
Open Universiteit
www.ou.nl

Stuttering equivalence is too slow!

Citation for published version (APA):

Jansen, D. N., & Keiren, J. J. A. (2016). Stuttering equivalence is too slow! http://arxiv.org/abs/1603.05789

Document status and date:
Published: 22/09/2016

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 02 Jul. 2022

http://arxiv.org/abs/1603.05789
https://research.ou.nl/en/publications/dbdf6074-32b4-478d-9354-47ab1a658523

ar
X

iv
:1

60
3.

05
78

9v
2

 [
cs

.L
O

]
 2

2
Se

p
20

16

Stuttering equivalence is too slow!

David N. Jansen†

dnjansen@cs.ru.nl
Jeroen J. A. Keiren*,†

Jeroen.Keiren@ou.nl

*Open University of the Netherlands, School of Computer Science, Netherlands
†Radboud Universiteit, Institute for Computing and Information Sciences, Nijmegen, Netherlands

Abstract

Groote and Wijs recently described an algorithm for deciding stuttering equivalence and
branching bisimulation equivalence, acclaimed to run in O (m log n) time. Unfortunately,
the algorithm does not always meet the acclaimed running time. In this paper, we present
two counterexamples where the algorithms uses Ω (md) time. A third example shows that
the correction is not trivial. In order to analyse the problem we present pseudocode of the
algorithm, and indicate the time that can be spent on each part of the algorithm in order to
meet the desired bound. We also propose fixes to the algorithm such that it indeed runs in
O (m log n) time.

1 Introduction

It has long been an open problem whether the algorithm by Groote and Vaandrager [3] for com-
puting stuttering equivalence [1] and branching bisimulation [2] was optimal. Recently, Groote
and Wijs [4, 5] presented an improvement. They describe an algorithm for deciding stuttering
equivalence in time O (m logn) and space O (m), where n is the number of states, and m the
number of transitions of the Kripke structure at hand, with m ≥ n. This is an improvement over
the previous running time of O (mn).

Unfortunately, the algorithm [4] falls short of the stated goal. In this paper we introduce two
counterexamples where the algorithm will use more time than O (m logn), namely Ω (md), where
d is the maximal outdegree of a state in the Kripke structure.

Since the original description of the algorithm relies heavily on auxiliary data structures and
pointers in order to ensure that all information is available quickly when needed, without making
the data structures any bigger than strictly necessary, the problem with the algorithm is hard to
detect in this original description. We therefore first present our understanding of the algorithm as
presented in [4] by giving a high-level description in pseudocode, which leaves out as much of the
detailed data structures as possible. This also allows us to assign time budgets to its parts, that
are satisfied locally and that together allow us to determine the overall time bound. Subsequently,
we identify two problems in the original algorithm, by giving counterexamples that lead to running
times higher than the desired bound of O (m logn). For each of these problems, we indicate how
to fix the algorithm. When fixing the second problem, a further complication arises that needs to
be resolved in order to meet the desired bound. Yet, ultimately we can confirm the main result of
[4] that stuttering equivalence and branching bisimulation can be computed in O (m logn) time
and O (m) space.

Throughout this paper we assume the reader is familiar with the definitions of Kripke structure
and (divergence-blind) stuttering equivalence and with the auxiliary notions introduced in [4].
The note is best read while having a copy of [4] within reach for reference. We focus our analysis
on deciding stuttering equivalence for Kripke structures. The results carry over directly to the
computation of branching bisimulation.

1

http://arxiv.org/abs/1603.05789v2
mailto:dnjansen@cs.ru.nl
mailto:Jeroen.Keiren@ou.nl

Algorithm 1 The main algorithm for stuttering equivalence. Closely follows [4]

1.1 Initialise all temporary data. O (m logn)
1.2 while there is a nontrivial constellation do

1.3 Choose a nontrivial constellation SpC

and a splitter SpB ⊂ SpC that is small (i. e. |SpB | ≤ 1

2
|SpC |).

O (1) per splitter SpB
1.4 Create a new constellation NewC

and move SpB from SpC to NewC .
1.5 for all s ∈ SpB do {Find predecessors of SpB}
1.6 for all s′ ∈ in(s) \ SpB do

1.7 Mark the block of s′ as refinable.
O (|in(SpB)|)1.8 Mark s′ as predecessor of SpB .

1.9 Register that s′ → s goes to NewC (instead of SpC).
1.10 end for

1.11 end for

1.12 Prepare SpB to be refined (i. e., mark states, register transitions). O (|out(SpB)|)
1.13 begin {Stabilise the partition again:}
1.14 for all refinable blocks RfnB do

1.15 Result := TrySplit(RfnB ,NewC ,marked states ∈ RfnB ,

unmarked bottom states ∈ RfnB)
1.16 TrySplit

′(Result ,SpC , states ∈ Result with a transition to SpC ,

bottom states ∈ Result without transition to SpC)
1.17 PostprocessNewBottom()
1.18 end for

1.19 end

1.20 Destroy all temporary data (i. e., markings of states and blocks). O (|in(SpB)|+|out(SpB)|)
1.21 end while

2 Pseudocode for Groote/Wijs 2016

We first present the main part of the algorithm from [4] as we understand it in terms of pseudocode,
while separating out a routine TrySplit that tries to split a refinable block into states that can
reach the splitter (called red states) and those that cannot (called blue states). There is a small
difference between the calls to TrySplit in lines 1.15 and 1.16, which we will explain later. The
high-level structure of the algorithm is presented in Algorithm 1. It maintains the invariant:

Invariant 1. The current blocks are stable with respect to the constellations, i. e. all states in a
block can reach the same constellations through a (weak) transition.

A nontrivial constellation, i. e. a constellation containing multiple blocks, indicates that the
current blocks are not yet stable with respect to themselves. The main loop separates a block SpB
from a nontrivial constellation SpC , moving it to a new constellation NewC , and then restores
the invariant by refining blocks with respect to these new constellations, if needed. The latter is
done in TrySplit.

In the algorithms we assigned a time budget to some steps to facilitate the analysis of the
algorithms’ complexity. We generally use the abbreviations |in(B)| =

∑

s∈B max{1, |in(s)|} and
|out(B)| =

∑

s∈B max{1, |out(s)|}. Similarly, inτ (s) are the inert incoming transitions and outτ (s)
the inert outgoing transitions of s.

2.1 Splitting blocks

The most important new idea from [4] is used in the step when a block is actually being refined.
They start to find both the red and the blue states, spending the same amount of work on either
part, until it becomes clear which one is the smaller. In other words, they use the idea “Process
the smaller half” not only when looking for splitters, but also when refining blocks. The work

2

Algorithm 2 Refine a block into red and blue states, called in Line 1.15. Slightly improved

2.1 function TrySplit(RfnB ,SpC ,Red ,Blue)
2.2 {Try to refine block RfnB , depending on whether states have transitions to the splitter con-

stellation SpC . Red contains all states in RfnB with a strong transition to SpC , and Blue
contains all bottom states in RfnB without transition to SpC .}

2.3 begin {Spend the same amount of work on either process:}
2.4 whenever |Blue| > 1

2
|RfnB | then

2.5 Stop this process.
2.6 end whenever

2.7 while Blue contains
unvisited states do

2.8 Choose an unvisited s ∈ Blue.
2.9 Mark s as visited.

2.10 for all s′ ∈ inτ (s) \ Red do

2.11 if notblue(s′) undefined then

2.12 notblue(s′) := |outτ (s′)|
2.13 end if

2.14 notblue(s′) := notblue(s′)−1
2.15 if notblue(s′) = 0 then

2.16 Blue := Blue ∪ {s′}
2.17 end if

2.18 end for

2.19 end while

2.20 Stop the other process.
2.21 Move Blue to a new block NewB .
2.22 Destroy all temporary data.
2.23 for all s ∈ NewB do

2.24 for all s′ ∈ inτ (s) \NewB do

2.25 s′ → s is no longer inert.
2.26 if |outτ (s

′)| = 0 then

2.27 s′ is a new bottom state.
2.28 end if

2.29 end for

2.30 end for

2.31 Result := RfnB

whenever |Red |>1

2
|RfnB | then O (1) per assign-

ment to Blue or
Red , respectively.

Stop this process.
end whenever

while Red contains

O (|inτ (NewB)|)

unvisited states do
Choose an unvisited s ∈ Red .
Mark s as visited.
for all s′ ∈ inτ (s) do

Red := Red ∪ {s′}

end for

end while

Stop the other process.
O (|out(NewB)|)

MoveRed to a newblockNewB .
Destroy all temporary data. as Lines 2.7–2.19
for all s ∈ NewB do

O (|inτ (NewB)|)

or

O (|outτ (NewB)|)

for all s′ ∈ outτ (s)\NewB do

s → s′ is no longer inert.
end for

if |outτ (s)| = 0 then

s is a new bottom state.
end if

end for

Result := NewB
2.32 end

2.33 return Result

3

Algorithm 3 Refine as required by new bottom states, called in Line 1.17

3.1 function PostprocessNewBottom()

O (|out(s)|) for some old
bottom state s ∈ B̂

3.2 for all constellations C reachable from B̂ do

3.3 Register that the pair (B̂,C) needs postprocessing.
3.4 end for

3.5 while there is a pair (B̂,C) that needs postprocessing do

3.6 Choose a pair (B̂,C) that needs postprocessing.
O (1) per pair (B̂,C)3.7 Delete (B̂,C) from the pairs that need postprocessing.

3.8 if not all new bottom states can reach C then

3.9 TrySplit
′(B̂,C , states ∈ B̂ with a transition to C ,

new bottom states ∈ B̂ without transition to C)

O (|out(NewB)|)

3.10 for all constellations C ′ that NewB can reacha do

3.11 if (B̂,C ′) still needs postprocessing then

3.12 Register that (NewB ,C ′) needs postprocessing.
3.13 end if

3.14 end for

3.15 end if

3.16 end while

3.17 Destroy all temporary data.
3.18 return

aNewB is the new block created in TrySplit
′, Line 3.9.

spent on the refinement can then be bounded: state s is involved in such a refinement at most
O (logn) times. Upon every such refinement, at most O (|in(s)|+ |out(s)|) time is spent for state
s. So, overall O ((|in(s)|+ |out(s)|) log n) time is spent on state s. Summing over all states then
gives the desired time complexity O (m logn).

Note that this may require detailed bookkeeping of the amount of work. One may balance
the work by using an auxiliary variable, which stores the amount of work done on the red states
minus the amount of work done on the blue states. Every time a state or transition is checked
(i. e. every time the loop in Lines 2.7 or 2.10 is entered), the balance is increased or reduced by 1.

We deviate from [4] slightly: ibid. uses a priority queue to keep track of notblue, but actually
nothing queue-like is needed, as the order of states is irrelevant for the correctness, time and
memory bounds. Note that the data structure should allow to test for membership in time O (1).1

They use the priority only to store the value notblue(s′) and check whether this value is defined
by a test for membership in the priority queue. We propose instead to set notblue(s′) to some
special value (e. g. 0) to indicate that it was not yet calculated. We also need a list or set of all
states whose notblue(s′) is defined, to destroy the temporary data later.

2.2 New bottom states

While refining a block, it may happen that some states become bottom states because all their
inert transitions become transitions from a red state to a blue state and therefore are no longer
inert. We have to single out these new bottom states because the algorithm treats them differently
from the non-bottom states. Here, we also added a slight improvement (Lines 2.23–2.30): we only
look for new bottom states in Red .

Additionally, it may happen that a new bottom state can no longer reach all the constellations
that were reachable from the original bottom states. To repair Invariant 1, we may have to split
some new bottom states off the block. This further splitting itself is shown in Algorithm 3. The
basic idea is to check, for each constellation that is reachable from some new bottom state, whether
the block has to be split. Of course, as soon as a block is split, both parts have to be checked
for the remaining reachable constellations. The algorithm in [4] constructs, for each block B̂ and

1Note that priority queues typically have longer access times.

4

constellation C , a list SC ⊆ B̂ of states that can reach C (see Line 3.3). These lists are used
in Line 3.9 to decide which states are blue, namely the new bottom states that are not in SC .
The time budget O (|out(NewBott)|) can be met if the list SC follows the same order as the list
NewBott .

Algorithm 3 generally follows [4], except in Lines 3.10–3.14, where we tried to find a formulation
that fits in the time budget.

3 Counterexamples to time complexity

The algorithm contains two problems that cause it to be too slow. First, the second call to
TrySplit, here referred to as TrySplit

′, takes too long. We give a counterexample, and improve
TrySplit

′ to improve the complexity to the required bound. Also the postprocessing of new
bottom states as carried out in [4] is too slow. In section 3.3 we analyse the problem in the
original algorithm; the proposed improvement has already been incorporated in Algorithm 3.

3.1 TrySplit
′ is too slow

In the call to TrySplit
′ (in Line 1.16), the initial set of red states is given implicitly, through a

list of transitions. As a consequence, the test whether the potentially blue state s′ has a non-inert
transition to SpC (this is why we require s′ 6∈ Red in Line 2.10ℓ) in the variant TrySplit

′ is
executed in a different way compared to the one in TrySplit. Groote and Wijs [4] add this test
just before Line 2.12ℓ. If s′ is marked (i. e. it has a transition to SpB), they can access one of
their many auxiliary variables, but otherwise, “it can be checked by walking over the transitions
s′ → s′′ ∈ s′.Ttgt” (obviously, this is meant instead of the original “. . . ∈ s.Ttgt” – see Section 5.3,
item 1.(b).ii.A.second bullet.first dash of [4]). So they execute a loop to verify out\τ (s

′)∩SpC = ∅,
namely:

for all s′′ ∈ out(s′) do
if s′′ ∈ SpC \ RfnB then continue to Line 2.10ℓ

end for

This loop makes their algorithm slower than promised: the test uses time O (|out(s′)|), but
should take at most O (1). Our first counterexample illustrates this time budget overrun.

Assume that the partition shown in Figure 1 has been reached. Then, we refine SpC : we
select SpB , find its weak predecessors (the whole block RfnB , so nothing is refined) and the weak
predecessors of SpC \ SpB (the right half of block RfnB). Note that we do the latter without
walking over the states in SpC \SpB : it is ok to spend O (|in(SpB)|) time here. We also save time
by calculating the complement of the weak predecessors, i. e. the -states in NewB , because it is
smaller than RfnB \NewB : we are allowed to spend an additional O (|in(NewB)|+ |out(NewB)|)
time on this task.

As the algorithm looks through the predecessors of all -states, it considers the -state for
inclusion in NewB . This happens k times (once for each transition to a -state). The cited
passage then requires that we check each time whether some immediate successor of a -state
is in SpC \ SpB . If we check the transitions to the -states before the -state, we spend Ω(d)
time, and in the end we find that the -state should not be considered further.2 The problem is
that we spend (much) time on a transition to NewB from a state that is possibly in NewB but in
the end not actually in NewB . The part of the algorithm in Section 5.3, 1.(b).ii.A.second bullet,
is only allowed to spend O (1) time on each such transition.

Overall, the number of states and transitions both are O (k + d). So, the algorithm is allowed
to spend O ((k + d) log(k + d)) time, but it spends Ω (kd) time. Variants of this Kripke structure
with several copies of the -state show that the checks can cost O (md) time.

Note that we are not allowed to concentrate on the red states (the weak predecessors of SpC \
SpB , the -states and -state) themselves instead of the complement, as this set is larger.

2In particular, [4] does not define notblue(). An ad-hoc solution would be to set it to some value > d, but
that does not help if there are multiple copies of .

5

Figure 1: TrySplit
′ is too slow.

SpC

E1 E2 Ed

D

d constellations

RfnB

SpB

E1 E2 Ed

. . .

m . . .

k states
. . .

k states

Lemma 2. Refining in Lines 1.16 and 3.9 as described in [4] has a worst-case time complexity of
Ω (md).

We tried (in vain) to find a recursive counterexample, which should increase the time complexity
to Ω (md logn), but every of our ideas led to a counterexample with so many additional transitions
that it still fit the bound of Lemma 2.

3.2 A faster TrySplit
′

We propose to solve this problem as follows: Execute the slow test at the latest possible moment,
namely immediately before a state is inserted in Blue. This is shown in Algorithm 4. Here, we
also present the formal parameter list according to the implicit representation of the red and blue
states: a set FromRed of transitions from red states, a set MaybeBlue of possibly blue bottom
states with a predicate isBlueTest that indicates which bottom states are actually blue. The
overall time budget is still met: If the red states are the smaller part, then FromRed is a subset of
out(NewB). If the blue states are the smaller part, then states in MaybeBlue \NewB are marked
(i. e. they have a transition to SpB , see Line 1.8); we are allowed to walk over them one more time.

When the test is executed in Line 4.24ℓ, all inert transitions of s′ point to blue states. If s′

has a non-inert transition to SpC , it is actually a red state, and in particular, a red new bottom
state. (It may happen that we do not find all new bottom states here; therefore, we still have to
execute Line 4.33ℓ.) As every state becomes a bottom state at most once, we are allowed to spend
time O ((|in(s′)|+ |out(s′)|) log n) then, which is abundant. If no such transition to SpB is found,
s′ is a blue state and we have to account for the time differently. It is O (|out(s′)|) per unmarked
blue state s′. Every time s′ becomes an unmarked blue state, the test is executed exactly once,
which fits in the general bound per time that s′ is involved in a refinement.

6

Algorithm 4 Refine a block w. r. t. SpC \ SpB (corrected), called in Line 1.16

4.1 function TrySplit
′(RfnB ,SpC ,FromRed ,MaybeBlue , isBlueTest)

4.2 {Try to refine block RfnB , depending on whether states have transitions to the splitter con-
stellation SpC . FromRed contains all transitions from RfnB to SpC , MaybeBlue contains
all bottom states that may be initially blue states, isBlueTest is a predicate that determines
whether a candidate in MaybeBlue is definitely blue.}

4.3 begin {Spend the same amount of work on either process:}
4.4 Blue := ∅
4.5 whenever |Blue| > 1

2
|RfnB | then

4.6 Stop this process.
4.7 end whenever

4.8 while Blue or MaybeBlue contain
unvisited states do

4.9 Choose an unvisited s ∈ Blue
or s ∈ MaybeBlue .

4.10 Mark s as visited.
4.11 if s 6∈ Blue then

4.12 if ¬isBlueT est(s) then
4.13 continue to Line 4.8ℓ
4.14 end if

4.15 Blue := Blue ∪ {s}
4.16 end if

4.17

4.18 for all s′ ∈ inτ (s) \ Red do

4.19 if notblue(s′) undefined then

4.20 notblue(s′) := |outτ (s′)|
4.21 end if

4.22 notblue(s′) := notblue(s′)−1
4.23 if notblue(s′) = 0 then

4.24 if out\τ (s
′) ∩ SpC = ∅ then

4.25 Blue := Blue ∪ {s′}
4.26 end if

4.27 end if

4.28 end for

4.29 end while

4.30 Stop the other process.
4.31 Move Blue to a new block NewB .
4.32 Destroy all temporary data.

Red := ∅ O (1)
whenever |Red |>1

2
|RfnB | then O (1) per assign-

ment to Blue or
Red , respectively.

Stop this process.
end whenever

while Red or FromRed contain

O

|inτ (NewB)|+

|MaybeBlue |+

|out(NewB)|+

|out(NewBott)|

and

O

(

|inτ (NewB)|+

|FromRed |

)

unvisited elements do
Choose an unvisited s ∈ Red

or s → s′′ ∈ FromRed .
if s → s′′ is chosen then

Mark s → s′′ as visited.
if swas visited earlier then
continue to Line 4.8r

end if

Red := Red ∪ {s}
end if

Mark s as visited.
for all s′ ∈ inτ (s) do

Red := Red ∪ {s′}

end for

end while

Stop the other process.
O (|out(NewB)|)

MoveRed to a newblockNewB .
Destroy all temporary data. as Lines 4.8–4.29

4.33 Find new non-inert transitions and bottom states (as Lines 2.23–2.30).
4.34 end

4.35 return

7

Figure 2: PostprocessNewBottom is too slow.

SpC

E1 E2 En

D

n constellations

RfnB

SpB

E1 E2 En

. . .

. . .

n states

3.3 PostprocessNewBottom is too slow

In Algorithm 3, we already included an improvement in Lines 3.10–3.14. If some block B̂ is split
here, it should not take longer than O (|in(NewB)|+ |out(NewB)|). The original formulation did
not take this into account; it always walked over all lists SC to separate them into the part that
belongs to NewB and the part that belongs to what remains in B̂. With our terminology, it did:

for all constellations C such that (B̂,C) still needs postprocessing do

for all new bottom states s ∈ the original B̂ with a transition to C do

if s ∈ NewB then

Register that (NewB ,C) needs postprocessing.
Move s from SC for B̂ to the corresponding list for NewB .
if SC for B̂ is empty then

Register that (B̂,C) no longer needs postprocessing.
end if

end if

end for

end for

If NewB is much smaller than B̂, a budget overrun may result because the loop still spends (a
little) time for each state in B̂ \ NewB with a transition to C . This is illustrated in our second
counterexample.

Assume that the partition in Figure 2 has been reached. Then, we choose SpB as splitter. the
-state is a (weak) predecessor of SpB , but not of SpC \ SpB , and therefore is split off from the

remainder of RfnB . This turns all -states into new bottom states. First, it is registered that
(RfnB ,E1), . . . , (RfnB ,En) all need postprocessing. (Also (RfnB ,SpC) needs postprocessing,
but we will disregard it in the lower bound for timing.) Then, one for one, these pairs are handled.
Suppose it starts with (RfnB ,E1). The algorithm will find that it has to split RfnB into two parts,

8

namely the -state that is a predecessor of E1 and the n− 1 other -states. Then, it walks over
the n− 1 pairs (RfnB ,E i) that still need postprocessing and their lists SEi

, containing altogether
2 + 3 + · · ·+ n states; from each list, it will remove the first -state. In total, 1

2
n(n− 1)− 1 list

entries are read or removed. After that, the algorithm may handle (RfnB ,E2), split off one more
-state from the rest, and walk over the n−2 remaining pairs (RfnB ,E i). Here,

1

2
(n−1)(n−2)−1

list entries are read or removed. For all the pairs up to (RfnB ,En), the algorithm reads and finally
removes Θ

(

n3
)

list entries.

The Kripke structure in Figure 2 has O (n) states and O
(

n2
)

transitions. Therefore, the

algorithm should run in time O
(

n2 logn
)

. However, it takes Ω
(

n3
)

time. When we think of
variants of this Kripke structure (e. g. reduced outdegree of the -state, or multiple -states with
a transition to the same -state), we find that there are actually d iterations over Θ (m) states.

Lemma 3. Postprocessing new bottom states as described in [4] has a worst-case time complexity
of Ω (md).

3.4 A faster PostprocessNewBottom

The main idea for correcting the time bound was already hinted at earlier: Lines 3.10–3.14 try to
distribute SC over NewB and what remains of B̂ in time proportional to the outgoing transitions
of NewB , while keeping the order of SC in line with the order of NewBott . This can be achieved if
one distributes SC simultaneously with distributing the states in B̂ and their outgoing transitions
themselves in Line 4.31. If all else fails, even constructing SC for NewB from scratch can fit the
time bound O (|out(NewB)|).

3.5 PostprocessNewBottom is still too slow

The algorithm TrySplit
′ walks through all new bottom states to look for blue states: in Line 3.9,

we call it with MaybeBlue = NewBott . There may be a problem in a Kripke structure with a large
number of new bottom states when we have to split over and over again for the same constellation,
because every now and then, another new bottom state is discovered.

Consider the Kripke structure drawn partially in Figure 3. The states drawn individually are
all in the same block, which is considered for refinement with SpB ⊂ C 0 as splitter. We assume
that state sb has a transition to SpB , and all other transitions to C 0 go to C 0 \ SpB . Before
splitting, sb is the only bottom state in the block; however, as soon as it is split off, s1, s2, . . .
become new bottom states.

If we extend this construction until we reach sn and sn,n−1, it will have O
(

n2
)

states and

O
(

n3
)

transitions. For a better overview, we present the refinements in two levels; the algorithm
follows the order of presentation, but does so iteratively.

• Let’s start with SpC = C 0, after splitting it into SpB and the rest: this refinement splits
sb from the rest of the block and registers that s1, s2, . . . are new bottom states. As a result,
the algorithm calls PostprocessNewBottom.

• Let’s refine with C 1: this will split s1 from the block and create another new bottom state
s10. So we have to check for C 0 again; this will now split off s10 from the rest.

• Then refine with C 2: this splits s2 from the block and creates two more new bottom states
s20 and s21. We now have to refine for C 0 and C 1 again: first s21 is split off and then s20.

• Then we refine with C 3: this will split s3 from the block and create three more new bottom
states s30, s31 and s32. Now we can refine for C 0,C 1 and C 2 again; every time, we will
split one of these new bottom states off.

• etc.

The reader will see that in all these refinements, the set of blue states is very small; however, it is
never empty. We are allowed to spend time proportional to the number of these blue states and
their transitions. In total, there will be about Θ

(

n2
)

such refinements. This on itself is not yet

9

Figure 3: PostprocessNewBottom is still too slow.

s1

s2

s3

s4

s10

s20

s21

s30

s31

s32

s40

s41

s42

s43

sb

ti

C 4 C 3 C 2 C 1 C 0

10

problematic. However, we can without increasing the complexity class of the Kripke structure,
add another O

(

n2
)

new bottom states t1, . . . , tn2 to this block with transitions to each of the C i.
Every time we look for the blue states, we have to run through all new bottom states to find the
states that are not in SC i

. So, in reality, each refinement will spend time Ω
(

n2
)

. However, as

there were only O
(

n3
)

transitions, this is too much.

3.6 Possible correction

We should make sure that first those new bottom states are handled that have been found last:
When we call TrySplit

′ in Line 3.9, the blue coroutine first walks through the newest bottom
states. Then, as soon as we know that all blue new bottom states have been found (based on
the difference between the length of SC i

and the total number of new bottom states), we can
stop running through the other new bottom states. As a consequence, the new bottom states
found earlier (and possibly already run through earlier) will not be visited another time; the time
spent to skip over states in MaybeBlue \ Blue (in Line 4.12ℓ), over all refinements together, will
be bounded by the number of outgoing transitions of new bottom states.

Another solution might be to handle all refinements w. r. t. a fixed set of new bottom states
before considering more new bottom states. In terms of the original data structure, that would
mean to keep the sets XB, XB′ untouched until all refinements are done, and only after that handle
the new bottom states contained therein.

4 Conclusion

We showed that the algorithm of [4] for computing stuttering equivalence does not meet the
acclaimed bound of O (m logn); instead, there are examples showing it required Ω (md) time with
d the maximum outdegree in the Kripke structure.

Presentation of the algorithm in pseudocode enabled us to identify the parts of the algorithm
that are responsible for the overrun of the time bound. We are convinced that, after correcting
TrySplit

′ and PostprocessNewBottom, the time budgets (as indicated in the pseudocode)
are met. Therefore, we are emboldened to confirm the main result of [4]:

Theorem 4. It is possible to calculate the stuttering equivalence of a Kripke structure in O (m logn)
time and O (m) memory (by using the corrected Algorithm 1).

References

[1] M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite Kripke structures in
propositional temporal logic. Theoretical computer science, 59(12):115–131, July 1988.

[2] Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in bisimulation
semantics. Journal of the ACM, 43(3):555–600, May 1996.

[3] Jan Friso Groote and Frits Vaandrager. An efficient algorithm for branching and stuttering
equivalence. In M. S. Paterson, editor, Automata, languages and programming, volume 443 of
LNCS, pages 626–638. Springer, Berlin, 1990.

[4] Jan Friso Groote and Anton Wijs. An O(m log n) algorithm for stuttering equivalence and
branching bisimulation. arXiv e-prints 1601.01478, 2016. http://arxiv.org/abs/1601.01478.

[5] Jan Friso Groote and Anton Wijs. An O(m log n) algorithm for stuttering equivalence and
branching bisimulation. In Marsha Chechik and Jean-François Raskin, editors, Tools and
algorithms for the construction and analysis of systems: TACAS, volume 9636 of LNCS, pages
607–624. Springer, Berlin, 2016.

11

http://arxiv.org/abs/1601.01478

	1 Introduction
	2 Pseudocode for Groote/Wijs 2016
	2.1 Splitting blocks
	2.2 New bottom states

	3 Counterexamples to time complexity
	3.1 TrySplit' is too slow
	3.2 A faster TrySplit'
	3.3 PostprocessNewBottom is too slow
	3.4 A faster PostprocessNewBottom
	3.5 PostprocessNewBottom is still too slow
	3.6 Possible correction

	4 Conclusion

