2 toolset.3 Running times and memory use are the averages
over 10 runs and are rounded to significant digits. For each case, the best running
time result has been highlighted in bold. Some characteristics of each case are given
at the left, namely, the number of states (n) and transitions (m) in the original and the
minimized LTS.

The cases prefixed by “cwi” and “vasy” in Table I come from the VLTS benchmark set.
The other three cases stem from mCRL2 models distributed with the mCRL2 toolset:

—lift6-final is based on an elevator model, extended to six elevators;
—dining_14 is the dining philosophers model with 14 philosophers;
—1394-fin3 is the 1394-fin model with three processes and two data elements.

The experiments demonstrate that when also applied to actual state spaces of real
models, GJKW generally outperforms the best of the other algorithms, often with a
factor of 10 and sometimes with a factor of 100. This difference tends to grow as the
LTSs get larger. Note that GJKW’s memory use is sometimes higher than GV’s and
BO’s. In particular, it is twice that of GV and BO in a third of the cases, and it is
comparable otherwise. This is not surprising given the amount of bookkeeping that
GJKW requires.

ACKNOWLEDGMENTS

The authors would like to thank Rob van Glabbeek and Jurriaan Rot for insightful comments and discussions,
which helped improve the material presented in this article.

REFERENCES

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA.

Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank Seinstra, Cees Snoek, and
Harry Wijshoff. 2016. A medium-scale distributed system for computer science research: Infrastructure
for the long term. IEEE Comput. 49, 5 (May 2016), 54–63. DOI:http://dx.doi.org/10.1109/MC.2016.127

Stefan Blom and Simona Orzan. 2003. Distributed branching bisimulation reduction of state spaces. Electron.
Notes Theor. Comput. Sci. 80, 1, Special issue: PDMC 2003, Parallel and distributed model checking
(2003), 99–113. DOI:http://dx.doi.org/10.1016/S1571-0661(05)80099-4

Stefan Blom and Jaco van de Pol. 2009. Distributed branching bisimulation minimization by inductive
signatures. In Parallel and Distributed Methods in verifiCation (PDMC’09), Lubos Brim and Jaco van de
Pol (Eds.). Electronic Proceedings in Theoretical Computer Science, Vol. 14. Open Publ. Assoc., 32–46.
DOI:http://dx.doi.org/10.4204/EPTCS.14.3

Michael C. Browne, Edmund M. Clarke, and Orna Grümberg. 1988. Characterizing finite Kripke structures in
propositional temporal logic. Theor. Comput. Sci. 59, 1–2 (1988), 115–131. DOI:http://dx.doi.org/10.1016/
0304-3975(88)90098-9

Khrishnendu Chatterjee and Monika Henzinger. 2011. Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification. In Proceedings of the
22nd Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’11). ACM, New York, 1318–1336.
DOI:http://dx.doi.org/10.1137/1.9781611973082.101

Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P. de Vink, Wieger
Wesselink, and Tim A. C. Willemse. 2013. An overview of the mCRL2 toolset and its recent ad-
vances. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13), Nir Piter-
man and Scott A. Smolka (Eds.). LNCS, Vol. 7795. Springer, Berlin, 199–213. DOI:http://dx.doi.org/
10.1007/978-3-642-36742-7_15 See also www.mcrl2.org.

2http://cadp.inria.fr/resources/vlts.
3http://www.mcrl2.org.

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

http://dx.doi.org/10.1109/MC.2016.127
http://dx.doi.org/10.1016/S1571-0661(05)80099-4
http://dx.doi.org/10.4204/EPTCS.14.3
http://dx.doi.org/10.1016/0304-3975(88)90098-9
http://dx.doi.org/10.1016/0304-3975(88)90098-9
http://dx.doi.org/10.1137/1.9781611973082.101
http://dx.doi.org/10.1007/978-3-642-36742-715
http://dx.doi.org/10.1007/978-3-642-36742-715
file:www.mcrl2.org
http://cadp.inria.fr/resources/vlts
http://www.mcrl2.org

An O(m log n) Algorithm for Computing Stuttering Equivalence 13:33

Sjoerd Cranen, Jeroen J. A. Keiren, and Tim A. C. Willemse. 2012. A cure for stuttering parity games.
In Theoretical Aspects of Computing (ICTAC’12), Abhik Roychoudhury and Meenakshi D’Souza (Eds.).
LNCS, Vol. 7521. Springer, Heidelberg, 198–212. DOI:http://dx.doi.org/10.1007/978-3-642-32943-2_16

Rocco De Nicola and Frits Vaandrager. 1995. Three logics for branching bisimulation. J. ACM 42, 2 (1995),
458–487. DOI:http://dx.doi.org/10.1145/201019.201032

Tom van Dijk and Jaco van de Pol. 2016. Multi-core symbolic bisimulation minimisation. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’16), Marsha Chechik and Jean-
François Raskin (Eds.). LNCS, Vol. 9636. Springer, Berlin, 332–348. DOI:http://dx.doi.org/10.1007/
978-3-662-49674-9_19

Jean-Claude Fernandez. 1990. An implementation of an efficient algorithm for bisimulation equivalence.
Sci. Comput. Program. 13, 2 (1990), 219–236. DOI:http://dx.doi.org/10.1016/0167-6423(90)90071-K

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. 2012. CADP 2011: A toolbox for the
construction and analysis of distributed processes. Softw. Tools Technol. Transf. 15, 2, Special issue:
TACAS 2011 (2012), 98–107. DOI:http://dx.doi.org/10.1007/s10009-012-0244-z

Rob J. van Glabbeek, Bas Luttik, and Nikola Trčka. 2009. Computation tree logic with deadlock detection.
Logical Methods Comput. Sci. 5, 4 (Dec. 2009), 1–24. DOI:http://dx.doi.org/10.2168/LMCS-5(4:5)2009

Rob J. van Glabbeek and Peter W. Weijland. 1996. Branching time and abstraction in bisimulation semantics.
J. ACM 43, 3 (1996), 555–600. DOI:http://dx.doi.org/10.1145/233551.233556

Jan Friso Groote and Mohammad Reza Mousavi. 2014. Modeling and Analysis of Communicating Systems.
MIT Pr., Cambridge, MA.

Jan Friso Groote and Frits Vaandrager. 1990. An efficient algorithm for branching bisimulation and stutter-
ing equivalence. In Automata, Languages and Programming (ICALP’90), M. S. Paterson (Ed.). LNCS,
Vol. 443. Springer, Berlin, 626–638. DOI:http://dx.doi.org/10.1007/BFb0032063

Jan Friso Groote and Anton Wijs. 2016. An O(mlog n) algorithm for stuttering equivalence and branch-
ing bisimulation. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS’16),
Marsha Chechik and Jean-François Raskin (Eds.). LNCS, Vol. 9636. Springer, Berlin, 607–624.
DOI:http://dx.doi.org/10.1007/978-3-662-49674-9_40

John E. Hopcroft. 1971. An n log n algorithm for minimizing states in a finite automaton. In The-
ory of Machines and Computations, Z. Kohavi and A. Paz (Eds.). Academic Press, New York,
189–196.

David N. Jansen and Jeroen J. A. Keiren. 2016. Stuttering Equivalence Is Too Slow! arXiv E-print 1603.05789.
http://arxiv.org/abs/1603.05789.

Paris C. Kanellakis and Scott A. Smolka. 1990. CCS expressions, finite state processes and three problems
of equivalence. Inf. Comput. 86 (1990), 43–68. DOI:http://dx.doi.org/10.1016/0890-5401(90)90025-D

Saul Kripke. 1963. Semantical considerations on modal logic. Acta Philosophica Fennica 16 (1963),
83–94.

Weisong Li. 2009. Algorithms for computing weak bisimulation equivalence. In 3rd International Symposium
on Theoretical Aspects of Software Engineering (TASE’09), Wei-Ngan Chin and Shengchao Qin (Eds.).
IEEE, Los Alamitos, CA, 241–248. DOI:http://dx.doi.org/10.1109/TASE.2009.47

Robin Milner. 1980. A Calculus of Communicating Systems. LNCS, Vol. 92. Springer, Berlin.
DOI:http://dx.doi.org/10.1007/3-540-10235-3

Robert Paige and Robert E. Tarjan. 1987. Three partition refinement algorithms. SIAM J. Comput. 16, 6
(1987), 973–989. DOI:http://dx.doi.org/10.1137/0216062

Francesco Ranzato and Francesco Tapparo. 2008. Generalizing the Paige–Tarjan algorithm by abstract
interpretation. Inf. Comput. 206, 5, Special issue: The 17th International Conference on Concurrency
Theory (CONCUR’06) (2008), 620–651. DOI:http://dx.doi.org/10.1016/j.ic.2008.01.001

Michel A. Reniers, Rob Schoren, and Tim A. C. Willemse. 2014. Results on embeddings between state-
based and event-based systems. The Comput. J. 57, 1 (2014), 73–92. DOI:http://dx.doi.org/10.1093/
comjnl/bxs156

Antti Valmari. 2009. Bisimilarity minimization in O(mlog n) time. In Applications and Theory of Petri Nets
(PETRI NETS’09), Giuliana Franceschinis and Karsten Wolf (Eds.). LNCS, Vol. 5606. Springer, Berlin,
123–142. DOI:http://dx.doi.org/10.1007/978-3-642-02424-5_9

Antti Valmari and Petri Lehtinen. 2008. Efficient minimization of DFAs with partial transition functions. In
25th International Symposium on Theoretical Aspects of Computer Science (STACS’08), Susanne Albers
and Pascal Weil (Eds.). LIPIcs, Vol. 1. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 645–656. DOI:http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1328

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

http://dx.doi.org/10.1007/978-3-642-32943-2_16
http://dx.doi.org/10.1145/201019.201032
http://dx.doi.org/10.1007/978-3-662-49674-919
http://dx.doi.org/10.1007/978-3-662-49674-919
http://dx.doi.org/10.1016/0167-6423(90)90071-K
http://dx.doi.org/10.1007/s10009-012-0244-z
http://dx.doi.org/10.2168/LMCS-5(4:5)2009
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/BFb0032063
http://dx.doi.org/10.1007/978-3-662-49674-9_40
http://arxiv.org/abs/1603.05789
http://dx.doi.org/10.1016/0890-5401(90)90025-D
http://dx.doi.org/10.1109/TASE.2009.47
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1016/j.ic.2008.01.001
http://dx.doi.org/10.1093/comjnl/bxs156
http://dx.doi.org/10.1093/comjnl/bxs156
http://dx.doi.org/10.1007/978-3-642-02424-5_9
http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1328

13:34 J. F. Groote et al.

Heikki Virtanen, Henri Hansen, Antti Valmari, Juha Nieminen, and Timo Erkkilä. 2004. Tam-
pere verification tool. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), Kurt Jensen and Andreas Podelski (Eds.). LNCS, Vol. 2988. Springer, Berlin, 153–157.
DOI:http://dx.doi.org/10.1007/978-3-540-24730-2_12

Thuy Duong Vu. 2007. Deciding orthogonal bisimulation. Formal Aspects Comput. 19, 4 (2007), 475–485.
DOI:http://dx.doi.org/10.1007/s00165-007-0023-x

Anton Wijs. 2015. GPU accelerated strong and branching bisimilarity checking. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’15). LNCS, Vol. 9035. Springer, Berlin, 368–383.
DOI:http://dx.doi.org/10.1007/978-3-662-46681-0_29

Received September 2016; accepted February 2017

ACM Transactions on Computational Logic, Vol. 18, No. 2, Article 13, Publication date: June 2017.

http://dx.doi.org/10.1007/978-3-540-24730-2_12
http://dx.doi.org/10.1007/s00165-007-0023-x
http://dx.doi.org/10.1007/978-3-662-46681-0_29

