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Abstract
We present new concurrent labeling algorithms for finding connected components, and we study
their theoretical efficiency. Even though many such algorithms have been proposed and many
experiments with them have been done, our algorithms are simpler. We obtain an O(lgn) step
bound for two of our algorithms using a novel multi-round analysis. We conjecture that our other
algorithms also take O(lgn) steps but are only able to prove an O(lg2 n) bound. We also point
out some gaps in previous analyses of similar algorithms. Our results show that even a basic
problem like connected components still has secrets to reveal.
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1 Introduction

The problem of finding the connected components of an undirected graph with n vertices
and m edges is fundamental in algorithmic graph theory. Any kind of graph search, such
as depth-first or breadth-first search, solves it in linear time sequentially, which is best
possible. The problem becomes more interesting in a concurrent model of computation. In
the heyday of the theoretical study of PRAM algorithms, many more-and-more efficient
algorithms for the problem were discovered, culminating in 2001 with the O(lgn)-time,
O((m+ n)/ lgn)-processor randomized EREW PRAM algorithm of Halperin and Zwick [8],
where lg is the base-two logarithm. Most of this work was motivated by obtaining the best
bounds, not the simplest algorithms.

With the growth of the internet, the world-wide web, and cloud computing, computing
connected components on huge graphs has become commercially important, and practitioners
have put versions of the PRAM algorithms into use. Many of these algorithms are quite
complicated, and even some of the simple ones have been further simplified when implemented.
There is evidence that such simple algorithms perform well in practice, but claims about
their theoretical performance are unsound.
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3:2 Simple Concurrent Labeling Algorithms for Connected Components

Given this situation, our goal here is to develop and analyze the simplest possible
efficient algorithms for the problem and to rigorously analyze their efficiency. In exchange
for algorithmic simplicity, we are willing to allow analytic complexity. Our computational
framework is based on the MPC (Massive Parallel Computing) model [3], which is a variant
of the BSP (Bulk Synchronous Parallel) model [20]. The MPC model is more powerful than
PRAM models in that it allows programmable resolution of write conflicts, but it is a realistic
model of cloud computing platforms. Our algorithms also work on a CRCW (concurrent
read, concurrent write) PRAM in which write conflicts are resolved in favor of the smallest
value written. This model is stronger than the more standard ARBITRARY CRCW PRAM,
in which write conflicts are resolved arbitrarily (one of the writes succeeds, but the algorithm
has no control over which), but is weaker than the MPC model.

We develop several algorithms that are all simpler than existing algorithms. We conjecture
that all of them take O(lgn) concurrent steps and O(m lgn) messages. We prove this bound
for two of them using a novel multi-round analysis. For the others we obtain an O(lg2 n)
step bound and O(m lg2 n) message bound.

Our paper contains five sections, in addition to this introduction, §2 presents our al-
gorithmic framework, §3 presents our algorithms, §4 discusses related work, §5 completely
analyzes one of our algorithms and partially analyzes the others, and §6 closes with some
remarks and open problems.

2 Algorithmic Framework

Given an undirected graph with vertex set [n] = {1, 2, . . . , n} and m edges, we wish to
compute its connected components via a concurrent algorithm. More precisely, for each
component we want to label all its vertices with a unique vertex in the component, so that
two vertices are in the same component if and only if they have the same label. To state
bounds simply, we assume n > 1 and m > 0. We denote the ends of an edge e by e.v and
e.w.

We use the MPC (Massive Parallel Computing) model [3], specialized to our problem. (We
discuss the MPC model further in §4.) We consider algorithms that operate in synchronous
concurrent steps, each of which can send messages between the edges and vertices. Each
edge and each vertex has a local memory. In a concurrent step, each edge and vertex can
update its local memory based on the messages sent to it in the previous step, and then
send a message to each vertex and edge that it knows about. Initially a vertex knows only
about itself, and an edge knows only about its two ends. Thus in the first concurrent step
only edges can send messages, and only to their ends. A vertex or edge knows about another
vertex or edge once it has received a message containing the vertex or edge. We ignore
contention resulting from many messages being sent to the same vertex or edge during a
step, and the need for a vertex or edge to send many messages during a step. We measure
the efficiency of an algorithm primarily by the number of concurrent steps and secondarily
by the number of messages sent.

Even in this unrealistically strong model, there is a non-constant lower bound on the
number of steps needed to compute connected components:

I Theorem 1. Computing connected components takes Ω(lg d) steps, where d is the maximum
of the diameters of the components.

Proof. Let u be the vertex that eventually becomes the label of all vertices in the component.
Some vertex v is at distance at least d/2 from u; otherwise, the diameter of the component
is less than d, a contradiction. An induction on the number of steps shows that after k steps
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a vertex has only received messages containing vertices within distance 2k. Since v must
receive a message containing u, the computation takes at least lg d− 1 steps. If d = 1, the
computation takes at least one step. J

If messages can be arbitrarily large, it is easy to solve the problem in O(lg d) steps, by first
sending each edge end to the other end, and then repeatedly sending from each vertex the
entire set of vertices it knows about to all these vertices [15]. If there is a large component,
however, such an algorithm is not practical, for at least two reasons: it requires huge memory
at each vertex, and the last step can send a number of messages quadratic in n. Hence we
restrict the local memory of a vertex or edge to hold only a small constant number of vertices
and edges. We also restrict messages to hold only a small constant number of vertices and
edges, along with an indication of the message type, such as a label request or a label update.

All our algorithms maintain a label for each vertex u, initially u itself. Labels are updated
step-by-step until none changes, after which all vertices in a component have the same label,
which is one of the vertices in the component. At any given time the current labels define a
univalent digraph (directed graph) whose arcs lead from vertices to their labels. We call this
the label digraph. If these arcs form no cycles other than loops (arcs of the form (u, u)), then
this graph is a forest of trees rooted at the self-labeled vertices: the parent of u is its label
unless the label of u is u, in which case u is a root. We call this the label forest. Each tree in
the forest is a label tree.

All our algorithms maintain the label digraph as a forest; that is, they maintain acyclicity
except for self-labels. (We know of one previous algorithm that does not maintain the label
digraph as a forest: see §4.) Henceforth we call the label of a vertex u its parent and denote
it by u.p, and we call a label tree just a tree. If v is a vertex such that v.p 6= v, v is a child of
v.p. A tree is flat if the parent of every child is the root. (Some authors call such a tree a
star.) A vertex is a leaf if it is not a root and it has no children. We call a one-vertex tree a
singleton.

During the computation, all the vertices in a tree are in a single connected component,
but there may be more than one tree per component. At the end of the computation, there
is one flat tree per component, whose root is the component label.

3 Algorithms

A simple way to guarantee acyclicity is to maintain the parent of a vertex to be the minimum
of the vertices it knows about. We call this minimum labeling. (An equivalent alternative is
to maintain the label of a vertex to be the maximum of the vertices it knows about.) All
our algorithms use minimum labeling. Each algorithm proceeds in rounds, each of which
updates parents using vertices received from edges, reduces tree depths using shortcutting,
and possibly alters edges.

The most obvious way to use edges to update parents is for each edge to send its minimum
end to its maximum end:

connect: for each edge e, send min{e.v, e.w} to max{e.v, e.w}.
This method does not give a correct algorithm unless we combine it with some form of

edge alteration or edge addition. In the absence of changes to the edge set, we use one of the
following methods instead of connect:

parent-connect: for each edge e, request e.v.p from e.v and e.w.p from e.w; send the
minimum of the received vertices to the maximum of the received vertices.

extended-connect: for each edge e, request e.v.p from e.v and e.w.p from e.w; let the
received values be x and y, respectively; if y < x then send y to v and to x else
send x to w and to y.

SOSA 2019



3:4 Simple Concurrent Labeling Algorithms for Connected Components

The straightforward way to update labels using messages sent from edges is to replace
each parent by the minimum of the received vertices:

update: for each vertex v, replace v.p by the minimum of v.p and vertices received from
edges.

Such updating can move subtrees between trees in the forest, producing behavior that is
hard to analyze. A more conservative alternative is to update only the parents of roots:

root-update: for each root v, replace v.p by the minimum of v.p and vertices received
from edges.

Shortcutting is the key to obtaining a logarithmic step bound. Shortcutting replaces the
parent of each vertex by its grandparent:

shortcut: for each vertex v request v.p.p from v.p; replace v.p by the received vertex.
Edge alteration replaces each edge end by its parent:
alter: for each edge e, request e.v.p from e.v and e.w.p from e.w; let the returned vertices

be x and y, respectively; if x = y then delete e else replace e.v and e.w by x and y.
Choosing one of the three connection methods, one of the two update methods, and

whether or not to alter edges produces one of twelve algorithms. Not all these algorithms
are correct: if we use connect, we must choose alter to alter edges; if we do not, the
partition of vertices defined by the trees does not change after the first connect. Furthermore
not all the correct algorithms are as simple as possible: if we use alter, using connect
gives a correct algorithm, and we see no advantage in using parent-connect or extended-
connect, which are more complicated. (We have no theoretical or practical evidence to
justify this intuition, however.) Finally, if we use root-update, parent-connect and
extended-connect are equivalent. This leaves us with five algorithms:

Algorithm P: repeat {parent-connect; update; shortcut} until no parent changes.
Algorithm E: repeat {extended-connect; update; shortcut} until no parent changes.
Algorithm A: repeat {connect; update; shortcut; alter} until no parent changes.
Algorithm R: repeat {parent-connect; root-update; shortcut} until no parent
changes.
Algorithm RA: repeat {connect; root-update; shortcut; alter} until no parent
changes.

We call an iteration of the repeat loop in each of these algorithms a round. Two of these
algorithms, R and RA, are equivalent:

I Theorem 2. Algorithms R and RA do the same parent updates in each step.

Proof. Consider running algorithms R and RA concurrently. We prove by induction on
the number of steps that (i) parents are the same in both algorithms and (ii) if edge e has
original ends e.v = v and e.w = w and has ends e.v = x and e.w = y in RA, then v.p = x

and w.p = y in both R and RA. Both (i) and (ii) hold initially. Suppose they hold at the
beginning of a round. Then the connect and root-update in RA do the same parent
changes as the parent-connect and root-update in R, so (i) holds after these steps. The
shortcut steps in R and RA also do the same parent changes, so (i) holds after this step.
The alter at the end of RA re-establishes (ii). J

Henceforth we treat R and RA as different implementations of the same algorithm.
Algorithms A and P are not equivalent in the same sense, as the example in Figure 1 shows.

To prove correctness, we need the following key result:

I Lemma 3. All our algorithms maintain the invariant that any two tree roots in the same
component are connected by a path of current edges.



S. Liu and R. E. Tarjan 3:5

Input 
graph:

1

4

13
10

7

2

15 14

6

1
3
4

2
5
7
89
1013
12

15

6
11
14

Round 1 after
(PARENT-)CONNECT,

UPDATE, and 
SHORTCUT in A and P:

arc of tree

(current) edge 
between trees 

Round 1 after
ALTER in A:

Round 2 after 
CONNECT 

and UPDATE
in A:

Round 2 after 
SHORTCUT 

in A:

Round 2 after 
PARENT-CONNECT 

and UPDATE
in P:

Round 2 after 
SHORTCUT 

in P:

1

13 10

4

13

8

5

10

6

6
8

2

1

5
8

2

12

1

4

10

7

2

6

5

8

1

4

10

7

2

6

5

8

1

4 107

2 6

8

Figure 1 A graph on which A and P do different parent updates. Only necessary vertices, edges,
and tree arcs are shown. In round 1 before the alter, all arcs and edges are the same in both
algorithms. In round 2, the parent of 10 becomes 6 in both algorithms. In round 3 (not shown),
P changes the parent of 6 to 1 using the original edge (10, 13), but A changes the parent of 6 to 2
using the new edge (2, 6) altered from (8, 10).

Proof. This is a tautology for P, E, and R. We prove it for A by induction on the number of
steps. (The same proof works for RA.) A shortcut changes no edges nor roots; a connect
followed by an update changes no edges and only converts roots to non-roots. Thus both
preserve the invariant, since both preserve every path of current edges, and vertices that are
roots after an update are roots before the preceding connect. Given a path between two
roots, an alter preserves each root it contains, including the ends of the path, and replaces
each edge end that is a child by its parent. Thus an alter also preserves the invariant. J

I Theorem 4. All our algorithms are correct.

Proof. For each algorithm, an induction on the number of steps proves that the vertex sets
of the trees are subsets of the vertex sets of the connected components. We prove that each
algorithm cannot stop until there is one flat tree per component, which implies correctness.
Consider a component whose vertices are in two or more trees just before a round. By
Lemma 3, some current edge connects a vertex in one of these trees with a vertex in another
tree. If one of these trees is not flat, the shortcut during the round will change some parent
if no parents change before the shortcut. If both are flat, some parent will change before
the shortcut. J

In §5 we prove the following step bounds: O(d) for A and E; O(lg2 n) for A, P, and E; and
O(lgn) for R and RA. We conjecture that P, A, and E in fact have an O(lgn) step bound. We
leave a tighter analysis of these algorithms as an open problem. We have included algorithm
E because it is similar to an existing algorithm (see §4), and we can prove a step bound that
depends only on the diameter.

We conclude this section with five observations.
First, our algorithms need very little memory: one cell per vertex to hold its parent, and

two cells per edge to hold its current ends.
Second, although we have used a message-passing framework, it is straightforward to

implement our algorithms on a CRCW PRAM in which write conflicts are resolved in favor

SOSA 2019



3:6 Simple Concurrent Labeling Algorithms for Connected Components

of the smallest value written. We say more about the effect of write conflict resolution on
connected components algorithms in §4.

Third, in algorithm RA, the condition for edge deletion can be strengthened, since when an
edge causes a parental root update it connects a child with its parent, and it can never again
cause a parent update. Thus the condition for deletion in the alter can be strengthened
to “if x = y or e.v = y or e.w = x then delete e”. This optimization does not work in
algorithm A.

Fourth, algorithms like R that use root updating are monotone in that the vertex set of
each new tree in the label forest is a union of vertex sets of old trees. This is not true of
algorithms such as A, P, and E, which can and in general do move subtrees between trees.
Monotonicity seems to make analysis simpler. Many but not all previous algorithms are
monotone.

Fifth, each of our algorithms does one shortcut per round, but we could increase this to
two or indeed to any number. Our O(lg2 n) bound for P, E, and A extends to the variants of
these algorithms that do any fixed positive number of shortcut steps each round. Similarly,
our O(lgn) bound for R and RA extends to the variants of these algorithms that do any fixed
positive number of shortcut steps each round. On the other hand, if we modify R (or RA)
to do enough shortcut steps each round to flatten all the trees, the worst-case number of
steps becomes Θ(lg2 n), as we now show.

Algorithm S: repeat {parent-connect; root-update;
repeat shortcut until no parent changes} until no parent changes.

Algorithm SA: repeat {connect; root-update;
repeat shortcut until no parent changes; alter} until no parent changes.

In both of these algorithms, all trees are flat just before a connect, which implies that
connect only changes the parents of roots. A proof like that of Theorem 2 shows that S
and SA are equivalent in that they make the same parent changes. We thus treat them as
alternative implementations of the same algorithm.

I Theorem 5. Algorithm S (and SA) takes O(lg2 n) steps.

Proof. The inner repeat loop stops after at most dlgne steps with all trees flat. We claim
that if there are two or more trees, two rounds of the outer loop at least halve their number,
from which the theorem follows. Call a root minimal if its tree has edges connecting it only
with trees having greater roots. A connect makes every non-minimal root into a non-root.
Suppose there are k roots just before a connect, of which j are minimal. If j < k/2, the
connect reduces the number of roots to at most j < k/2. Divide the minima into the i
that get a new child as a result of the connect and the j − i that do not. If x is a minimal
that does not get a new child, there must be a root y > x such that the trees rooted at x
and y are connected by an edge, and y has parent less than x after the connect. The next
connect will make x a child. That is, the current connect makes at least i roots into
non-roots, and the next connect makes at least j − i into non-roots, for a total of at least
j ≥ k/2, giving the claim in this case as well. J

We show by example that the bound in Theorem 5 is tight. For convenience we consider
algorithm SA. During the execution, at the beginning of each round it suffices to consider
only the induced subgraph of vertices that are roots. This is because in each round before
the alter, every tree is flat, so the alter makes all edge ends roots.

Observe that if there is a tree path of 2k + 1 vertices just before the shortcut steps in
round j, there will be Ω(k + 1) shortcut steps in round j. If in every round there is a new
path of 2k + 1 vertices, and the algorithm requires many rounds, the input graph will be a
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bad example. Our example is a disjoint union of certain graphs based on this observation. To
produce a given graph G with m′ edges and vertex set [n′] at the end of round j, it suffices
to start with a graph g(G) (for the generator of G) at the beginning of round j constructed
as follows: For each vertex i in G, add two vertices, i and i+ n′ to g(G); for each vertex i in
G, add an edge (i, i+ n′) to g(G); for each edge (i, i′) in G, add an edge (i+ n′, i′ + n′) to
g(G). g(G) contains all the vertices of G but none of its edges; g(G) contains 2n′ vertices
and n′ +m edges.

Consider the effect of a round of SA on g(G). The connect step makes i the parent
of i + n′ for i ∈ [n′]. The shortcut steps do nothing. The alter converts each edge
(i+ n′, i′ + n′) for i ∈ [n′] into (i, i′) and deletes each edge (i, i+ n′) for i ∈ [n′]. Thus after
the round, G is the induced subgraph on the vertices that are roots. By induction, gr(G) is
converted by r rounds of SA into G. gr(G) contains n′2r vertices and n′(2r − 1) +m′ edges.

For any positive integer k > 1, consider the disjoint union of the graphs P , g(P ), g2(P ),
. . . , gk−1(P ), where P is a path of 2k + 1 vertices from 1 to 2k + 1, with the vertices
renumbered so that all vertices are distinct and the order within each connected component
is preserved. If SA is run on this graph, round i for each i does Ω(k + 1) shortcut steps on
the path produced by i− 1 rounds on gi−1(P ), so the total number of steps is Ω(k2). The
total number of vertices in this graph is n = (2k + 1)(2k − 1) = 22k − 1. (The number of
edges is 22k − k + 1: the input graph is a set of k − 1 trees.) Thus the number of steps is
Ω(lg2 n), making the bound in Theorem 5 tight.

4 Related Work

Previous work on concurrent algorithms for connected components was done by two different
communities in two overlapping eras. First, theoretical computer scientists developed provably
efficient algorithms for various versions of the PRAM (parallel random-access machine). This
work began in the late 1970’s and reached a natural conclusion in the work of Halperin
and Zwick [8, 9], who gave O(lgn)-time, O((m+ n)/ lgn)-processor randomized algorithms
for the EREW (exclusive read, exclusive write) PRAM. The EREW PRAM is the weakest
PRAM model, and computing connected components in this model requires Ω(lgn) time [5].
To solve the problem sequentially takes O(n+m) time, so the Halperin-Zwick algorithms
minimize both the time and the total work (number of processors times time). One of their
algorithms not only finds the connected components but also a spanning tree of each. The
main theoretical question remaining open is whether a deterministic algorithm can achieve
the same bounds.

Halperin and Zwick’s paper contains a table listing results preceding theirs, and we refer
the reader to their paper for these results. Our interest is in simple algorithms for a more
powerful computational model, so we content ourselves here with discussing simple labeling
algorithms related to ours. (The Halperin-Zwick algorithms and many of the preceding ones
are not simple.) First we review variants of the PRAM model and how they relate to our
algorithmic framework.

The three main variants of the PRAM model, in increasing order of strength, are EREW,
CREW (concurrent read, exclusive write), and CRCW (concurrent read, concurrent write).
The CRCW PRAM has four standard versions that differ in how they handle write conflicts:
(i) COMMON: all writes to the same location at the same time must be the of the same
value; (ii) ARBITRARY: among concurrent writes to the same location, an arbitrary one
succeeds; (iii) PRIORITY: among concurrent writes to the same location, the one done by
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3:8 Simple Concurrent Labeling Algorithms for Connected Components

the highest-priority processor succeeds; (iv) COMBINING: values written concurrently to
a given location are combined using some symmetric function. As mentioned in §3, our
algorithms can be implemented on a COMBINING CRCW PRAM, with minimization as
the combining function.

The first O(lgn)-time PRAM algorithm was that of Shiloach and Vishkin [17]. It runs
on an ARBITRARY CRCW PRAM, as do the other algorithms we discuss, except as noted.
The following is a version of their algorithm in our framework:

Algorithm SV: repeat {shortcut; parent-connect; arbitrary-root-update;
max-parent-connect; passive-root-update; shortcut} until no parent changes.

This algorithm uses the notion of a passive tree. (Shiloach and Vishkin used the term
“stagnant”.) A tree is passive if it did not change in the previous round. A passive tree is
necessarily flat, but a flat tree need not be passive. Our description of their algorithm omits
the extra computation needed to keep track of which trees are passive.

The algorithm uses variants of some of the methods in §3. Method arbitrary-root-
update replaces each parent of a root by any of the most-recently received vertices other
than itself, if there are any, instead of the minimum; max-parent-connect sends for each
edge the maximum of the parents of the edge ends to the minimum instead of vice-versa;
passive-root-update replaces each root of a passive tree by any just-received vertex other
than itself, if there are any:

arbitrary-root-update: for each root v replace v.p by any just-received vertex other
than v, if there is one.

max-parent-connect: for each edge e, request e.v.p from e.v and e.w.p from e.w; send
the maximum of the received vertices to the minimum of the received vertices.

passive-root-update: for each root v of a passive tree, replace v.p by any just-
received vertex other than v, if there is one.

Algorithm SV does neither minimum nor maximum labeling: the first update in a round
connects roots to smaller vertices, the second connects roots to larger vertices. The proof that
the algorithm creates no cycles is non-trivial, as is the efficiency analysis. Most interesting for
us, the first three steps of the algorithm are algorithm R, but with arbitrary parent updates
rather than minimum ones. Shiloach and Vishkin claimed that the second shortcut can
be omitted, but they showed by example that omission of passive-root-update results
in an algorithm that can take Ω(n) rounds. Their example also shows that the efficiency
of algorithm R depends on resolving concurrent parent updates by minimum value rather
than arbitrarily. That is, our stronger model of computation is critical in obtaining a simpler
algorithm.

Awerbuch and Shiloach presented a simpler O(lgn)-time algorithm and gave a simpler
efficiency analysis [2]. Our analysis of algorithm RA in §5 uses a variant of their potential
function. Their algorithm does only one shortcut per round and in updates only changes
the parents of roots of flat trees, using the following method:

flat-root-update: for each root v of a flat tree, replace v.p by any just-received
vertex other than v, if there is one.

Algorithm AS: repeat {parent-connect; flat-root-update; max-parent-connect;
flat-root-update; shortcut} until no parent changes.

The algorithm needs to do additional computation to keep track of flat trees. Although
Awerbuch and Shiloach do not mention it, their analysis shows that replacing the first
update in their algorithm with arbitrary-root-update produces a correct O(lgn)-time
algorithm. The resulting algorithm is algorithm SV with the first shortcut deleted and
passive-tree-connect replaced by flat-tree-connect.
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An even simpler but randomized O(lgn)-time algorithm was proposed by Reif [16]:
Algorithm Reif: repeat {for each vertex flip a coin; random-connect;

arbitrary-root-update; shortcut} until no parent changes.
random-connect: for each edge (v, w) if v.p flipped heads and w.p flipped tails then

send v.p to w.p; if w.p flipped heads and v.p flipped tails then send w.p to v.p.
Reif’s algorithm keeps the label trees flat. As a result, random-connect only sends

vertices to roots. This allows replacement of arbitrary-root-update by a method that for
each vertex sets its parent equal to any just-received vertex if there is one. Reif’s algorithm is
simpler than both SV and AS, but our algorithm RA is even simpler, and it is deterministic.

We know of only one algorithm, that of Johnson and Metaxis [12], that does not maintain
acyclicity. Their algorithm runs in O((lgn)3/2) time on an EREW PRAM. It does a form of
shortcut to eliminate any non-trivial cycles that it creates.

Algorithms that run on a more restricted form of PRAM, or use fewer processors (and
thereby do less work) use various kinds of edge alteration, along with simulation and other
techniques to resolve read and write conflicts. Such algorithms are much more complicated
than those above. Again we refer the reader to [8] for results and references.

The second era of concurrent connected components algorithms was that of the exper-
imentalists. It began in the 1990’s and continues to the present. Experimentation has
expanded greatly with the growing importance of huge graphs (the internet, the world-wide
web, relationship graphs, and others) and the development of cloud computing frameworks.
These trends make concurrent algorithms for connected components both practical and useful.
The general approach of experimentalists has been to take one or more algorithms in the
literature, possibly simplify or modify them, implement the resulting suite of algorithms
on one or more computing platforms, and report the results of experiments done on some
collection of graphs. Examples of such studies include [6, 7, 10, 21, 14, 18].

Our interest is in the theoretical efficiency of such simple algorithms, and in the theoretical
power of the new concurrent computing platforms as compared to the classical PRAM
model. One theoretical model used to study algorithms on such platforms is the MPC
(Massive Parallel Computing) model. A large number of virtual processes run concurrently
in supersteps. In each superstep, a process can do arbitrary computation based on messages
it received during the previous step, and then send messages to any or all other processes.
The next superstep begins once all messages are received. Our framework for connected
components algorithms is the MPC model, specialized for the kind of algorithms we consider.

Our work started with a study of the following algorithm of Stergio, Rughwani, and
Tsioutsiouliklis [18]:

Algorithm SRT: repeat {
for each edge (v, w) if v.p < w.p then send v.p to w else send w.p to v;
for each vertex v let new(v) be the minimum of u.p and the vertices received by v;
for each vertex v if new(v) < v.p then send new(v) to v.p;
for each vertex v send new(v).p to v;
for each vertex v let v.p be the minimum of v.p and the vertices received by v}
until no parent changes.

They implemented this algorithm on the Hronos computing platform and solved problems
with trillions of edges. They claimed a bound of O(lgn) steps for their algorithm. But
we are unable to make sense of their proof. This algorithm moves subtrees between trees,
which makes it hard to analyze. We conjecture, however, that our proof of O(lg2 n) steps for
algorithms P, E, and A extends to their algorithm.

Our algorithm E is a variant of algorithm SRT that is bit simpler. Algorithm P is a
further simplification. Algorithm R is algorithm P with updates restricted to roots. We are
able to obtain an O(lgn) step bound for algorithms R and RA, but not for E, P, nor A. Our
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diameter-based analysis of algorithm E is also valid for algorithm SRT and gives a bound of
O(d) steps. We think that algorithms SRT, E, P, and A all take O(lgn) steps but have no
proof.

A second paper with an analysis gap is that of Yan et al. [21]. They consider algorithms
in the PREGEL framework [13], which is a graph-processing platform designed on top of
the MPC model. All the algorithms they consider can be expressed in our framework. They
give a version of algorithm SV with the first shortcut deleted, and modify it further
by replacing “max-parent-connect; passive-root-update” with code equivalent to
“parent-connect; flat-root-update”. These two steps do nothing, since any connections
they might make are done by the previous steps “parent-connect; arbitrary-root-
update”. Their termination condition, that all trees are flat, is also incorrect. They claim
an O(lgn) step bound for their algorithm, but since they use arbitrary updating of roots,
their algorithm, once the termination condition is corrected, takes Ω(n) steps on the example
of Siloach and Vishkin.

A third, more recent paper with an analysis gap is that of Burkhardt [4]. He proposes
an algorithm that does a novel form of edge alteration: it converts each original edge into
two oppositely directed arcs and alters these arcs independently. The algorithm does not
do shortcut explicitly, but it does do a variant of shortcut implicitly. The algorithm
maintains both old and new vertex labels, which increases its complexity. Burkhardt claims
a step bound of O(lg d), but a counterexample in [1] disproves this claim. He also claims
a linear space bound, but we are unable to verify his proof of this. We conjecture that
Burkhardt’s algorithm and simpler variants take O(lgn) steps but have no proof. We think
that our O(lg2 n) analysis should apply to his algorithm but have not verified this.

Very recently, Andoni et al. have used the power of the MPC model to obtain a
randomized algorithm running in O(log d log logm/n n) steps [1]. Their algorithm uses the
distance-doubling technique of [15] (discussed in §2) but controlled to keep message sizes
sufficiently small. The algorithm relies heavily on the ability to sort in O(1) steps on the
MPC model. We think an appropriate version of their algorithm can be implemented on a
CRCW PRAM, possibly with the same asymptotic bound as theirs, and we are working to
achieve this. Any such algorithm will be much more complicated than those we present here,
however.

5 Analysis

In this section we prove an O(d) step bound for algorithms E and A, an O(lg2 n) bound for
algorithms P, E, and A, and an O(lgn) bound for algorithm R (and RA). We begin with some
assumptions and preliminary results. We assume the graph is connected and contains at least
two vertices, which is without loss of generality since each algorithm operates concurrently
and independently on each component. For brevity, we use connect to denote the steps
preceding shortcut in a round, no matter which algorithm we are considering. We denote
an edge e with e.v = v and e.w = w by (v, w). For the analysis only, we assume that alter
does not delete an edge (v, w) when v.p = w.p but instead converts it into a loop (an edge
having both ends the same) (v.p, w.p). Once an edge becomes a loop, it remains a loop.
Loops do not affect the parent changes done by A (or RA); they merely allow us to treat a
vertex that is both ends of a loop as having an incident edge.

We partition the vertices into two colors, as follows: in algorithm A, a vertex is green if it
is a root or has an incident edge, and red otherwise; in all other algorithms a vertex is red if
it is a leaf (a non-root with no children) and green otherwise.
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I Lemma 6. If a connect changes the parent of a vertex v to w, then both v and w are
green.

Proof. In algorithm A, v and w must be the ends of the edge causing the edge, so both are
green. In the other algorithms, there must be an edge (x, y) such that x.p = v and y.p = w.
Hence both v and w are green. J

I Lemma 7. A shortcut in an algorithm other than A changes all green non-roots with
no green children to red, and changes no other vertex colors.

Proof. Let v be any vertex just before a shortcut. If v is red, it is a non-root with no
child. The shortcut cannot give it a child, so it stays red. If v is a green root, it stays a
root, so it stays green. If v is a green non-root, v is a non-root after the shortcut, and
it has a child after the shortcut if and only if it has a grandchild before the shortcut,
which is true if and only if it has a green child before the shortcut. J

I Lemma 8. In algorithm A, (i) each green vertex is a root or has a green parent; (ii) each
red vertex has a green grandparent, and has a green parent just after a shortcut; and (iii)
a shortcut followed by an alter changes all green non-roots with no green children to red,
and changes no other vertex colors.

Proof. By induction of the number of steps. The lemma is true initially since all vertices
are roots and hence green. By Lemma 6, a connect preserves the lemma, since it does
not change any vertex colors nor the parent of any red vertex. A shortcut preserves (i)
and (ii), since before the shortcut any vertex has a green grandparent or parent or is itself
green, so after the shortcut it has either a green parent or is green. Given that all vertices
have green parents after a shortcut, the subsequent alter changes each edge end that is
a green non-root to its parent, and does not affect ends that are roots. (Here we use the
non-deletion of loops.) This makes no red vertex green by (i), makes a green vertex red if
and only if it is a non-root with no green children, giving (iii), and leaves each red vertex
with a green parent or grandparent by (i) and (ii). J

I Lemma 9. The parent of a vertex never increases. Once a vertex is a non-root, it stays a
non-root.

Proof. The first part of the lemma follows by induction on the number of parent changes:
each such change decreases the parent. By the first part, once v.p < v this inequality
continues to hold, which gives the second part of the lemma. J

5.1 A Diameter Bound
I Theorem 10. Algorithm E takes O(d) steps.

Proof. Let u be the minimum vertex. We prove by induction on i that after i rounds all
vertices at distance i or less from u have parent u. This is true for i = 0. Let w be a vertex
at distance i > 0 from u. Then there is an edge (w, v) with v at distance i− 1 from u. By
the induction hypothesis, v has parent u after round i− 1, which it will send to w in round i,
as a result of which w will have parent u after round i. After at most d rounds, all vertices
will have parent u, so the algorithm stops after at most d+ 1 rounds. J

Theorem 10 also holds for algorithm A, but the proof is more elaborate. We need a
strengthening of the result of Lemma 3, as well as Lemma 8.
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I Lemma 11. Let u be the minimum vertex. After d− i rounds of algorithm A, each green
vertex has a path of at most d− i current edges connecting it with u.

Proof. By induction on i. The lemma is true initially, since very vertex has a path to u
containing at most d edges. Suppose it is true just before round i. Let v be a green vertex at
the end of round i. If v is a root at the end of round i, then it was a root at the start of round
i, and by the induction hypothesis there was a path P of at most d− i edges connecting v
with u at the start of round i. If v is not a root at the end of round i, then it was not a
root at the beginning of the shortcut in round i, and by Lemma 8 it had a green child,
say w, at this time. By the induction hypothesis, there was a path P of at most d− i edges
connecting w with u at the start of round i. In either case we can assume P is loop-free,
since deleting loops leaves it a path with the same ends. The alter in round i converts P
into a path P ′ connecting v with u containing at most d − i edges. Delete all loops from
P ′. Let (x, u) be the last edge on P . After the connect in round i, x must be a child of u.
Hence the alter in round i converts this edge to a loop. Deleting this loop from P ′ gives a
path satisfying the lemma for v after round i. J

I Theorem 12. Algorithm A takes O(d) steps.

Proof. Consider the state after d steps. By Lemma 11, the only green vertex is the minimum
vertex, and by Lemma 8 all red vertices are children or grandchildren of this minimum vertex.
The algorithm stops after at most two more rounds. J

5.2 A Log-Squared Bound
We conjecture that all our algorithms take O(lgn) steps, but for P, E, and A we are only
able to prove something weaker:

I Theorem 13. Algorithms P, E, and A take O(lg2 n) steps.

To prove Theorem 13, we shall show that O(lgn) rounds reduce the number of green
vertices by at least a factor of two. Given Lemma 6, it is convenient to consider the situation
just before a shortcut. By Lemma 7 or 8 depending on the algorithm, a shortcut converts
all green non-roots with no green children to red. We shall prove that a connect converts
all green roots with no green children into non-roots. This allows us to bound the number of
rounds in which there are many green vertices with no green children. To bound the number
of rounds in which there are many green vertices but few that have no green children, we
prove that in such a situation the green vertices form many long vertex-disjoint tree paths,
on which we can quantify the effect of a shortcut. We proceed with the details. We assume
throughout this section that the algorithm is P, E, or A.

I Lemma 14. Let v be a root with no green children just before the shortcut in round i.
Either v is the only root, or the connect in round i+ 1 makes v a non-root.

Proof. Suppose v is not the only root just before the shortcut in round i. In algorithm A,
just before this shortcut there must be an edge (v, w) with w not in the tree rooted at v.
If w < v, then the edge formed from (v, w) by the alter in round i will cause the connect
in round i+ 1 to make v a non-root. If w > v, then w.p < v after the connect in round i;
otherwise, this connect would have made w, a green vertex, a child of v. The alter in
round i converts (v, w) into an edge (v, x) with x < v, which causes the connect in round
i+ 1 to make v a non-root in this as well.

A similar argument applies to algorithms P and E. Just before the shortcut in round
i, there must be an edge (x, y) with x.p = v and with y.p not in the tree rooted at v. If
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y.p < v, (x, y) will cause the connect in round i+ 1 to make v a non-root. If y.p > v, then
y.p.p < v after the connect in round i; otherwise, this connect would have made y.p, a
green vertex, a child of v. After the shortcut in round i, y.p < v, so in this case also (v, w)
causes the connect in round i+ 1 to make v a non-root. J

I Remark. Lemma 14 does not hold for algorithm R: a root with no green children can
remain a root for many rounds.
The depth of a vertex v is the number of proper ancestors in its tree; that is, the number of
tree arcs on the path from v to the root.

I Lemma 15. If there are at least n′ green vertices, with less than n′/k having no green
child, then there is a green vertex of depth at least k.

Proof. Every green vertex has a green descendant with no green children (possibly itself).
Any two green vertices of the same depth are unrelated and hence must have distinct green
descendants with no green children. Hence the number of green vertices of any given depth
is less than n′/k. Since there are at least n′ green vertices, and less than n′/k of each depth
from 0 to k − 1, there must be at least one of depth k. J

I Lemma 16. If there are n′ green vertices, with less than n′/(2k) having no green child,
then there is a set of vertex-disjoint tree paths of green vertices, each containing at least k+ 1
vertices, that together contain at least n′/2 green vertices.

Proof. Find a green vertex of maximum depth and delete the tree path from it to the root
of its tree. This deletion creates no new green vertex with no green child. Repeat this step
until there are fewer than n′/2 vertices. By Lemma 15, each path deleted contains at least
k + 1 vertices. J

To quantify the effect of a shortcut on long paths, we borrow an idea from the analysis
of compressed-tree algorithms for disjoint set union [19]. Suppose there are n′ green vertices.
For the purpose of the analysis only, we renumber the green vertices from 1 to n′ in the order
of their original numbers and identify each green vertex by its new number. We define the
level v.l of a green child v to be v.l = blg(v − v.p)c. The level of a green child is between 0
and lgn′. By Lemma 9, which holds for the new vertex numbers as well as the original ones,
the level of a child never decreases. We show that if k is big enough a shortcut increases
by Ω(k) the sum of the levels of the green vertices on a tree path of k green vertices.

I Lemma 17. Let n′ be the number of green vertices. Consider a tree path of at least k + 2
green vertices, where k ≥ 2 lgn′. A shortcut increases the sum of the levels of the children
on the path by at least k/4.

Proof. Let u be a green vertex on the path other than the last two. Let v be the parent and
w the grandparent of u, and let i and j be the levels of u and v, respectively. A shortcut
increases the level of u from i = blg(u−v)c to blg(u−w)c = blg(u−v+v−w)c ≥ blg(2i +2j)c.
If i < j, this increases the level of u to at least j; if i = j, it increases the level of u to i+ 1.

Let x1, x2, . . . , xk+1 be the vertices on the path, excluding the last one. For each i from 1
to k, let ∆i = xi+1.l − xi.l. The sum of ∆i’s is Σ = xk+1.l − x1.l > 0− lgn′ since they form
a telescoping series. Let k+, k0, and k−, respectively be the number of positive, zero, and
negative ∆i’s, and let Σ+ and Σ− be the sum of the positive ∆i’s and the sum of the negative
∆i’s, respectively. Then Σ = Σ+ + Σ−, which implies Σ+ > −Σ− − lgn′. Since the ∆i’s are
integers, Σ+ ≥ k+ and −Σ− ≥ k−. Combining inequalities, we obtain 2Σ+ > k+ + k−− lgn′.
Adding k0 to both sides gives 2Σ+ +k0 > k− lgn′ ≥ k/2. Hence Σ+ +k0 ≥ Σ+ +k0/2 > k/4.
The lemma follows from the argument in the previous paragraph. J
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Now we have all the pieces. It remains to put them together.

I Lemma 18. Suppose there are n′ ≥ 16 green vertices just before a round. After O(lgn′)
rounds, there are at most n′/2 green vertices.

Proof. At the beginning of the round, renumber the green vertices from 1 to n′ in the order
of their original numbers and identify each green vertex by its new number. Consider a
round in which there are still at least n′/2 green vertices just before the shortcut. We
consider three cases:
(i) There are at least n′/(16 lgn′ + 8) green roots with no green children. By Lemma 14,

all such roots become non-roots during the next connect. This can happen at most
16 lgn′ + 7 times, since there is always a green root.

(ii) There are at least n′/(16 lgn′+ 8) green non-roots with no green children. By Lemma 7
or 8 depending on the algorithm, the shortcut makes all such vertices red. This can
happen at most 16 lgn′ + 8 times.

(iii) There are fewer than n′/(8 lgn′+4) green vertices with no green children. By Lemma 16,
there is a set of vertex-disjoint green paths, each containing at least 2 lgn′ + 2 vertices,
that together contain at least n′/4 vertices. By Lemma 17, for any such path containing
k + 2 vertices, the shortcut increases the levels of the vertices on the path by at least
k/4 ≥ k/5 + 2/5, since k ≥ 2 lgn′ ≥ 8. Summing over all the paths, the shortcut
increases the sum of levels by at least n′/20. This can happen at most 20 lgn′ times.

We conclude that after O(lgn′) rounds, the number of green vertices is at most n′/2. J

Theorem 13 is immediate from Lemma 18.

5.3 A Logarithmic Bound
The proof of Theorem 13 fails for algorithm R, because Lemma 14 is false for this algorithm.
But we can get an even better bound by using a different technique, that of Awerbuch and
Shiloach [2] extended to cover a constant number of rounds rather than just one.

I Theorem 19. Algorithms R (and hence RA) takes O(lgn) steps.

To prove Theorem 19, we begin with some preliminary results and some terminology.

I Lemma 20. After two rounds of algorithm R, each tree contains at least two vertices.

Proof. Let v be a vertex and (v, w) an incident edge. If w < v, then v becomes a non-root
in the first connect. If w > v, then the first connect either makes w a child of v or gives
w a parent less than v. In the latter case, if v is still a root before the second connect then
this connect will make v a non-root. We conclude that after the first two connect steps v
is in a tree with at least two vertices. J

By Lemma 20, after round two, all trees have height at least one. When we speak of a tree
in round k, we mean a tree existing at the end of the round. We say a connect link trees
T1 and T2 if it makes the root of one of the trees a child of a vertex in the other. If the
connect makes the root of T1 (respectively T2) a child of a vertex in T2 (respectively T1),
we say the connect links T1 to T2 (respectively T2 to T1).

I Definition 21. A tree in round k > 2 is passive in round k if the tree existed at the
beginning of the round (round k does not change it), and active otherwise. All trees in round
2 are active in round 2.
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I Lemma 22. For any integer k > 2, if trees T1 and T2 are passive in round k − 1, the
connect in round k does not link T1 and T2, and there is no edge with one end in T1 and
the other in T2.

Proof. If T1 and T2 were linked in round k, there would be an edge connecting them that
caused the link. Since T1 and T2 did not change in round k − 1, such an edge would have
caused them to link in round k − 1, and hence they would not be passive. J

We measure progress in the algorithm using a potential function. It is like that of
Awerbuch and Shiloach, but modified to guarantee that the total potential never increases,
and to give passive trees, which can linger indefinitely, a potential of zero.

I Definition 23. The potential φk(T ) of a tree T in round k ≥ 2 is

φk(T ) =


0 if T is passive in round k
3 if T is active and flat in round k
h+ 1 if T has height h ≥ 2 in round k

The total potential in round k ≥ 2 is the sum of the potentials of all the trees in the round.

We shall obtain a bound on the total potential that decreases by a constant factor each
round (other than the first two). Theorem 19 is immediate from such a bound. It suffices to
consider each active tree individually, since algorithm R is monotone and the total potential
in a round is the sum of the potentials of the trees in the round. We shall track an active tree
T backward through the rounds in order to see what earlier trees were combined to form it.
We show that these earlier trees had enough potential to give the desired potential decrease.

I Definition 24. Let T be a tree that is active in round k > 2. For i such that 2 ≤ i < k, the
constituent trees of T in round i are those in round i whose vertices are in T . The potential
Φi(T ) of T in round i is the sum of the potentials of the constituent trees of T in round i. In
particular, Φk(T ) = φk(T ).

I Lemma 25. Let T be active in round k > 2. For i such that 2 ≤ i < k, the constituent
trees of T in round i include at least one active tree.

Proof. By induction on i for decreasing i. The lemma holds for i = k by assumption and for
i = 2 since all trees in round 2 are active. Suppose it holds for i > 3. If the constituent trees
of T in round i− 1 are all passive, the connect in round i changes none of these trees by
Lemma 22. Since all these trees are flat, the shortcut in round i also changes none of them.
Thus all these trees are passive in round i, contradicting the induction hypothesis. J

I Lemma 26. Let T be active in round k > 2. Then Φk−1(T ) ≥ Φk(T ), and if Φk(T ) ≥ 5
then Φk−1(T ) ≥ (6/5)Φk(T ).

Proof. Let h be the sum of the heights of the constituent trees of T in round k − 1, let t
be the number of these constituent trees that are active in round k − 1, and let f be the
number of these trees that are active and flat. Then Φk−1(T ) = h + t + f . Consider the
tree T ′ formed from the constituent trees of T by the connect in round k. The shortcut
in round k transforms T ′ into T . By Lemma 22, along any path in T ′, there cannot be
consecutive vertices from two different passive trees. By Lemma 6, all leaves of constituent
trees are leaves of T ′. It follows that T ′ has height at most h+ t+ 1: the active constituent
trees contribute at most h vertices to a longest path, at most t + 1 roots of passive trees
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are on the path, at most one leaf of some constituent tree is on the path, and the path has
length one less than its number of vertices. Thus Φk(T ) ≤ d(h+ t+ 1)/2e+ 1 if h+ t > 2,
Φk(T ) = 3 if h+ t = 2.

We prove the lemma by induction on h+ t, which is at least 2, since at least one of the
constituent trees must be active by Lemma 25. If h+ t = 2, there is one active constituent
tree, and it is flat, so f = 1. If h+ t = 3, there is one active constituent tree, and it is not flat.
In both these cases, Φk−1(T ) = 3 and Φk(T ) = 3, so the lemma holds. Suppose h+ t > 3.
Then Φk(T ) ≤ d(h+ t+ 1)/2e+ 1. If h+ t = 4, Φk−1(T ) ≥ 4 and Φk(T ) ≤ 4; if h+ t = 5,
Φk−1(T ) ≥ 5 and Φk(T ) ≤ 4; if h + t = 6, Φk−1(T ) ≥ 6 and Φk(T ) ≤ 5. Thus the lemma
holds in these cases. Each increase of h+ t by two increases the lower bound on Φk−1(T )
by two and increases the upper bound on Φk(T ) by one, which preserves the inequality
Φk−1(T ) ≥ (6/5)Φk(T ), so the lemma holds for all h+ t by induction: if Φk(T ) ≥ 5, it must
be the case that h+ t ≥ 6. J

I Corollary 27. Let T be an active tree of height at least four in round k ≥ 3. Then
Φk−1(T ) ≥ (6/5)Φk(T ).

Corollary 27 gives us the desired potential drop for any active tree of height at least four. It
remains to consider active trees of heights one, two, and three. Since active trees of height
one and two have the same potential, namely three, we shall handle these cases together.
This gives us two cases: height at most two, and height three. In order to obtain the desired
potential drop, we need to look backward up to two rounds in the case of height three, up to
five in the case of height at most two.

I Lemma 28. Let T be an active tree of height 3 in round k ≥ 3. Let j = max{2, k − 2}.
Then Φj(T ) ≥ (5/4)Φk(T ).

Proof. If the constituent trees of T in round k − 1, or in round k − 2 if k > 3, include at
least two active trees (of total potential at least six) or one active tree of height at least
four (of potential at least five), then the lemma holds by Lemma 26, since Φk(T ) = 4. If
not, by Lemma 25 the constituent trees of T in round k − 1, and in round k − 2 if k > 3,
include exactly one active tree, of height exactly three. In this case there must be at least
two constituent trees of T in round k − 1, and in round k − 2 if k > 3, since the tree formed
from these constituent trees by the connect in the next round must have height at least
five, in order for the shortcut in this round to produce a tree of height three. But this
implies k > 4, since all trees in round 2 are active.

We conclude that the lemma holds except in the following case: k > 4 and the constituent
trees of T in rounds k − 2 and k − 1 each include exactly one active tree, of height exactly
three. Let T2 and T1, respectively, be the active constituent trees of T in rounds k − 2 and
k − 1. Let T ′1 and T ′, respectively, be the trees formed from the constituent trees of T by
the connect steps in rounds k− 1 and k. The shortcut in round k− 1 transforms T ′1 into
T1, and the shortcut in round k transforms T ′ into T . Both T ′1 and T ′ have height exactly
five. The passive constituent trees of T in round k − 1 are a proper subset of those in round
k − 2; specifically, those that are not combined with T2 to form T ′1 in the connect of round
k − 1. By Lemma 22, no edge connects two passive constituent trees of T in round k − 2.

Call a passive constituent tree of T in round k − 2 primary if it has an edge connecting
it to the root of T2 or to a child of the root of T2. Since T ′1 has height five, its root must
be different from that of T2: if not, T ′1 would have height at most four by the argument in
the proof of Lemma 26. If the root of T ′1 is different from that of T2, its root must be the
minimum of the roots of the primary trees of T in round k − 2. The root of T ′ must also be
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different from the root of T1 (which is the same as the root of T ′1). But the root of T ′ cannot
be the root of one of the primary passive constituent trees of T in round k − 2, since none of
these roots are smaller than the root of T ′1. Nor can it be the root of one of the non-primary
passive constituent trees of T in round k − 2, since such a tree has no edge connecting it to
the root or a child of the root of T2, implying that it has no edge connecting it to the root,
a child of the root, or a grandchild of the root of T ′1, further implying that it has no edge
connecting it to the root or a child of the root of T1, making it impossible for the connect
in round k to link T1 to it. Thus this case is impossible. J

The analysis of an active tree of height at most two is like that in Lemma 28 but more
complicated: we must consider all the passive constituent trees in the first relevant round,
not just the primary ones. At a high level the argument is the same: if in one of the four
rounds preceding round k there are two active constituent trees, or one of height at least
three, we obtain the desired potential drop; if not, the algorithm eventually runs out of
passive trees to link to the one active tree, which is impossible. We proceed with the details.

I Lemma 29. Let T be an active tree of height at most two in round k ≥ 4. Let j =
max{2, k − 5}. Then Φj(T ) ≥ (4/3)Φk(T ).

Proof. If for some i such that j ≤ i < k the constituent trees of T in round i include at least
two active trees (of total potential at least six) or one active tree of height at least three
(of potential at least four), then the lemma holds by Lemma 26, since Φk(T ) = 3. If not,
by Lemma 25 the constituent trees of T in each round from j to k − 1 include exactly one
active tree, of height at most two. In this case the passive constituent trees of T in round i
are a (not necessarily proper) subset of those in round i′, for j ≤ i < i′ < k. Furthermore
there must be at least two constituent trees of T in round k − 2, and hence in round j,
since otherwise the active constituent tree of T in round k − 1 would be flat (because the
connect in round k− 1 does nothing), and this tree would be equal to T , making T passive,
a contradiction. Since all trees in round 2 are active, this makes the lemma true if k ≤ 7.

We conclude that the lemma holds except in the following case: k > 7 and the constituent
trees of T in each round from j to k − 1 inclusive each include exactly one active tree, of
height at most two. For each round i from j to k inclusive, let Ti be the active constituent
tree of T in round i (so Tk = T ), and for each round i from j + 1 to k inclusive, let T ′i be the
tree formed from the constituent trees of T by the connect in round i. For j < i ≤ k, the
shortcut in round i transforms T ′i into Ti.

By Lemma 22, no edge connects two passive constituent trees of T in round j, nor in
any later round. Call a passive constituent tree of T in round j primary if it has an edge
connecting it to the root of Tj or to a child of the root of Tj , secondary otherwise. Every
passive constituent tree of T in round j must have an edge connecting it to Tj , since it does
not have an edge connecting it to another passive constituent tree, and some connect must
link it with an active tree by the end of round k. Since Tj has height at most two, each
secondary constituent tree of T in round j has an edge connecting it with a grandchild of
the root of Tj .

We consider two cases: the roots of Tj and T ′j+1 are the same, or they are different. (See
Figure 2.) In the former case, the roots of all primary constituent trees of T in round j are
greater than the root of Tj , and the connect in round j + 1 makes all of them children of
the root of Tj . In the latter case, the root of T ′j+1 is the minimum of the roots of the primary
constituent trees of T in round j, and each such tree other than the one of minimum root is
linked to Tj in round j + 1 or to Tj+1 in round j + 2.
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Figure 2 Worst-case illustration for the case of height at most two from round j +1 to round j +4.
Only necessary vertices, arcs, and edges are shown. Vacant before C (connect) or S (shortcut)
denotes the same forest as in the previous step. The vertices (roots) satisfy x < p < y < q < z.

Now consider the secondary constituent trees of T in round j. If the roots of Tj and T ′j+1
are the same, then after the shortcut in round j + 1 each secondary constituent tree whose
vertices are not in Tj+1 has an edge connecting it with a child of the root of Tj+1. By the
argument in the preceding paragraph, each such tree will be linked with Tj+1 in round j + 2
or with Tj+2 in round j + 3. If the roots of Tj and T ′j+1 are different, none of the secondary
constituent trees of T in round j has an edge connecting it with the root or a child of the
root of Tj+1 at the end of round j + 1. In this case, the roots of Tj+1 and Tj+2 must be the
same, so after the shortcut in round j + 2 each secondary constituent tree whose vertices
are not in Tj+2 has an edge connecting it with a child of the root of Tj+2. Each such tree
will be linked with Tj+2 in round j + 3 or with Tj+3 in round j + 4. Furthermore the roots
of Tj+3 and Tj+4 must be the same.

It follows that there is only one constituent tree of T in round j + 4, and this tree is flat.
But this tree must be T , making T passive in round j + 5 = k, a contradiction. Thus this
case is impossible. J

Having covered all cases, we are ready to put them together into a proof of Theorem 19.
Let a = (4/3)1/5 ' 1.06. We denote the number of vertices in a tree T by |T |.

I Lemma 30. Let T be an active tree in round k ≥ 2. Then Φk(T ) ≤ 2|T |/ak−2.

Proof. By induction on k. The lemma holds for k = 2 and k = 3 since each active tree T
after round two has at least two vertices and potential at most |T |+ 1, which is at most 2|T |
in round two and at most 2|T |/a in round three since a < 4/3.

To prove the the lemma for k ≥ 4, suppose the lemma holds for all k′ such that 2 ≤ k′ < k.
We consider three cases. If the height of T exceeds three, then Φk(T ) ≤ (5/6)Φk−1(T ) ≤
(5/6)2|T |/ak−3 by Corollary 27, the induction hypothesis, and the linearity of the potential
function. The lemma holds for T since a < 6/5. If the height of T equals three, then
Φk(T ) ≤ (4/5)Φk−2(T ) ≤ (4/5)2|T |/ak−4 by Lemma 28, the induction hypothesis, and
the linearity of the potential function. The lemma holds for T since a2 < 5/4. If the
height of T is at most two, then Φk(T ) ≤ (3/4)Φj(T ) by Lemma 26 and Lemma 29, where
j = max{2, k − 5}. By the induction hypothesis and the linearity of the potential function,
Φk(T ) ≤ (3/4)2|T |/aj−2. The lemma holds for T since k − j ≤ 5 and a = (4/3)1/5. J

Proof of Theorem 19. By Lemma 30, if k is such that 2n/ak−2 ≤ 2, then no tree can be
active. This inequality is equivalent to k ≥ lgn/ lg a+ 2. Every round except the last one
has at least one active tree. Thus the number of rounds is at most dlgn/ lg ae+ 2. J
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6 Remarks

We have presented several very simple label-update algorithms to compute connected com-
ponents concurrently. We have shown that two of our algorithms, algorithms R and RA,
take O(lgn) steps and O(m lgn) total messages, and the others take O(lg2 n) steps and
O(m lg2 n) total messages. Crucial to our algorithms is the use of minimum-value resolution
of write conflicts. We do not have tight efficiency analyses for our algorithms other than R
and RA, and we leave obtaining such analyses as an open problem. We think our algorithms
are simple enough to merit experimental study, but we leave this for future work.

Our analysis of algorithm R is novel in that it studies what happens over several rounds.
Previous algorithms were designed so that they could be analyzed one round at a time. We
have sacrificed simplicity in the analysis for simplicity in the algorithm.

We have ignored message contention. We think it is most fruitful to handle such contention
separately from the underlying algorithm. Dealing with contention is a topic for future
work, as is reducing the amount of synchronization required and developing incremental and
batch-update algorithms. We think that concurrent algorithms for disjoint set union [11],
the incremental version of the connected components problem, may be adaptable to give
good asynchronous concurrent algorithms for the connected components problem with batch
edge additions.

Another interesting extension of the connected components problem is to construct a
forest of spanning trees of the components. It is easy to modify algorithm R to do this: when
an edge causes a root to become a child, add the corresponding original edge to the spanning
forest. It is not so obvious how to extend algorithms such as A, P, and E that move subtrees.
This is perhaps another reason to favor algorithm R in practice.
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