55 research outputs found

    Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

    Full text link
    Depth first search (DFS) tree is a fundamental data structure for solving graph problems. The classical algorithm [SiComp74] for building a DFS tree requires O(m+n)O(m+n) time for a given graph GG having nn vertices and mm edges. Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFS tree of an undirected graph after an edge/vertex update in O~(n)\tilde{O}(n) time. However, their algorithm is strictly sequential. We present an algorithm achieving similar bounds, that can be adopted easily to the parallel environment. In the parallel model, a DFS tree can be computed from scratch using mm processors in expected O~(1)\tilde{O}(1) time [SiComp90] on an EREW PRAM, whereas the best deterministic algorithm takes O~(n)\tilde{O}(\sqrt{n}) time [SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal (upto polylog n factors deterministic algorithms for maintaining fully dynamic DFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain a DFS tree of an undirected graph in O~(1)\tilde{O}(1) time per update using mm processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of size O(m) such that for a set of kk updates (where kk is constant) in the graph, the updated DFS tree can be computed in O~(1)\tilde{O}(1) time using nn processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner, nearly optimal (upto polylog n factors) algorithms for maintaining a DFS tree in semi-streaming model and a restricted distributed model. These are the first parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the dynamic setting.Comment: Accepted to appear in SPAA'17, 32 Pages, 5 Figure

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    Fully dynamic maintenance of k-connectivity in parallel

    Get PDF
    ©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Given a graph G=(V, E) with n vertices and m edges, the k-connectivity of G denotes either the k-edge connectivity or the k-vertex connectivity of G. In this paper, we deal with the fully dynamic maintenance of k-connectivity of G in the parallel setting for k=2, 3. We study the problem of maintaining k-edge/vertex connected components of a graph undergoing repeatedly dynamic updates, such as edge insertions and deletions, and answering the query of whether two vertices are included in the same k-edge/vertex connected component. Our major results are the following: (1) An NC algorithm for the 2-edge connectivity problem is proposed, which runs in O(log n log(m/n)) time using O(n3/4) processors per update and query. (2) It is shown that the biconnectivity problem can be solved in O(log2 n ) time using O(nα(2n, n)/logn) processors per update and O(1) time with a single processor per query or in O(log n logn/m) time using O(nα(2n, n)/log n) processors per update and O(logn) time using O(nα(2n, n)/logn) processors per query, where α(.,.) is the inverse of Ackermann's function. (3) An NC algorithm for the triconnectivity problem is also derived, which takes O(log n logn/m+logn log log n/α(3n, n)) time using O(nα(3n, n)/log n) processors per update and O(1) time with a single processor per query. (4) An NC algorithm for the 3-edge connectivity problem is obtained, which has the same time and processor complexities as the algorithm for the triconnectivity problem. To the best of our knowledge, the proposed algorithms are the first NC algorithms for the problems using O(n) processors in contrast to Ω(m) processors for solving them from scratch. In particular, the proposed NC algorithm for the 2-edge connectivity problem uses only O(n3/4) processors. All the proposed algorithms run on a CRCW PRAMWeifa Liang, Brent, R.P., Hong She

    Dynamic Constant Time Parallel Graph Algorithms with Sub-Linear Work

    Get PDF
    The paper proposes dynamic parallel algorithms for connectivity and bipartiteness of undirected graphs that require constant time and ?(n^{1/2+?}) work on the CRCW PRAM model. The work of these algorithms almost matches the work of the ?(log n) time algorithm for connectivity by Kopelowitz et al. (2018) on the EREW PRAM model and the time of the sequential algorithm for bipartiteness by Eppstein et al. (1997). In particular, we show that the sparsification technique, which has been used in both mentioned papers, can in principle also be used for constant time algorithms in the CRCW PRAM model, despite the logarithmic depth of sparsification trees

    Some Optimally Adaptive Parallel Graph Algorithms on EREW PRAM Model

    Get PDF
    The study of graph algorithms is an important area of research in computer science, since graphs offer useful tools to model many real-world situations. The commercial availability of parallel computers have led to the development of efficient parallel graph algorithms. Using an exclusive-read and exclusive-write (EREW) parallel random access machine (PRAM) as the computation model with a fixed number of processors, we design and analyze parallel algorithms for seven undirected graph problems, such as, connected components, spanning forest, fundamental cycle set, bridges, bipartiteness, assignment problems, and approximate vertex coloring. For all but the last two problems, the input data structure is an unordered list of edges, and divide-and-conquer is the paradigm for designing algorithms. One of the algorithms to solve the assignment problem makes use of an appropriate variant of dynamic programming strategy. An elegant data structure, called the adjacency list matrix, used in a vertex-coloring algorithm avoids the sequential nature of linked adjacency lists. Each of the proposed algorithms achieves optimal speedup, choosing an optimal granularity (thus exploiting maximum parallelism) which depends on the density or the number of vertices of the given graph. The processor-(time)2 product has been identified as a useful parameter to measure the cost-effectiveness of a parallel algorithm. We derive a lower bound on this measure for each of our algorithms

    Simple Concurrent Labeling Algorithms for Connected Components

    Get PDF
    We present new concurrent labeling algorithms for finding connected components, and we study their theoretical efficiency. Even though many such algorithms have been proposed and many experiments with them have been done, our algorithms are simpler. We obtain an O(lg n) step bound for two of our algorithms using a novel multi-round analysis. We conjecture that our other algorithms also take O(lg n) steps but are only able to prove an O(lg^2 n) bound. We also point out some gaps in previous analyses of similar algorithms. Our results show that even a basic problem like connected components still has secrets to reveal

    All-Pairs Min-Cut in Sparse Networks

    Get PDF
    Algorithms are presented for the all-pairs min-cut problem in bounded treewidth, planar, and sparse networks. The approach used is to preprocess the input n-vertex network so that afterward, the value of a min-cut between any two vertices can be efficiently computed. A tradeoff is shown between the preprocessing time and the time taken to compute min-cuts subsequently. In particular, after an Onlog Ž n. preprocessing of a bounded tree-width network, it is possible to find the value of a min-cut between any two vertices in constant time. This implies that for Ž 2 such networks the all-pairs min-cut problem can be solved in time On.. This algorithm is used in conjunction with a graph decomposition technique of Frederickson to obtain algorithms for sparse and planar networks. The running times depend upon a topological property, �, of the input network. The parameter � varies between 1 and �Ž. n; the algorithms perform well when � � on. Ž. The value Ž 2 of a min-cut can be found in time On� � log �. and all-pairs min-cut can be Ž 2 4 solved in time On � � log �. for sparse networks. The corresponding runnin
    corecore