2,730 research outputs found

    Towards Developing Computer Vision Algorithms and Architectures for Real-world Applications

    Get PDF
    abstract: Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading. To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time. Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists. Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Predicting Phishing Websites using Neural Network trained with Back-Propagation

    Get PDF
    Phishing is increasing dramatically with the development of modern technologies and the global worldwide computer networks. This results in the loss of customer’s confidence in e-commerce and online banking, financial damages, and identity theft. Phishing is fraudulent effort aims to acquire sensitive information from users such as credit card credentials, and social security number. In this article, we propose a model for predicting phishing attacks based on Artificial Neural Network (ANN). A Feed Forward Neural Network trained by Back Propagation algorithm is developed to classify websites as phishing or legitimate. The suggested model shows high acceptance ability for noisy data, fault tolerance and high prediction accuracy with respect to false positive and false negative rates

    LogBERT: Log Anomaly Detection via BERT

    Get PDF
    When systems break down, administrators usually check the produced logs to diagnose the failures. Nowadays, systems grow larger and more complicated. It is labor-intensive to manually detect abnormal behaviors in logs. Therefore, it is necessary to develop an automated anomaly detection on system logs. Automated anomaly detection not only identifies malicious patterns promptly but also requires no prior domain knowledge. Many existing log anomaly detection approaches apply natural language models such as Recurrent Neural Network (RNN) to log analysis since both are based on sequential data. The proposed model, LogBERT, a BERT-based neural network, can capture the contextual information in log sequences. LogBERT is trained on normal log data considering the scarcity of labeled abnormal data in reality. Intuitively, LogBERT learns normal patterns in training data and flags test data that are deviated from prediction as anomalies. We compare LogBERT with four traditional machine learning models and two deep learning models in terms of precision, recall, and F1 score on three public datasets, HDFS, BGL, and Thunderbird. Overall, LogBERT outperforms the state-of-art models for log anomaly detection

    Classification of Acute Lymphocytic Leukemic Blood Cell Images using Hybrid CNN-Enhanced Ensemble SVM Models and Machine Learning Classifiers

    Get PDF
    Acute Lymphocytic Leukemia is a dangerous kind of malignant cancer caused due to the overproduction of white blood cells. The white blood cells in our body are responsible for fighting against infections, if the WBC increases the immunity will decrease and it would lead to serious health conditions. Malignant cancers such as ALL is life threatening if the disease is not diagnosed at an early stage. If a person is suffering from ALL the disease needs to be diagnosed at an early stage before it starts spreading, if it starts spreading the person’s chances of survival would also reduce. Here comes the need of an accurate automated system which would assist the oncologists to diagnose the disease as early as possible. In this paper some of the algorithms that are enhanced to detect and classify ALL are incorporated. In order to classify the Acute Lymphocytic Leukemia a hybrid model has been deployed to improve the accuracy of the diagnosis and it is termed as Hybrid CNN Enhanced Ensemble SVM for the classification of malignancy. Machine Learning classifiers are also used to design the system and it is then compared with enhanced CNN based on the performance metrics

    Análise de multidões usando coerência de vizinhança local

    Get PDF
    Large numbers of crowd analysis methods using computer vision have been developed in the past years. This dissertation presents an approach to explore characteristics inherent to human crowds – proxemics, and neighborhood relationship – with the purpose of extracting crowd features and using them for crowd flow estimation and anomaly detection and localization. Given the optical flow produced by any method, the proposed approach compares the similarity of each flow vector and its neighborhood using the Mahalanobis distance, which can be obtained in an efficient manner using integral images. This similarity value is then used either to filter the original optical flow or to extract features that describe the crowd behavior in different resolutions, depending on the radius of the personal space selected in the analysis. To show that the extracted features are indeed relevant, we tested several classifiers in the context of abnormality detection. More precisely, we used Recurrent Neural Networks, Dense Neural Networks, Support Vector Machines, Random Forest and Extremely Random Trees. The two developed approaches (crowd flow estimation and abnormality detection) were tested on publicly available datasets involving human crowded scenarios and compared with state-of-the-art methods.Métodos para análise de ambientes de multidões são amplamente desenvolvidos na área de visão computacional. Esta tese apresenta uma abordagem para explorar características inerentes às multidões humanas - comunicação proxêmica e relações de vizinhança - para extrair características de multidões e usá-las para estimativa de fluxo de multidões e detecção e localização de anomalias. Dado o fluxo óptico produzido por qualquer método, a abordagem proposta compara a similaridade de cada vetor de fluxo e sua vizinhança usando a distância de Mahalanobis, que pode ser obtida de maneira eficiente usando imagens integrais. Esse valor de similaridade é então utilizado para filtrar o fluxo óptico original ou para extrair informações que descrevem o comportamento da multidão em diferentes resoluções, dependendo do raio do espaço pessoal selecionado na análise. Para mostrar que as características são realmente relevantes, testamos vários classificadores no contexto da detecção de anormalidades. Mais precisamente, usamos redes neurais recorrentes, redes neurais densas, máquinas de vetores de suporte, floresta aleatória e árvores extremamente aleatórias. As duas abordagens desenvolvidas (estimativa do fluxo de multidões e detecção de anormalidades) foram testadas em conjuntos de dados públicos, envolvendo cenários de multidões humanas e comparados com métodos estado-da-arte

    Deteção de propagação de ameaças e exfiltração de dados em redes empresariais

    Get PDF
    Modern corporations face nowadays multiple threats within their networks. In an era where companies are tightly dependent on information, these threats can seriously compromise the safety and integrity of sensitive data. Unauthorized access and illicit programs comprise a way of penetrating the corporate networks, able to traversing and propagating to other terminals across the private network, in search of confidential data and business secrets. The efficiency of traditional security defenses are being questioned with the number of data breaches occurred nowadays, being essential the development of new active monitoring systems with artificial intelligence capable to achieve almost perfect detection in very short time frames. However, network monitoring and storage of network activity records are restricted and limited by legal laws and privacy strategies, like encryption, aiming to protect the confidentiality of private parties. This dissertation proposes methodologies to infer behavior patterns and disclose anomalies from network traffic analysis, detecting slight variations compared with the normal profile. Bounded by network OSI layers 1 to 4, raw data are modeled in features, representing network observations, and posteriorly, processed by machine learning algorithms to classify network activity. Assuming the inevitability of a network terminal to be compromised, this work comprises two scenarios: a self-spreading force that propagates over internal network and a data exfiltration charge which dispatch confidential info to the public network. Although features and modeling processes have been tested for these two cases, it is a generic operation that can be used in more complex scenarios as well as in different domains. The last chapter describes the proof of concept scenario and how data was generated, along with some evaluation metrics to perceive the model’s performance. The tests manifested promising results, ranging from 96% to 99% for the propagation case and 86% to 97% regarding data exfiltration.Nos dias de hoje, várias organizações enfrentam múltiplas ameaças no interior da sua rede. Numa época onde as empresas dependem cada vez mais da informação, estas ameaças podem compremeter seriamente a segurança e a integridade de dados confidenciais. O acesso não autorizado e o uso de programas ilícitos constituem uma forma de penetrar e ultrapassar as barreiras organizacionais, sendo capazes de propagarem-se para outros terminais presentes no interior da rede privada com o intuito de atingir dados confidenciais e segredos comerciais. A eficiência da segurança oferecida pelos sistemas de defesa tradicionais está a ser posta em causa devido ao elevado número de ataques de divulgação de dados sofridos pelas empresas. Desta forma, o desenvolvimento de novos sistemas de monitorização ativos usando inteligência artificial é crucial na medida de atingir uma deteção mais precisa em curtos períodos de tempo. No entanto, a monitorização e o armazenamento dos registos da atividade da rede são restritos e limitados por questões legais e estratégias de privacidade, como a cifra dos dados, visando proteger a confidencialidade das entidades. Esta dissertação propõe metodologias para inferir padrões de comportamento e revelar anomalias através da análise de tráfego que passa na rede, detetando pequenas variações em comparação com o perfil normal de atividade. Delimitado pelas camadas de rede OSI 1 a 4, os dados em bruto são modelados em features, representando observações de rede e, posteriormente, processados por algoritmos de machine learning para classificar a atividade de rede. Assumindo a inevitabilidade de um terminal ser comprometido, este trabalho compreende dois cenários: um ataque que se auto-propaga sobre a rede interna e uma tentativa de exfiltração de dados que envia informações para a rede pública. Embora os processos de criação de features e de modelação tenham sido testados para estes dois casos, é uma operação genérica que pode ser utilizada em cenários mais complexos, bem como em domínios diferentes. O último capítulo inclui uma prova de conceito e descreve o método de criação dos dados, com a utilização de algumas métricas de avaliação de forma a espelhar a performance do modelo. Os testes mostraram resultados promissores, variando entre 96% e 99% para o caso da propagação e entre 86% e 97% relativamente ao roubo de dados.Mestrado em Engenharia de Computadores e Telemátic

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework
    corecore