20 research outputs found

    PReaCH: A Fast Lightweight Reachability Index using Pruning and Contraction Hierarchies

    Full text link
    We develop the data structure PReaCH (for Pruned Reachability Contraction Hierarchies) which supports reachability queries in a directed graph, i.e., it supports queries that ask whether two nodes in the graph are connected by a directed path. PReaCH adapts the contraction hierarchy speedup techniques for shortest path queries to the reachability setting. The resulting approach is surprisingly simple and guarantees linear space and near linear preprocessing time. Orthogonally to that, we improve existing pruning techniques for the search by gathering more information from a single DFS-traversal of the graph. PReaCH-indices significantly outperform previous data structures with comparable preprocessing cost. Methods with faster queries need significantly more preprocessing time in particular for the most difficult instances

    High-Performance Reachability Query Processing under Index Size Restrictions

    Full text link
    In this paper, we propose a scalable and highly efficient index structure for the reachability problem over graphs. We build on the well-known node interval labeling scheme where the set of vertices reachable from a particular node is compactly encoded as a collection of node identifier ranges. We impose an explicit bound on the size of the index and flexibly assign approximate reachability ranges to nodes of the graph such that the number of index probes to answer a query is minimized. The resulting tunable index structure generates a better range labeling if the space budget is increased, thus providing a direct control over the trade off between index size and the query processing performance. By using a fast recursive querying method in conjunction with our index structure, we show that in practice, reachability queries can be answered in the order of microseconds on an off-the-shelf computer - even for the case of massive-scale real world graphs. Our claims are supported by an extensive set of experimental results using a multitude of benchmark and real-world web-scale graph datasets.Comment: 30 page

    Adding Logical Operators to Tree Pattern Queries on Graph-Structured Data

    Full text link
    As data are increasingly modeled as graphs for expressing complex relationships, the tree pattern query on graph-structured data becomes an important type of queries in real-world applications. Most practical query languages, such as XQuery and SPARQL, support logical expressions using logical-AND/OR/NOT operators to define structural constraints of tree patterns. In this paper, (1) we propose generalized tree pattern queries (GTPQs) over graph-structured data, which fully support propositional logic of structural constraints. (2) We make a thorough study of fundamental problems including satisfiability, containment and minimization, and analyze the computational complexity and the decision procedures of these problems. (3) We propose a compact graph representation of intermediate results and a pruning approach to reduce the size of intermediate results and the number of join operations -- two factors that often impair the efficiency of traditional algorithms for evaluating tree pattern queries. (4) We present an efficient algorithm for evaluating GTPQs using 3-hop as the underlying reachability index. (5) Experiments on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our algorithm, from several times to orders of magnitude faster than state-of-the-art algorithms in terms of evaluation time, even for traditional tree pattern queries with only conjunctive operations.Comment: 16 page

    Sparse Dynamic Programming on DAGs with Small Width

    Get PDF
    The minimum path cover problem asks us to find a minimum-cardinality set of paths that cover all the nodes of a directed acyclic graph (DAG). We study the case when the size k of a minimum path cover is small, that is, when the DAG has a small width. This case is motivated by applications in pan-genomics, where the genomic variation of a population is expressed as a DAG. We observe that classical alignment algorithms exploiting sparse dynamic programming can be extended to the sequence-against-DAG case by mimicking the algorithm for sequences on each path of a minimum path cover and handling an evaluation order anomaly with reachability queries. Namely, we introduce a general framework for DAG-extensions of sparse dynamic programming. This framework produces algorithms that are slower than their counterparts on sequences only by a factor k. We illustrate this on two classical problems extended to DAGs: longest increasing subsequence and longest common subsequence. For the former, we obtain an algorithm with running time O(k vertical bar E vertical bar log vertical bar V vertical bar). This matches the optimal solution to the classical problem variant when the input sequence is modeled as a path. We obtain an analogous result for the longest common subsequence problem. We then apply this technique to the co-linear chaining problem, which is a generalization of the above two problems. The algorithm for this problem turns out to be more involved, needing further ingredients, such as an FM-index tailored for large alphabets and a two-dimensional range search tree modified to support range maximum queries. We also study a general sequence-to-DAG alignment formulation that allows affine gap costs in the sequence. The main ingredient of the proposed framework is a new algorithm for finding a minimum path cover of a DAG (V, E) in O(k vertical bar E vertical bar log vertical bar V vertical bar) time, improving all known time-bounds when k is small and the DAG is not too dense. In addition to boosting the sparse dynamic programming framework, an immediate consequence of this new minimum path cover algorithm is an improved space/time tradeoff for reachability queries in arbitrary directed graphs.Peer reviewe

    K-Reach: Who is in Your Small World

    Full text link
    We study the problem of answering k-hop reachability queries in a directed graph, i.e., whether there exists a directed path of length k, from a source query vertex to a target query vertex in the input graph. The problem of k-hop reachability is a general problem of the classic reachability (where k=infinity). Existing indexes for processing classic reachability queries, as well as for processing shortest path queries, are not applicable or not efficient for processing k-hop reachability queries. We propose an index for processing k-hop reachability queries, which is simple in design and efficient to construct. Our experimental results on a wide range of real datasets show that our index is more efficient than the state-of-the-art indexes even for processing classic reachability queries, for which these indexes are primarily designed. We also show that our index is efficient in answering k-hop reachability queries.Comment: VLDB201

    Graph Reachability on Parallel Many-Core Architectures

    Get PDF
    Many modern applications are modeled using graphs of some kind. Given a graph, reachability, that is, discovering whether there is a path between two given nodes, is a fundamental problem as well as one of the most important steps of many other algorithms. The rapid accumulation of very large graphs (up to tens of millions of vertices and edges) from a diversity of disciplines demand efficient and scalable solutions to the reachability problem. General-purpose computing has been successfully used on Graphics Processing Units (GPUs) to parallelize algorithms that present a high degree of regularity. In this paper, we extend the applicability of GPU processing to graph-based manipulation, by re-designing a simple but efficient state-of-the-art graph-labeling method, namely the GRAIL (Graph Reachability Indexing via RAndomized Interval) algorithm, to many-core CUDA-based GPUs. This algorithm firstly generates a label for each vertex of the graph, then it exploits these labels to answer reachability queries. Unfortunately, the original algorithm executes a sequence of depth-first visits which are intrinsically recursive and cannot be efficiently implemented on parallel systems. For that reason, we design an alternative approach in which a sequence of breadth-first visits substitute the original depth-first traversal to generate the labeling, and in which a high number of concurrent visits is exploited during query evaluation. The paper describes our strategy to re-design these steps, the difficulties we encountered to implement them, and the solutions adopted to overcome the main inefficiencies. To prove the validity of our approach, we compare (in terms of time and memory requirements) our GPU-based approach with the original sequential CPU-based tool. Finally, we report some hints on how to conduct further research in the area
    corecore