451 research outputs found

    Performance modelling and analysis of multiple coexisting IEEE 802.15.4 wireless sensor networks

    Get PDF
    With the features of low-power and flexible networking capabilities IEEE 802.15.4 has been widely regarded as one strong candidate of communication technologies for wireless sensor networks (WSNs). It is expected that with an increasing number of deployments of 802.15.4 based WSNs, multiple WSNs could coexist with full or partial overlap in residential or enterprise areas. As WSNs are usually deployed without coordination, the communication could meet significant degradation with the 802.15.4 channel access scheme, which has a large impact on system performance. In this thesis we are motivated to investigate the effectiveness of 802.15.4 networks supporting WSN applications with various environments, especially when hidden terminals are presented due to the uncoordinated coexistence problem. Both analytical models and system level simulators are developed to analyse the performance of the random access scheme specified by IEEE 802.15.4 medium access control (MAC) standard for several network scenarios. The first part of the thesis investigates the effectiveness of single 802.15.4 network supporting WSN applications. A Markov chain based analytic model is applied to model the MAC behaviour of IEEE 802.15.4 standard and a discrete event simulator is also developed to analyse the performance and verify the proposed analytical model. It is observed that 802.15.4 networks could sufficiently support most WSN applications with its various functionalities. After the investigation of single network, the uncoordinated coexistence problem of multiple 802.15.4 networks deployed with communication range fully or partially overlapped are investigated in the next part of the thesis. Both nonsleep and sleep modes are investigated with different channel conditions by analytic and simulation methods to obtain the comprehensive performance evaluation. It is found that the uncoordinated coexistence problem can significantly degrade the performance of 802.15.4 networks, which is unlikely to satisfy the QoS requirements for many WSN applications. The proposed analytic model is validated by simulations which could be used to obtain the optimal parameter setting before WSNs deployments to eliminate the interference risks

    Wireless Sensor Networking in Challenging Environments

    Get PDF
    Recent years have witnessed growing interest in deploying wireless sensing applications in real-world environments. For example, home automation systems provide fine-grained metering and control of home appliances in residential settings. Similarly, assisted living applications employ wireless sensors to provide continuous health and wellness monitoring in homes. However, real deployments of Wireless Sensor Networks (WSNs) pose significant challenges due to their low-power radios and uncontrolled ambient environments. Our empirical study in over 15 real-world apartments shows that low-power WSNs based on the IEEE 802.15.4 standard are highly susceptible to external interference beyond user control, such as Wi-Fi access points, Bluetooth peripherals, cordless phones, and numerous other devices prevalent in residential environments that share the unlicensed 2.4 GHz ISM band with IEEE 802.15.4 radios. To address these real-world challenges, we developed two practical wireless network protocols including the Adaptive and Robust Channel Hopping (ARCH) protocol and the Adaptive Energy Detection Protocol (AEDP). ARCH enhances network reliability through opportunistically changing radio\u27s frequency to avoid interference and environmental noise and AEDP reduces false wakeups in noisy wireless environments by dynamically adjusting the wakeup threshold of low-power radios. Another major trend in WSNs is the convergence with smart phones. To deal with the dynamic wireless conditions and varying application requirements of mobile users, we developed the Self-Adapting MAC Layer (SAML) to support adaptive communication between smart phones and wireless sensors. SAML dynamically selects and switches Medium Access Control protocols to accommodate changes in ambient conditions and application requirements. Compared with the residential and personal wireless systems, industrial applications pose unique challenges due to their critical demands on reliability and real-time performance. We developed an experimental testbed by realizing key network mechanisms of industrial Wireless Sensor and Actuator Networks (WSANs) and conducted an empirical study that revealed the limitations and potential enhancements of those mechanisms. Our study shows that graph routing is more resilient to interference and its backup routes may be heavily used in noisy environments, which demonstrate the necessity of path diversity for reliable WSANs. Our study also suggests that combining channel diversity with retransmission may effectively reduce the burstiness of transmission failures and judicious allocation of multiple transmissions in a shared slot can effectively improve network capacity without significantly impacting reliability

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks

    Get PDF
    Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.https://doi.org/10.3390/s15071616

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Power Optimization for Wireless Sensor Networks

    Get PDF

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    On a Joint Physical Layer and Medium Access Control Sublayer Design for Efficient Wireless Sensor Networks and Applications

    Get PDF
    Wireless sensor networks (WSNs) are distributed networks comprising small sensing devices equipped with a processor, memory, power source, and often with the capability for short range wireless communication. These networks are used in various applications, and have created interest in WSN research and commercial uses, including industrial, scientific, household, military, medical and environmental domains. These initiatives have also been stimulated by the finalisation of the IEEE 802.15.4 standard, which defines the medium access control (MAC) and physical layer (PHY) for low-rate wireless personal area networks (LR-WPAN). Future applications may require large WSNs consisting of huge numbers of inexpensive wireless sensor nodes with limited resources (energy, bandwidth), operating in harsh environmental conditions. WSNs must perform reliably despite novel resource constraints including limited bandwidth, channel errors, and nodes that have limited operating energy. Improving resource utilisation and quality-of-service (QoS), in terms of reliable connectivity and energy efficiency, are major challenges in WSNs. Hence, the development of new WSN applications with severe resource constraints will require innovative solutions to overcome the above issues as well as improving the robustness of network components, and developing sustainable and cost effective implementation models. The main purpose of this research is to investigate methods for improving the performance of WSNs to maintain reliable network connectivity, scalability and energy efficiency. The study focuses on the IEEE 802.15.4 MAC/PHY layers and the carrier sense multiple access with collision avoidance (CSMA/CA) based networks. First, transmission power control (TPC) is investigated in multi and single-hop WSNs using typical hardware platform parameters via simulation and numerical analysis. A novel approach to testing TPC at the physical layer is developed, and results show that contrary to what has been reported from previous studies, in multi-hop networks TPC does not save energy. Next, the network initialization/self-configuration phase is addressed through investigation of the 802.15.4 MAC beacon interval setting and the number of associating nodes, in terms of association delay with the coordinator. The results raise doubt whether that the association energy consumption will outweigh the benefit of duty cycle power management for larger beacon intervals as the number of associating nodes increases. The third main contribution of this thesis is a new cross layer (PHY-MAC) design to improve network energy efficiency, reliability and scalability by minimising packet collisions due to hidden nodes. This is undertaken in response to findings in this thesis on the IEEE 802.15.4 MAC performance in the presence of hidden nodes. Specifically, simulation results show that it is the random backoff exponent that is of paramount importance for resolving collisions and not the number of times the channel is sensed before transmitting. However, the random backoff is ineffective in the presence of hidden nodes. The proposed design uses a new algorithm to increase the sensing coverage area, and therefore greatly reduces the chance of packet collisions due to hidden nodes. Moreover, the design uses a new dynamic transmission power control (TPC) to further reduce energy consumption and interference. The above proposed changes can smoothly coexist with the legacy 802.15.4 CSMA/CA. Finally, an improved two dimensional discrete time Markov chain model is proposed to capture the performance of the slotted 802.15.4 CSMA/CA. This model rectifies minor issues apparent in previous studies. The relationship derived for the successful transmission probability, throughput and average energy consumption, will provide better performance predictions. It will also offer greater insight into the strengths and weaknesses of the MAC operation, and possible enhancement opportunities. Overall, the work presented in this thesis provides several significant insights into WSN performance improvements with both existing protocols and newly designed protocols. Finally, some of the numerous challenges for future research are described

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide
    • …
    corecore