2,224 research outputs found

    Solar array fed synchronous reluctance motor driven water pump : an improved performance under partial shading conditions

    Get PDF
    An improved performance of a photovoltaic (PV) pumping system employing a synchronous reluctance motor (SynRM) under partial shading conditions is proposed. The system does not include the dc-dc converter that is predominantly being utilized for maximizing the output power of the PV array. In addition, storage batteries are also not contained. A conventional inverter connected directly to the PV array is used to drive the SynRM. Further, a control strategy is proposed to drive the inverter so that the maximum output power of the PV array is achieved while the SynRM is working at the maximum torque per Ampere condition. Consequently, this results in an improved system efficiency and cost. Moreover, two maximum power point tracking (MPPT) techniques are compared under uniform and partial shadow irradiation conditions. The first MPPT algorithm is based on the conventional perturbation and observation (P&O) method and the second one uses a differential evolution (DE) optimization technique. It is found that the DE optimization method leads to a higher PV output power than using the P&O method under the partial shadow condition. Hence, the pump flow rate is much higher. However, under a uniform irradiation level, the PV system provides the available maximum power using both MPPT techniques. The experimental measurements are obtained to validate the theoretical work

    Direct usage of photovoltaic solar panels to supply a freezer motor with variable DC input voltage

    Get PDF
    In this paper, a single-phase photovoltaic (PV) inverter fed by a boost converter to supply a freezer motor with variable DC input is investigated. The proposed circuit has two stages. Firstly, the DC output of the PV panel that varies between 150 and 300 V will be applied to the boost converter. The boost converter will boost the input voltage to a fixed 300 V DC. Next, this voltage is supplied to the single-phase full-bridge inverter to obtain 230 V AC. In the end, The output of the inverter will feed a freezer motor. The PV panels can be stand-alone or grid-connected. The grid-connected PV is divided into two categories, such as with a transformer and without a transformer, a transformer type has galvanic isolation resulting in increasing the security and also provides no further DC current toward the grid, but it is expensive, heavy and bulky. The transformerless type holds high efficiency and it is cheaper, but it suffers from leakage current between PV and the grid. This paper proposes a stand-alone direct use of PV to supply a freezer; therefore, no grid connection will result in no leakage current between the PV and Grid. The proposed circuit has some features such as no filtering circuit at the output of the inverter, no battery in the system, DC-link instead of AC link that reduces no-loads, having a higher efficiency, and holding enough energy in the DC-link capacitor to get the motor started. The circuit uses no transformers, thus, it is cheaper and has a smaller size. In addition, the system does not require a complex pulse width modulation (PWM) technique, because the motor can operate with a pulsed waveform. The control strategy uses the PWM signal with the desired timing. With this type of square wave, the harmonics (5th and 7th) of the voltage are reduced. The experimental and simulation results are presented to verify the feasibility of the proposed strategy

    Study and comparison results of the field oriented control for photovoltaic water pumping system applied on two cities in Morocco

    Get PDF
    In this papier, a low-cost solar photovoltaic water pumping system based on an induction motor without the use of chemical energy storage is presented. In literature, we can find several Maximum Power Point Tracking Algorithms, the choice of the algorithm is according to the nature of application. In this article, Variable Step Size Incremental Conductance MPPT method has been developed since it is fast and has less oscillations. The studied photovoltaic pumping system contains a centrifugal pump which is driven by a three-phase asynchronous motor. To control the water flow, the field-oriented control has been implemented. The control system is applied on two cities with different climatic conditions to evaluate their performance. The photovoltaic pumping system is developed using the MATLAB/Simulink software to discuss the results obtained. Consequently, the proposed MPPT based on the incremental conductance variable step shows good performances in terms of efficiency and tracking speed

    Literature Survey On Standalone Pumping Station For Agriculture Purpose Using Solar PV

    Get PDF
    The concept of the project is to utilize the abundant solar energy available, harness it for effective work output. Here we are trying to use solar energy to run the centrifugal pump for lifting the water from the well. This can be utilized for different purpose like irrigation for agriculture & nurseries, etc. Here we are collecting all information about which kind of constraints required for planning of standalone pumping station for agriculture purpose. In this paper we are finding out which are power electronics applications in renewable energy sources. This document will help all researcher to start work on Solar PV’s, irrigation using renewable energy , as well as for finding the power electronics application in renewable energy sources. DOI: 10.17762/ijritcc2321-8169.15036

    Adaptive backstepping control of induction motor powered by photovoltaic generator

    Get PDF
    This paper is aimed at addressing the design of an effective adaptive nonlinear control of a photovoltaic (PV) water pumping system powering a submersible induction motor and a centrifugal water pump. Four objectives are achieved using an adaptive Backstepping controller. First, it is applied to ensure maximum power point tracking, and uses the latter as a reference in regulation of the rotor speed to convert the maximum electrical power into maximum mechanical power. Second, the adaptive controller is synthesized to control motor rotor flux and restrict the magnetic circuit to its linear interval. Third, it is used to online estimate the rotor time-constant and the load torque disturbance estimation. Finally, this controller is employed to limit the stator currents to protect induction motor windings. Mathematical modelling of the main elements of the system is presented. A sliding mode rotor flux estimator is employed in the output feedback control of the whole system. DC-AC converter is controlled by pulse width modulation. The feasibility, the robustness and the effectiveness of the proposed adaptive nonlinear controller are evaluated through simulations in MATLAB/Simulink environment

    Simulation-based coyote optimization algorithm to determine gains of PI controller for enhancing the performance of solar PV water-pumping system

    Get PDF
    In this study, a simulation-based coyote optimization algorithm (COA) to identify the gains of PI to ameliorate the water-pumping system performance fed from the photovoltaic system is presented. The aim is to develop a stand-alone water-pumping system powered by solar energy, i.e., without the need of electric power from the utility grid. The voltage of the DC bus was adopted as a good candidate to guarantee the extraction of the maximum power under partial shading conditions. In such a system, two proportional-integral (PI) controllers, at least, are necessary. The adjustment of (Proportional-Integral) controllers are always carried out by classical and tiresome trials and errors techniques which becomes a hard task and time-consuming. In order to overcome this problem, an optimization problem was reformulated and modeled under functional time-domain constraints, aiming at tuning these decision variables. For achieving the desired operational characteristics of the PV water-pumping system for both rotor speed and DC-link voltage, simultaneously, the proposed COA algorithm is adopted. It is carried out through resolving a multiobjective optimization problem employing the weighted-sum technique. Inspired on theCanis latransspecies, the COA algorithm is successfully investigated to resolve such a problem by taking into account some constraints in terms of time-domain performance as well as producing the maximum power from the photovoltaic generation system. To assess the efficiency of the suggested COA method, the classical Ziegler-Nichols and trial-error tuning methods for the DC-link voltage and rotor speed dynamics, were compared. The main outcomes ensured the effectiveness and superiority of the COA algorithm. Compared to the other reported techniques, it is superior in terms of convergence rapidity and solution qualities

    Solar Photovoltaic Power with Control Strategies and Applications: A Review

    Full text link
    Growing concerns about environment issues, photovoltaic (PV) power is widely gaining importance all over the world. Use of this solar electric power is increasing day by day in many countries. This paper presents a review on applications of solar photovoltaic power for domestic purposes, irrigation purposes as well as for the grid purposes. Solar photovoltaic (PV) system works under variable solar irradiations and thus various control strategies to utilize this solar power in an efficient manner are also reviewed in this paper

    Energy-efficient autonomous solar water-pumping system for permanent-magnet synchronous motors

    Get PDF
    This paper presents a novel stand–alone solar– powered water pumping system, especially suited for usage in rural or remote areas. The system is primarily designed to reduce both cost and complexity, while simultaneously guaranteeing opti¬mal utilisation of the photovoltaic generator. The use of standard hardware and control architectures ensures ease of installation, service and maintenance. The proposed solution consists of a water pump driven by a permanent magnet synchronous motor (PMSM), controlled by a conventional field oriented control scheme. The photovoltaic array is directly connected to the DC bus of the inverter, with no intermediate power conversion stages. A perturbation based extremum–seeking controller adjusts the motor speed reference to attain the maximum power point opera-tion of the photovoltaic array. Both simulations and experimental results on a full-scale prototype support the effectiveness of the proposed system

    Implementation of High Efficiency, High Lifetime and Low Cost Converter for an Automatic Photovoltaic Water Pumping Station

    Full text link
    A novel idea of photovoltaic (PV) energy based converter for water pumping system without the USAge of fuel cells or batteries. In proposed system, the design of a three phase induction motor drive is directly supplied by using photovoltaic system energy. Presence of a three phase induction motor has better performance with optimized efficiency compared to the commercial water pumping system of DC motor. The developed resonant of Two Inductor Boost Converter (TIBC) and voltage quadruple with three phase Voltage Source Inverter (VSI) are based on the current fed multi resonant converter. Low input current ripple and high voltage gain are the features of TIBC. So the classical topology used to improve the system with a constant duty cycle control and a non dissipative snubber circuit along with a hysteresis controller to improve its efficiency. Due to the non existence of electrolytic capacitors the system is required to have a high lifetime and total system cost is low. As a result, in isolated locations the system has an optimistic solution and it provide water to poor societies
    • …
    corecore