4,447 research outputs found

    Academic use of rapid prototyping in digitally controlled power factor correctors

    Get PDF
    The growing use of power converters connected to the grid motivates their study in power electronics courses and the prototype development in the degree final project (DFP). However, the practical realization of using state-of-the-art components and conversion techniques is complex due to the numerous multidisciplinary aspects that students must consider in its design and development and the workload associated with the DFP. An example of this is that, unlike a conventional power factor correction (PFC) design, the individual dedication of students to complete the design and validation of modern bridgeless PFC stages exceeds the number of credits of the DFP. The reason for this is that it includes system modeling, becoming familiar with the devices used, discrete selection, circuit design, control development, and programming, to build the converter and verify the operation of the complete system. To reinforce the individual skills needed for the DFP and reduce this time, a novel strategy is proposed. It allows the student to focus their efforts on integrating the individual skills achieved in the degree at the appropriate competence level during the modeling and construction of the power converter while carrying out part of the tasks out of the lab, if necessary, as was the case during the pandemic restrictions. For this, the rapid prototyping technique is introduced to speed up the overall design and speed up the tuning of digital controllers. This manuscript presents a teaching experience in which students build digitally controlled power converters using Texas Instruments microcontroller boards and PLECS¼. The example of a bridgeless totem-pole power factor corrector is shown. Although it began to develop and was motivated due to the restrictions during the COVID-19 pandemic, the experience has been verified and is maintained over time, successfully consolidating.This research was funded by the Spanish Ministry of Science and Innovation under Project PID2021-128941OB-I00 TRENTI–Efficient Energy Transformation in Industrial Environment

    Academic Use of Rapid Prototyping in Digitally Controlled Power Factor Correctors

    Get PDF
    The growing use of power converters connected to the grid motivates their study in power electronics courses and the prototype development in the degree final project (DFP). However, the practical realization of using state-of-the-art components and conversion techniques is complex due to the numerous multidisciplinary aspects that students must consider in its design and development and the workload associated with the DFP. An example of this is that, unlike a conventional power factor correction (PFC) design, the individual dedication of students to complete the design and validation of modern bridgeless PFC stages exceeds the number of credits of the DFP. The reason for this is that it includes system modeling, becoming familiar with the devices used, discrete selection, circuit design, control development, and programming, to build the converter and verify the operation of the complete system. To reinforce the individual skills needed for the DFP and reduce this time, a novel strategy is proposed. It allows the student to focus their efforts on integrating the individual skills achieved in the degree at the appropriate competence level during the modeling and construction of the power converter while carrying out part of the tasks out of the lab, if necessary, as was the case during the pandemic restrictions. For this, the rapid prototyping technique is introduced to speed up the overall design and speed up the tuning of digital controllers. This manuscript presents a teaching experience in which students build digitally controlled power converters using Texas Instruments microcontroller boards and PLECSÂź. The example of a bridgeless totem-pole power factor corrector is shown. Although it began to develop and was motivated due to the restrictions during the COVID-19 pandemic, the experience has been verified and is maintained over time, successfully consolidating

    Teaching the Electronic Design and Embedded System Course with Body Sensor Nodes

    Get PDF
    The body sensor nodes armed with a MSP430 microcontroller, a IEEE 802.15.4 radio chip, a memory flash and an electronic amplifier circuits is proposed as an educational platform for electronic design and embedded system courses. The body sensor nodes are designed based on a commercial wireless sensor network (WSN) device that contains the microcontroller, radio chip and memory flash in a single platform. The WSN device also supplies the connection pins for I/O signals, ADC, SPI and UART functionalities, to control an electronic amplifier circuit. For electronic design courses, the ease of creating the body sensor node, will be hard to resist by the students. An electronic amplifier is designed and fabricated by the students in the laboratory in the electronic design courses. The WSN device is stacked on the top of the electronic amplifier circuit to prototype a new body sensor node. For the embedded system course students, the unique properties of TinyOS used as the operating system for the body sensor node allowed the students see the effects of the software in short time

    H-Bridge Converter as Basic Switching Topology Workbench in Power Electronics Teaching

    Get PDF
    This article deals with an effective power electronics learning setup based on a Full-Bridge converter used to teach electrical energy conversion experimentally. In the proposed learning by doing methodology, the hardware and the software are properly mixed in order to obtain an easy-to-use experimental learning environment. In this paper, the H-Bridge is the fundamental brick to build students’ knowledge on the main topics of power electronics converter circuit in different operative conditions. This H-Bridge comes with a reconfigurable output LCL to achieve several basic DC-DC powerconverters topologies. Converter current and voltage switching behavior can be investigated using the proposed setup. Furthermore, the friendly hardware and software set-up allows studying the converter modulation and control techniques of the different power electronics circuits

    A wideband linear tunable CDTA and its application in field programmable analogue array

    Get PDF
    This document is the Accepted Manuscript version of the following article: Hu, Z., Wang, C., Sun, J. et al. ‘A wideband linear tunable CDTA and its application in field programmable analogue array’, Analog Integrated Circuits and Signal Processing, Vol. 88 (3): 465-483, September 2016. Under embargo. Embargo end date: 6 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs10470-016-0772-7 © Springer Science+Business Media New York 2016In this paper, a NMOS-based wideband low power and linear tunable transconductance current differencing transconductance amplifier (CDTA) is presented. Based on the NMOS CDTA, a novel simple and easily reconfigurable configurable analogue block (CAB) is designed. Moreover, using the novel CAB, a simple and versatile butterfly-shaped FPAA structure is introduced. The FPAA consists of six identical CABs, and it could realize six order current-mode low pass filter, second order current-mode universal filter, current-mode quadrature oscillator, current-mode multi-phase oscillator and current-mode multiplier for analog signal processing. The Cadence IC Design Tools 5.1.41 post-layout simulation and measurement results are included to confirm the theory.Peer reviewedFinal Accepted Versio

    Modelling of a photovoltaic array using Analog System Lab Kit Pro board

    Get PDF
    This paper discusses modelling and parameters investigation of a photovoltaic array using Analog System Lab Kit Pro board offered by Texas Instrument for instructional laboratories on Electric and Electronic Engineering. The modelling of PV array is based on representation of the current-voltage characteristic by an analogue circuit developed using the components available on the Lab Kit board. The model is applicable for instructional laboratory investigation on the array current-voltage characteristic and its performance at maximum power point. This investigation expands the portfolio of the laboratory works available through Analog System Lab Kit Pro board

    Architecture of a network-in-the-Loop environment for characterizing AC power system behavior

    Get PDF
    This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator

    Constructivist Multi-Access Lab Approach in Teaching FPGA Systems Design with LabVIEW

    Get PDF
    Embedded systems play vital role in modern applications [1]. They can be found in autos, washing machines, electrical appliances and even in toys. FPGAs are the most recent computing technology that is used in embedded systems. There is an increasing demand on FPGA based embedded systems, in particular, for applications that require rapid time responses. Engineering education curricula needs to respond to the increasing industrial demand of using FPGAs by introducing new syllabus for teaching and learning this subject. This paper describes the development of new course material for teaching FPGA-based embedded systems design by using ‘G’ Programming Language of LabVIEW. A general overview of FPGA role in engineering education is provided. A survey of available Hardware Programming Languages for FPGAs is presented. A survey about LabVIEW utilization in engineering education is investigated; this is followed by a motivation section of why to use LabVIEW graphical programming in teaching and its capabilities. Then, a section of choosing a suitable kit for the course is laid down. Later, constructivist closed-loop model the FPGA course has been proposed in accordance with [2- 4; 80,86,89,92]. The paper is proposing a pedagogical framework for FPGA teaching; pedagogical evaluation will be conducted in future studies. The complete study has been done at the Faculty of Electrical and Electronic Engineering, Aleppo University

    SR-14-15-38

    Get PDF
    • 

    corecore