
University of Central Florida University of Central Florida 

STARS STARS 

Retrospective Theses and Dissertations 

1988 

Some optimally adaptive parallel graph algorithms on erew pram Some optimally adaptive parallel graph algorithms on erew pram 

model model 

Sajal K. Das 
University of Central Florida 

 Part of the Computer Sciences Commons 

Find similar works at: https://stars.library.ucf.edu/rtd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Das, Sajal K., "Some optimally adaptive parallel graph algorithms on erew pram model" (1988). 
Retrospective Theses and Dissertations. 4270. 
https://stars.library.ucf.edu/rtd/4270 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Frtd%2F4270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4270?utm_source=stars.library.ucf.edu%2Frtd%2F4270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


UNIVERSITY OF CEN1RAL FLORIDA 

OFFICE OF GRADUATE STUDIES 

DEFENSE OF DISSERTATION 

THE UNDERSIGNED VERIFY THAT THE FINAL ORAL DEFENSE OF THE DOCTOR 

OF PHILOSOPHY DISSERTATION OF Sajal K. Das __ ::;__ ___________ _ 
HAS BEEN SUCCESSFULLY COMPLETED ON __ Ju_n_e _27 __ ,_1_98_8 ______ _ 

TITLE OF DISSERTATION: "Some Optimally Adaptive Parallel Graph 

Algorithms on EREW PRAM Model" 

MAJOR FIELD OF STUDY: Computer Science 

COMMI1TEE: 

Mefnber - Ronald D. Dutton 

Member - Brian E. Petrasko 

R~~~ 
Member - Ratan K. Guha 

APPROVED: 

Louis M. Trefonas 
Dean of Graduate St dies 



SOME OPTIMALLY ADAPTIVE PARALLEL GRAPH 

ALGORITHMS ON EREW PRAM MODEL 

by 

SAJAL K. DAS 

A dissertation submitted in partial fulfillment of the requirements 
for the degree of Doctor of Philosophy in 
the Department of Computer Science at 

the University of Central Florida 
Orlando, Florida 

August 1988 

Major Professor: Narsingh Deo 



SOME OPTIMALLY ADAPTIVE PARALLEL GRAPH 
ALGORITHMS ON EREW PRAM MODEL 

Sajal K. Das 
University of Central Florida 

Orlando, FL 32816 
August 1988 

Major Professor: Narsingh Deo 

ABSTRACT 

The study of graph algorithms is an important area of research in computer sci

ence, since graphs offer useful tools to model many real-world situations. The com

mercial availability of parallel computers have led to the development of efficient 

parallel graph algorithms. 

Using an exclusive-read and exclusive-write (EREW) parallel random access 

machine (PRAM) as the computation model with a fixed number of processors, we 

design and analyze efficient parallel algorithms for seven undirected graph problems, 

such as, connected components, spanning forest, fundamental cycle set, bridges, 

bipartiteness, assignment problem, and approximate vertex coloring. For all but the 

last two problems, the input data structure is an unordered list of edges, and divide

and-conquer is the paradigm for designing algorithms. One of the algorithms to solve 

the assignment problem makes use of an appropriate variant of dynamic program

ming strategy. An elegant data structure, called the adjacency list matrix, used in a 

vertex-coloring algorithm avoids the sequential nature of linked adjacency lists. 

Each of the proposed algorithms achieves optimal speedup, choosing an optimal 

granularity (thus exploiting maximum parallelism) which depends on the density or 

the number of vertices of the given graph. The processor-(time)2 product has been 

identified as a useful parameter to measure the cost-effectiveness of a parallel algo

rithm. We derive a lower bound on this measure for each of our algorithms. 
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CHAPTER 1 

INTRODUCTION 

The rapid growth of VLSI technology and the decreasing cost of processor

hardware have made feasible highly parallel computers in which a large number of 

processors work simultaneously such that the total execution time to solve a single 

problem is reduced in comparison with the time required by a sequential computer. 

The computational speed achieved by such computers certainly overcomes the limita

tions of sequential von Neumann type computers, the speed of which cannot be 

increased indefinitely for physical reasons. The idea of extracting the inherent paral

lelism present in a problem and the commercial availability of parallel computers 

have motivated researchers to develop a new field of study, namely, the design and 

analysis of parallel algorithms. 

There are two broad directions of research in parallel algorithms and computa

tions: 

1. To establish theoretical bounds on the inherent parallel complexity. Even if no 

restriction is imposed on the power of the p·arallel computation model, there 

exist lower bounds on the computation of problems. This is attributed to the 

intrinsic parallel complexity of problems, which limits the ultimate speedup 

achievable by parallelism. Examples include proving a lower bound of the 
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order of log N time to compute the sum of N integers on a concurrent-read and 

concurrent-write parallel random access machine, so long as the number of pro

cessors is bounded by any polynomial in N (Beame 1988); or proving a lower 

bound of the order of log N time to find the smallest of N elements on a 

concurrent-read and exclusive-write model, independent of the number of pro

cessors, size of the shared memory, or the instruction set of a processor (Cook, 

Dwork, and Reischuk 1986). Also included in this category are algorithms and 

theoretical results which prove that a problem belongs to NC (Nick's Class) or 

log-space complete for P (Cook 1985). NC is the class of problems which can 

be solved in time polynomial in the logarithm of the input size (also called 

poly-logarithmic or poly-log time), using polynomial number of processors. 

However, this approach often calls for an unrealistic number (a higher exponent 

in the problem-size) of processors. This is referred to as unbounded parallelism. 

2. To design parallel algorithms implementable on realistic computers. This 

assumes bounded parallelism, where a large but fixed number of processors are 

available. Though the architectural development of parallel computers is quite 

advanced, the lack of efficient parallel algorithms and data structures poses a 

bottleneck to the wide applicability of parallel computers. Therefore, there are 

ample scopes to enrich this fertile area by designing efficient parallel algorithms 

which can be directly implemented on realistic computers. 
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The work presented in this dissertation falls in the second direction of research. 

Note that if a fast algorithm is designed under the assumption of unbounded parallel

ism, its adaptation to computers with bounded parallelism is a nontrivial problem. 

The Theorem of Brent ( 197 4) and its proof gives some idea how to manage this, but 

the resulting algorithm is only a crude simulation on a finite number of processors 

and often not very efficient. Thus, if possible, a better approach is to come up with 

parallel algorithms, keeping a bounded number of processors in mind. 

1.1 Motivation 

An increasing proportion of computations are nonnumeric in nature, such as 

sorting, searching, graph processing, and so on. Of particular interest are graph prob

lems, which are often abstractions of important real-world situations, such as com

munication and transportation networks, VLSI design, program optimization, auto

mata theory, crypto systems, artificial intelligence, image processing, and applications 

in other fields of science and engineering. Therefore, there is always a demand for 

fast solutions to frequently-occurring graph problems. The objective of this disserta

tion is to develop efficient parallel algorithms for several graph problems (specific 

applications are cited in respective chapters) on a synchronous, general-purpose, 

shared-memory model of parallel computation. The problems include finding the 

connected components, a spanning forest, a fundamental cycle set, and the bridges, 

determining bipartiteness, a minimum-weight bipartite matching (also called the 
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assignment problem), and vertex-coloring of a given undirected graph. The last two 

are combinatorial optimization problems. 

Except vertex-coloring, all other problems of our interest have polynomial-time 

complexity on sequential computers. For the graph-coloring problem, being NP-hard, 

all known algorithms have exponential (in the problem-size) time complexities. 

Hence there is a great deal of motivation to parallelize polynomial-time approxima

tion algorithms for vertex-coloring. 

A significant body of literature is available on parallel graph algorithms on 

shared memory machines (see Tables 3.1, 4.1, and 6.1). The majority of these algo

rithms is developed assuming unbounded parallelism. Many of them allow simultane

ous reading from and/or simultaneous writing into the same memory cell. Since rela

tively little has been done in designing efficient graph algorithms on the weakest 

albeit most practical shared memory models (with bounded parallelism), which do 

not allow simultaneous access to a memory cell, we pursue this subject here. 

Another implicit assumption in most of the previous work is that the input graph 

is dense so that the adjacency matrix can be used as a data structure with no penalty. 

However, except for the assignment problem, our graph algorithms are intended to 

manipulate large, randomly sparse graphs. The dynamic way in which these graphs 

are modified makes the choice of data structures an important consideration in order 

to exploit sparsity while designing parallel graph algorithms. Sequential data struc

tures, such as linked lists, stacks, or queues, are not very effective in supporting 
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parallel operations. Thus, we use alternative data structures, wherever possible, to 

handle sparse as well as dense graphs with efficiency. 

An important issue in the design of parallel algorithms is a careful balancing of 

computation and communication time complexities. Usually, the problem decomposi

tion controls the granularity or grain-size - the amount of task performed by each 

processor. If the granularity is too fine, communication and synchronization overhead 

predominate. On the other hand, too coarse granularity may cause load unbalance and 

inefficient processor utilization. Both situations degrade the speedup. To make a 

proper compromise between computation and communication, we introduce a new 

performance measure for parallel algorithms. The motivation is to choose an optimal 

number of processors (as a function of problem-size) such that both speedup and 

efficiency are maximized. 

1.2 Related Research 

In this section, we briefly review the research related to the design and analysis 

of parallel algoritnms for realistic computers. 

1.2.1 Existing Parallel Computers 

The absence of a universal model of parallel computers has encouraged 

researchers to propose and design widely varying parallel architectures like systolic 

arrays, tree machines, vector processors, multiprocessors, dataflow-processors, and so 
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on. Introductions and surveys of advanced parallel architectures are given in Almasi 

(1985), Dongarra and Duff (1985), Hwang and Briggs (1984), Quinn (1987), and Te 

Riele (1987). Multiprocessors have further been classified according to instruction 

and data streams. We are interested in commercially available, general-purpose mul

tiprocessors of the multiple-instruction and multiple-data (MIMD) type. Two major 

approaches of building such computers are 

1. Shared memory computers: These computers have a global shared memory 

either with a shared bus or a multistage interconnection network between pro

cessors and storage for interprocessor communication. For example, Encore' s 

Multimax/320 (1987) and Sequent's Balance/21000 (1986) are computers with 

shared bus, while BBN's Butterfly/GPlO00 (Howe 1988) and Alliant's FX/8 

(Babb II 1988) are computers with interconnection networks. 

2. Fixed connection computers: These computers do not have global shared 

memory. Processors, each having local memory, are connected by a fixed topol

ogy, such as mesh, hypercube, pyramid, etc. The interprocessor communication 

takes place via message-passing. Examples of hypercube-based machines are 

Intel's iPSC/d7 (1986), NCUBE's NCUBE/10 (Hayes et al. 1987), Thinking 

Machines' Connection machine (Hillis 1985), and Ametek's S/14 (Dongarra and 

Duff 1985). 

These two classes of machines have merits as well as demerits. For example, it is 

easier to program on a shared memory computer while it is cheaper to build a fixed 
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connection computer. However, a shared memory machine is more versatile in the 

sense that it can simulate the message-passing primitives of the fixed connection 

machine, but the converse is not true (Seitz 1985). 

Several general-purpose parallel computers have been or are being designed as 

research machines. To name a few, Ultracomputer at New York University, Cedar at 

University of Illinois, Cosmic Cube at California Institute of Technology, Research 

Parallel Processor Prototype (RP3) at IBM, NON-VON at Columbia University, Par

titionable SIMD/MIMD Multicomputer (PASM) at Purdue University, Texas 

Reconfigurable Array Computer (TRAC) at University of Texas. Detailed description 

and design philosophy of these machines are available in Lipovski and Malek (1987), 

where authors have also presented a theoretical basis for comparing different parallel 

computers. 

Throughout this dissertation, our model of computation is an exclusive-read and 

exclusive-write (EREW) parallel random access machine (PRAM), which can be 

treated as an abstract generalization (with possibly additional power) of general

purpose, shared memory parallel computers. (The details of PRAMs are described in 

Section 2.2.) The idea behind the choice of PRAM as a model is to assure that our 

proposed algorithms are independent of the target machine architecture. 

1.2.2 Parallel Algorithm Design Strategies 

Though a relatively young discipline, parallel algorithms are under extensive 
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study and significant results are being established. Although some work has been 

reported, a general framework for the design and representation of parallel algorithms 

is still missing. The following literature deals with design strategies: parallel greedy 

(Anderson and Mayr 1984), parallel divide-and-conquer (Horowitz and Zorat 1983; 

Tang and Lee 1984; Nelson 1987), parallel branch-and-bound (Lai and Sahni 1984; 

Lai and Sprague 1985; Li and Wah 1986), parallel dynamic programming (Li and 

Wah 1985, Veldhorst 1986), binary tree method (Dekel and Sahni 1983), filtration 

and funnelled pipelining (Hochschild, Mayr, and Siegel 1983), deterministic coin 

tossing and accelerating cascades (Cole and Vishkin 1986), compute-aggregate

broadcast (Nelson 1987), and parallel symmetry-breaking (Goldberg, Plotkin, and 

Shannon 1987). To the best of our knowledge, no book or survey paper discusses 

systematically all of these paradigms for designing parallel algorithms. For details on 

stepwise parallel program design and correctness proofs, readers are encouraged to 

consult Chandy and Misra ( 1988). The state of the art in software tools for program

ming commercially available parallel computers is reported in Babb II (1988). Jam

ieson, Gannon, ard Douglass (1987) and Quinn (1987) provide reference sources for 

several important issues on parallel algorithm design. 

1.2.3 Parallel Data Structures 

Designin£; appropriate data structures is an art in traditional algorithm design. To 

achieve ·higher speedup in parallel processing, suitable parallel data structures are also 
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required. A parallel data structure is a single coherent data structure in which each 

processor accesses the part allocated to it. The allocation is made either by partition

ing the data structure into disjoint portions or by replicating some parts of it. The 

literature on parallel and concurrent data structures includes adjacency list matrix 

(Ecstein and Alton 1977), doubly-linked adjacency list (Wyllie 1979), parallel linked 

list (Kruskal, Rudolph, and Snir 1986), partial sum's tree (Shiloach and Vishkin 

1982; Vishkin 1984), linked array, parallel semiqueue and deque (Quinn and Yoo 

1984), parallel heap (Kwan and Ruzzo 1984; Quinn and Yoo 1984), parallel 2-3 trees 

(Ellis 1980a, Paul et al. 1983), parallel PQ-trees (Klein and Reif 1986), parallel 

binary tree traversal (Moitra and Iyenger 1987), concurrent binary search tree 

(Manber 1984), concurrent A VL trees (Ellis 1980b), and concurrent priority queues 

(Rao and Kumar 1988). 

1.3 Executive Summary 

The principal contribution of this dissertation is designing deterministic, optimal 

parallel algorithm~ for several undirected graph problems on a synchronous, shared 

memory model of computation, which forbids simultaneous read or write access to a 

memory cell. The problems of our interest belong to different classes so far as their 

applications are concerned. Also, the sequential algorithms corresponding to these 

problems have different time complexities. In particular, connected components, 

spanning forest, bridge-detection, and bipartiteness-checking problems can be solved 
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in linear (in the edges of the graph) time. The sequential algorithms for 

fundamental-cycle-set and the assignment problem have cubic (in the vertices) time 

complexities. We consider two approximate (sequential) vertex-coloring algorithms, 

which require linear and cubic times, respectively. 

For all but the assignment and coloring problems, the data structure for the input 

graph is an unordered list of edges. This simple data structure avoids the sequential 

access of a linked adjacency list and also requires optimal space as opposed to the 

extra space used by an adjacency matrix to represent sparse graphs. The divide-and

conquer strategy is the underlying paradigm for designing parallel algorithms for 

these problems. In the divide-and-conquer strategy, the given problem is divided into 

subproblems which can be executed independently by different processors. The sub

solutions obtained are then merged step by step to reach the final solution. 

We develop two parallel algorithms for the assignment problem. One of them is 

a parallelization of the classical Hungarian method, while the other performs by 

finding a min-cost flow in an appropriate layered network. The min-cost flow is 

computed by applying a variant of the dynamic programming technique. Since the 

input graph is dense for the assignment problem, we use a cost matrix as the data 

structure. Finally, two approximate parallel algorithms are designed for coloring the 

vertices of a graph. One of these algorithms uses an elegant data structure, called the 

adjacency list matrix, to alleviate the inherent sequential nature of linked adjacency 

lists. The other algorithm uses an adjacency matrix. Problem decomposition is the 
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basic design strategy for the parallel coloring algorithms. 

The processor-( time )2 product has been chosen as a useful parameter to measure 

the cost-effectiveness and to derive optimality conditions of parallel algorithms. This 

parameter is a proper compromise between speedup and efficiency. We compute a 

lower bound on processor-(time)2 for each of our algorithms. The parallel algorithms 

for connected-components, spanning-forest, fundamental-cycle-set, and bipartiteness

checking achieve optimal speedup for dense as well as sparse graphs, and are 

optimally scalable up to a large number of processors, which depends on the density 

of the input graph. The algorithms for bridge-detection and the assignment problem 

are optimal for dense graphs only. One of the parallel coloring algorithms is efficient 

for regular or near-regular graphs, and the other is efficient for graphs of widely 

varying chromatic numbers. 

1.4 Overview of Dissertation 

Chapter 2 first presents the terminology and notation used throughout this 

dissertation. This is followed by the description and relative power of different 

classes of parallel random access machine models. We then introduce a new perfor

mance measure, called processor-(time)2; and justify its usefulness in designing 

optimal parallel algorithms. 

Chapters 3 through 6 are devoted to designing and analyzing several efficient 

parallel algorithms for undirected graphs on exclusive-read and exclusive-write, paral-
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lel random access machines. Each chapter contains a brief discussion of the previous 

research on the problems being examined. 

In Chapter 3, we present parallel divide-and-conquer algorithms for determining 

connected components and a spanning forest. These algorithms are then used as sub

routines, in Chapter 4, to design algorithms for finding a fundamental cycle set, for 

bridges of a connected graph and for determining bipartiteness of a graph. 

Chapter 5 develops two optimal parallel algorithms for the assignment problem 

or a minimum-weight matching in a complete bipartite graph. Vertex-coloring of a 

graph is considered in Chapter 6. Chapter 7 concludes the dissertation and explores 

possible future work. 



-CHAPTER 2 

BACKGROUND CONCEPTS 

2.1 Terminology and Notation 

We begin this section by defining the graph theoretic terms and other notation 

used throughout this dissertation. '""Definitions pertinent to a specific chapter are given 

in that chapter. Deo (1974) and Harary (1969) provide a general introduction to 

graph theory. 

An undirected graph G = (VG , EG) consists of a finite, nonempty set VG of 

vertices (or nodes) and a finite set EG of edges. An edge (u, v) is an unordered pair 

of distinct vertices. Vertices u and v are adjacent if (u, v) e EG. We consider sim

ple (i.e., without self-loops and parallel edges) graphs of n vertices and m edges. 

For a vertex u e VG, adj (u) = { v I (u, v) e EG } is called the set of neighbors of 

u . The collection of such sets for all vertices form the adjacency list of the graph G . 

For VG = { v 1, v 2 ... , vn}, the matrix A = [aij ln x n is called the adjacency matrix 

of G if 

a•• ={1 '} 

0 

A path of length I from u to v in G is a sequence u = u 1, u2, ••• , u1 = v of 

distinct vertices such that (ui, u; + 1) e EG for 1 S i S I - 1. A cycle is a path with 

13 
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u 1 = u1• A graph without cycles is called acyclic. A graph G' = (VG,, EG,) is a sub

graph of the graph G if VG, c VG and EG , c EG. 

The total number of elements in a set Y is IY I. Notation Y c Z (or Y c Z) 

means that Y is a subset ( or proper subset) of Z. The union, intersection, and 

difference of two sets are represented by U, n, and - respectively. 

Y U Z = {y I y e Y or y e Z } 

y n z = {y I y E y and y E z } 

Y - Z = {y I y e Y and y 1 Z } 

We use O , 0, and Q to mean upper bound, exact bound, and lower bound, 

respectively. Let f, g: IN ➔ R+ be two functions from the set, IN, of nonnegative 

integers to the set, R+, of positive real numbers. Then the order notations are for-

mally defined as follows (Baase 1988): 

(i) f (x) = a (g (x ) ) if there exist c e R+, x 0 e IN such that for all 

x ~ x 0, I f (x) I ~ c I g (x) I. 

(ii) f (x) = Q(g (x)) if there exist c e R+, x 0 e IN such that for all 

x ~ x 0, I f (x ) I ~ c I g (x ) I. 

(iii) f (x) = 0 (g(x)) if f(x) = O(g(x)) and/(x) = Q(g(x)). 

For any real number a e R+, LaJ denotes the greatest integer less than or equal to a, 

and r al is the least integer greater than or equal to a . Throughout all logarithms are 

to the base 2 and log n denotes f1og2 nl We define i th iterate of the log function as 
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log<i) n = log(i-l) log n for n ~ 1, and log<0) n = n. 

2.2 Shared Memory Parallel Computation Model 

Parallel random access machines (PRAMs) are well accepted shared memory 

models for synchronous parallel computation, and have been widely used for parallel 

algorithm design. It is convenient to express parallel algorithms on PRAMs because 

one may concentrate on the problem of parallelizing, i.e., decomposing the problem 

at hand into simultaneously executable tasks, without having to worry about the com

munication between the tasks. 

Formally, a PRAM (pronounced "p ram") consists of a finite number p of 

unit-cost, general-purpose, sequential processors or RAMs (Aho, Hopcroft, and Ull

man 197 4 ), each equipped with a small amount of local memory, operating synchro

nously in parallel. Each processor knows its own index or identification number 

Pi , 1 ~ i ~ p ; can perform any scalar arithmetic, comparison, or boolean operation 

in one time unit; and can read from and write into its own local memory. There is a 

common (global) shared, random access memory, each cell of which can be read 

from or written into by any processor. Program and input data reside in the common 

memory. From the view point of designing algorithms, we assume a single instruc

tion stream, i.e., all processors execute a single program. But the identification 

number of a processor can control the sequence of steps to be executed, and different 

processors may do different things. Hence the net effect is that of a multiple instruc-
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tion stream. At any instant, a processor is either masked (i.e., inactive) or executes 

the same instruction as all other processors but each on a different data set. The 

necessary synchronization and communication among the processors take place via 

global variables stored in the shared memory. For example, when two processors 

wish to communicate, one processor writes a datum in the shared memory which is 

subsequently read by the other processor. 

Different processors can simultaneously access the common shared memory. 

Whenever more than one processor attempts to read from (or write into) the same 

memory cell at the same time, a read ( or write )-conflict takes place. Depending on 

whether or not read- or write-conflicts are allowed, we distinguish three main classes 

of PRAM models (Borodin and Hopcroft 1985; Snir 1985). 

1. Exclusive-read and exclusive-write (EREW) PRAM: Neither read- nor write

conflicts are allowed. This model is the same as PRA C or parallel random 

access computer due to Lev, Pippenger, and Valiant (1981). 

2. Concurrent-re~.d and exclusive-write (CREW) PRAM: Only read-conflicts are 

allowed but not write-conflicts. This model is first defined as P-RAM by Fortune 

and Wyllie (1978). 

3. Concurrent-read and concurrent-write (CRCW) PRAM: Both read- and write

conflicts are allowed, with some rule defining the exact semantics of simultane

ous writing. This model is also referred to as WRAM in the literature. 
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While using EREW ( or CREW) PRAM model, an algorithm that would have 

read/write (or write)-conflict is considered an illegal algorithm. Three subclasses of 

the CRCW PRAM model have been suggested, which differ in the way write

conflicts are resolved. These variants are (Pich, Ragde, and Wigderson 1988): 

(i) COMMON: All processors attempting to write into the same shared memory 

cell write a common value; otherwise the program is illegal. 

(ii) ARBITRARY: If more than one processor attempts to write into the same cell, 

an arbitrary one succeeds. 

(iii) PRIORITY (MINIMUM): Among all processors which simultaneously attempt 

writing into the same memory cell, the one with the highest priority (minimum 

index) will succeed. This subclass is essentially identical to SIMDAG (single 

instruction stream, multiple data stream, global memory) of Goldschlager 

(1978). 

All of these PRAM models have been used for implementing parallel algo

rithms. For example, Cole and Vishkin (1986) and Kruskal et al. (1986) use EREW; 

Chin et al. (1982) and Hirschberg et al. (1979) use CREW; Shiloach and Vishkin 

(1981) and Vishkin (1984) use COMMON; Cole and Vishkin (1986) and Shiloach 

and Vishkin (1982) use ARBITRARY; and Awerbuch and Shiloach (1983) use 

MINIMUM. 
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2.2.1 Relative Powers 

In the previous discussion, all classes and subclasses of PRAMs are listed in 

increasing order of their strengths. For example, the MINIMUM model is at least as 

powerful as the ARBITRARY model. This is because if an algorithm performs 

irrespective of which processor succeeds in writing, then it will perform unaltered if 

the lowest-indexed processor is allowed to succeed. Similar argument shows that the 

ARBITRARY model is no less powerful than the COMMON model. Also, the COM

MON model is at least as powerful as the CREW PRAM which, in turn, is at least as 

powerful as the EREW PRAM. Moreover, Cook, Dwork, and Reischuk (1982) have 

shown that the CREW PRAM is strictly less powerful than the CRCW PRAM, by 

proving that the logical OR of N bits can be computed in one step on the COMMON 

model whereas it requires .Q(log N) steps using a CREW PRAM model. By consid

ering the problem of searching for a key in a list of ordered elements, Snir (1985) 

has demonstrated that the EREW PRAM is strictly less powerful than the CREW 

PRAM. Thus, 

EREW c CREW c COMMON k ARBITRARY c MINIMUM. 

Relative powers of different variants of CRCW PRAM have been rigorously studied 

by Fich, Ragde, and Wigderson (1988). The weakest albeit most practical EREW 

PRAM model can simulate the most powerful CRCW (MINIMUM) PRAM with a 

delay of O (log p) per step using O ( p ) additional processors or with a delay of 

0 (log2 p) per step without additional processors (Vishkin 1983a). 
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Not only does the CRCW PRAM provide an elegant framework for the design 

and analysis of parallel algorithms, but it is also closely related to the unbounded 

fan-in circuit, another abstract model of computation. An unbounded fan-in Boolean 

circuit, is an acyclic directed graph - each node of which is labeled as either an 

input node, an AND-gate, an OR-gate, or a NOT-gate. Input nodes have fan-in zero 

while NOT-gates must have fan-in one. In addition, certain nodes are designated as 

output nodes. The size of a circuit is the number of edges, and the depth is the length 

of a longest path from some input to some output. Stockmeyer and Vishkin (1984) 

have shown that parallel time and number of processors of a PRAM correspond, 

respectively, to depth and size of a circuit. The time-depth correspondence is to 

within a constant factor and the processor-size correspondence is to within a polyno

mial. Therefore, a PRAM is a robust, abstract model of parallel computation. 

2.2.2 Realizability 

The entire family of PRAM models (also termed as paracomputers, Schwartz 

1980) is idealistic because of physical fan-in limitations; present and foreseeable 

technology does not seem to allow more than a constant number of processors to 

simultaneously access the same memory module. Nevertheless, Schwartz (1980) 

noted that such models "can play a useful role as theoretical yardsticks for measuring 

the limits of pR!°allel computation" (p. 486). The so-called most practical and the 

weakest EREW PRAM model can be made realizable to some extent by incorporat-
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ing a broadcast facility (Section 2.3), by which a processor communicates with all 

others in more than a single step. This mechanism reduces the number of processors 

having simultaneous access to a memory module. 

Another pragmatic approach toward the realization of PRAM is to have only 

limited number of processors with read or write accesses to each memory cell and to 

have each processor directly communicating with a fixed number of other processors. 

This bounded-degree network model is known as an ultracomputer (for example, a 

perfect-shuffle interconnection machine, Schwartz 1980). Of particular interest is the 

NYU Ultracomputer, a general-purpose MIMD machine accessing a global shared 

memory via a multistage perfect-shuffle interconnection (called the Omega network), 

which can be regarded as an approximate realization of paracomputers (Gottlieb et al. 

1983). Making use of the fetch-and-add synchronization primitive along with the 

serialization principle, the NYU Ultracomputer accomplishes the effect of simultane

ous access to the shared memory. For details on the implementation and choice of 

abstract parallel machine models, see Vishkin (1983b ). 

The fact that the PRAM model (though conceptually very convenient to develop 

algorithms) is not very practical, has motivated researchers to efficiently simulate 

PRAM computations on feasible parallel models, particularly models without global 

shared memory. It can be shown that each step of a p-processor PRAM can be 

simulated in O (lug p (log log p )2 ) steps on a bounded-degree network of p proces

sors (Upfal and Wigderson 1984). Therefore, if we develop algorithms for PRAM, 
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they can be easily translated to algorithms for actual machines. 

2 .3 Algorithmic Constructs 

Parallel algorithms will be represented by employing the usual fork and join 

statements, denoted by a parallel for construct with the syntax: 

For example, 

for all index, expression ~ index ~ expression, do 

parbegin 

statement-list 

parend; 

for all i , 1 ~ i ~ p , do 

parbegin 

Statement 1; 

Statement 2; 

Statement S; 

parend; 

indicates that the single process executing this statement is to fork into p parallel 

processes (corresponding to processors Pi, 1 ~ i ~ p ), each sharing the environment 

of the original process with its own unique value of the index i . The index may be 

referenced inside the parallel structure, but it must not be modified. All p processes 

simultaneously execute the "statement-list," and each processor executes statements 1 

through S sequentially, and then join into a single process at the corresponding 
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parend. Thus, the global synchronization is achieved, and no processing occurs 

beyond the parend until all of the forked processes have completed "statement-list." 

When there is a single statement within the parallel structure, we sometimes omit the 

words parbegin and parend. 

A sequential loop execution is distinguished by the construct 

for each index, expression ~ index ~ expression, do 

begin 

statement-list 

end; 

For example, when we use for each j, (i - l)r ~ l + 1 :e;; j :e;; ir ~ l do ... , where 

1 ~ i ~ p , it is assumed that the sequential loop is executed so long as j ~ N. The 

symbol B [i .. j] means that it is an array with constant-time access to each of its 

elements B [i], B [i + 1], ... , B [ j]. 

We illustrate the preceding syntactic constructs with an example program. If all 

p processors in an EREW PRAM model simultaneously need a shared datum, a 

broadcast operation is performed. The algorithm BROADCAST is adopted from Akl 

(1986), where B is an array (in the shared memory) of length p which is initialized 

to zeros. 



procedure BROADCAST; 

begin 

Processor P 1 copies the shared datum into B [ 1]; 

for each i , 0 ~ i ~ log p - 1, do 

end. 

for all j, i + 1 ~ j ~ i + 1, do 

parbegin 

P1 copies B [ j - i] into B [ j]; 

parend; 
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Clearly, after O (log p) time, each of the p processors receives the shared datum. 

We will use the procedure BROADCAST in Section 4.3.2, in the context of design

ing a better algorithm for a fundamental cycle set. 

2.4 Performance Measures 

Usually, three measures are considered by the algorithm designers to evaluate 

the performance of a new parallel algorithm. These are speedup, efficiency, and cost, 

as explained in the following. Given a problem 1t, let T f and T/ be, respectively, 

the worst-case running times required to solve 1t by the best-known sequential algo

rithm and by a given parallel algorithm using p processors. The uniform cost cri

terion is assumed for the worst-case time. Over all inputs of a given problem-size, 

the worst-case time for the sequential algorithm is the maximum of the time required 

for its execution, whereas the worst-case time of a parallel algorithm is the maximum 

of the time elapsed from when the first processor starts execution until the last pro

cessor terminates it. The parallel time complexity, also referred to as the depth of a 
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parallel algorithm, does not include input/output time. 

The speedup St of a parallel algorithm running on p processors is defined as 

the ratio of T f to Tprc· Clearly, the larger the ratio, the better is the algorithm. A 

trivial bound is 1 ~ sprc ~ p, because the best upper bound on the parallel running 

Trc 
time for an algorithm using p processors is -

1 
. Otherwise, by simulating the paral-

p 

lel algorithm on a sequential computer, we obtain a faster sequential algorithm. 

However, in practice, a speedup of p is often difficult to achieve due to data depen

dency in the problem itself and/or synchronization and communication overhead 

among processors. The efficiency (or processor-utilization) E/ of a parallel algorithm 

is the ratio of the speedup to the number p of processors used. Obviously, 

1 
- ~ EPrc ~ 1. The hardware cost of a parallel algorithm is defined as the product 
p 

pTprc· That is, the cost represents the worst-case number of operations while execut

ing the parallel algorithm. When it is clear from the context, for brevity, the perfor

mance parameters will be denoted as TP, SP, and EP. 

A parallel algorithm is optimal or is said to have optimal speedup if its speedup 

is proportional top (i.e., SP = 0 ( p) or efficiency is O (1)). In other words, the cost 

of an optimal parallel algorithm solving a problem matches (within a multiplicative 

constant) to the worst-case number of operations required by the best-known sequen

tial algorithm solving it. Of course, if we have an optimal parallel algorithm with 

running time TN using N processors, then (by the obvious processor simulation) we 
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also have an optimal algorithm even by employing fewer processors, i.e., it runs in 

time TP = e ( N TN) for all p ~ N processors. Such algorithms, also known as 
p 

optimally adaptive or scalable, are useful from a practical point of view where we 

have a limited number of processors. 

2.4.1 A New Measure p(TP)2 

In designing many parallel algorithms, one often minimizes the parallel time TP , 

employing as many processors p as possible. This may maximize the speedup SP, 

but the efficiency EP may be poor. On the other hand, if we try to minimize only the 

cost, we might end up sacrificing the speedup, although the efficiency may be high. 

For a proper trade-off, one should try to employ an optimal number of processors 

such that the product SP EP is maximized. In other words, one should minimize the 

product p (Tp )2 with respect to p . While designing systolic algorithms for dynamic 

programming problems, Li and Wah ( 1985) have also recognized that p (Tp )2 is an 

appropriate measure of the performance in parallel processing. This processor

( time )2 complexity in parallel algorithms has the similar flavor as area-(time)2 com

plexity in the context of designing VLSI circuits (Thompson 1979), where the objec

tive is to find the minimum area (which includes the total size of basic components 

and the total length of interconnecting wires) for fabricating a chip and to minimize 

the total time (including input/output, computation, and communication delay times) 

required to solve a problem. 
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Note that the parameter p (Tp )2 is also an appropriate measure for comparing 

parallel algorithms for a single problem on a particular model. The lower its value, 

the better is the performance and the corresponding algorithm is said to be more 

parallelizable. (By parallelizability, we mean how well the problems can take advan

tage of multiple processors.) Since the product SP EP yields the speedup-to-cost ratio, 

a lower value of p (Tp )2 will obviously lead to a higher value of speedup-to-cost 

ratio. 

Let us justify the utility of our new performance measure with a familiar paral

lel algorithm which computes the minimum among N elements using p ~ N proces

sors on an EREW PRAM model (Baase 1988). The input elements are X [1 .. N], 

stored in the shared memory. We use an auxiliary array X' of size p. Initially, pro-

cessor P;, 1 s; i s; p, operates on f ~ l elements given by X [(i-1) f ~ l + 1, ... , 

if~ li· It finds (sequentially) the minimum of these elements in . f ~ l -1 steps, and 

stores in X' [i ]. Then parallel merging takes place. 

The execution of the parallel algorithm can be depicted in the form of a binary 

tree (Figure 2.1) as follows. After the initial computation, p local minima, 

X' [1 .. p ], are produced which form the leaves of the binary tree. Next, the proces

sors are assigned such that all the computation at a level can be done as one step. 

When a processor Pi compares elements X' [i] and X' [ j], where i < j, the result

ing minimum is stored in X' [i]. In this approach, half of the processors used in a 
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step is reassigned in the following step. The global minimum is found after log p 

merging steps, when the processor P 1 at the root of the binary tree completes its 

computation. The parallel algorithm is formally described as follows. 

X'1 

x (p-2>rN 1pl+1 

log p 
Merging 
Steps 

Initial 
Sequential 
Computation 

+ 
x <P-nrN 1pl+1 xN 

Figure 2.1. Execution Behavior of the Algorithm SMALLEST. 



procedure SMALLEST; 

begin 

for all i, l ::;; i ::;; p , do (* initial computation *) 

parbegin 

P; computes the minimum of r: l elements and stores in X' [i]; 

parend; 

for each j , 1 ::;; j ::;; log p , do 

end. 

for all i, 0 s; i s; lp -2
~;

1 
-

1 J, do (*merging*) 

parbegin 

(* P 1+i 2i compares elementsX' [1 + i2i] andX' [1 + i2i+ 2i-1] *); 

if X' [ 1 + i 2i + 2i-l] < X' [1 + i 2i] 

then X' [1 + i2i] := X' [1 + i2i+ 2j-1]; 

parend; 

It is clear that the parallel algorithm SMALLEST has time complexity 

Tp = r: l -1 + log p = 8 ( : + log p ). 

28 

Also, the best-knowr sequential algorithm finds the smallest of N elements in 

T 1 = N - l = 8 (N) time. 

N 
Special Case: Consider p = K, where K is a positive constant. We get 

TN = K - l + log N = e (log N ), and this is the best that can be obtained because 
- K K 

it meets the asymptotic lower bound for finding the minimum of N elements employ-
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ing N processors on the EREW PRAM model (Cook, Dwork, and Reischuk 1986). 

Consequently, the speedup and efficiency are 

T1 N N s N = - = e < -- ) < e < K ) = e < P ), 
K TN log N 

K 

K 
EN = 0 ( l N ) < 0 (1). 

- og 
K 

Hence the algorithm SMALLEST does not attain optimal speedup, by definition, 

N 
when - processors are used. 

K 

As pointed out at the beginning of this subsection, the raw speedup of the 

preceding algorithm can be increased by minimizing TP with respect to p , the 

number of processors, crudely assuming that TP is a continuous function of p. Fol

lowing the rule of finding minima in Calculus (Fulks 1961 ), we make the partial 

ar N 
derivative a; = 0 and reach the condition p = log e , which is to be satisfied. 

(Here e ::::: 2.718 is the base of the natural logarithm.) As seen earlier, this condition 

f ·1 . 1 d if ak a( pTP) 0 . d 
ai s to y1e d optimal speedup. On the other han , we m e ap = m or er 

to maximize efficiency or minimize cost, we derive the condition log p = - log e , 

which cannot be satisfied. Physically, this result implies that pTP = 0 (N + log p ) 

is an increasing function of p (~ 2), for a given value of N. 

Our aim, now, is to show that the new performance measure p (TP )2 can be 

used to correctly derive the optimality condition. Minimizing this parameter with 
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respect to p would maximize speedup as well as efficiency. Accordingly, if we let 

a( p (Tp )2 ) 
--~-- = 0, we get ap 

p (log p + 2 log e) = N (2.1) 

Since Equation (2.1) is transcendental in nature, it does not have an algebraic solu

tion. However, for large values of N and p, there are asymptotic solutions to the 

corresponding inequality 

p log p <S: N (2.2) 

N 
For example, p <S: 0 ( -- ) is a solution. This form of solution will only be con-

log N 

sidered in later chapters of this dissertation wherever we encounter equations like 

(2.1) or inequalities like (2.2). We claim that the use of p = N processors 
log N 

renders the parallel algorithm to be optimal. Though the parallel time TP is still 

N 
0 (log N ), the speedup now becomes SP = 0 ( -- ) = 0 ( p ). Also, the algo-

log N 

N rithm is optimally adaptive for p <S: --
log N 

In fact, any asymptotic solution to Equation (2.1) leads to optimal number of 

processors to be used. It implies that even if we have mqre processors at hand, say N 

in this example, we should not be tempted to grab all of them in order to solve the 

given problem. Otherwise many processors might remain idle, leading to inefficient 

processor-utilization. Physically, satisfying Equation (2.1), we make a trade-off 

between the initial computation time and the communication time ( due to merging) in 
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the algorithm SMALLEST. 

Note: In this context, it is worth mentioning that an exact solution to the equation 

p log p = N can be shown to be 

N p = _00 ______ _ 

L (- 1i+1 log<i) N 
i = 1 

We close this subsection with the following theorem and its corollary. 

Theorem 2 .1: An asymptotically general solution to Inequality (2.2) is given by 

p = N 1 - E, for 0 < E :::;; 1. 

Proof: Substituting p = N 1 - E in Inequality (2.2), we obtain 

(1 - E) log N :::;; NE, for E > 0. 

For E = 0, this yields log N :::;; 1 which is satisfied only for N :::;; 2. And for E = 1, the 

computation model reduces to a uniprocessor system. Now, 

lim NE lim 
--= 

N ➔ oo log N N ➔ oo 

NE-1 
E , by L'Hospital's Rule (Fulks 1961). 

(loge)/ N 

= lim (-E- NE) 
N ➔ 00 loge ➔ 00' for E > 0. 

It implies that log N <_ NE, for 0 < e :::;; 1, and Inequality (2.2) is asymptotically 

satisfied for our choice of p. □ 

Corollary 2 .1: The parallel algorithm SMALLEST is optimally adaptive for 

P :::;; N 1 - E processors, for 0 < E:::;; 1. 
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Proof: The parallel time is TP = 8 ( N + log p) = 8 [NE + (1 - e) log N] = 8 (NE ). 
p 

T1 
Therefore, the speedup is SP = - = 8 (N 1 - E) = 8 ( p ). □ 

TP 

Based on the preceding discussions, we conclude that the new performance 

measure p (Tp )2 can be used to compute an optimal number of processors for a 

parallel algorithm as a function of the input size. The constant e in Corollary 2.1 may 

be called a scale factor. By varying e in the interval (0, 1], we can choose p. 

We make one assumption in the asymptotic analysis of our algorithms in the 

rest of this dissertation. Whenever we take the derivative of log p with respect to p , 

we do not write the constant, log e ::: 1.44, associated with the result. 



CHAPTER 3 

CONNECTED COMPONENTS AND SP ANNING FOREST 

Based on the divide-and-conquer strategy, we design two parallel algorithms -

one for computing the connected-components and the other for a spanning-forest in 

an undirected graph. Initially, the connected components (or a spanning forest) of 

different subgraphs of the original graph are (or is) computed in parallel by different 

processors, each using an optimal sequential algorithm. Then the subsolutions are 

gradually merged to obtain the final solution. The input graph is represented by an 

unordered list of edges, and the use of simple and elegant data structures avoids 

memory read- and write-conflicts. Both the proposed algorithms achieve optimal 

speedups for all graphs using an appropriate number of processors, which is shown to 

be dependent on the density of the input graph. 

The rest of the chapter is organized as follows. Section 3.1 defines the terminol

ogy and notation. Section 3.2 reviews briefly the previous works on the parallel 

connected-components and spanning-forest algorithms. In Sections 3.3 and 3.4 new 

algorithms are presented, and simple proofs of correctness have been provided. A 

lower bound on the processor-(time)2 product for these parallel algorithms is also 

derived. Section 3.5 discusses the salient features of our algorithms and their design 

strategies. 

33 
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3 .1 Basic Definitions 

An undirected graph G = (Ve , Ee) is connected if there is a path between 

every pair of distinct vertices of the graph. A maximal connected subgraph of G is 

called its connected component (or just component). More formally, by the con

nected components problem, we mean the problem of computing the function 

CON: Ve ➔ Ve such that 

CON(vj) = min {k I k = j or vk is connected to vi by a path in G }. 

A tree is a connected acyclic graph. A subgraph T = (Ve , Er) of a connected 

graph G is a spanning tree of G if it is a tree containing all vertices of G. Clearly, 

IEr I = n - 1. A spanning forest F of G is a collection of spanning trees, one for 

each connected component. Let G' = (Ve', Ee,) be a subgraph of G. The set of 

edges with both end-vertices in Ve, is denoted by E (Ve,). If Ee, = E (Ve,) then G ' 

is the subgraph of G induced by Ve' . 

Many polynomial graph theoretic (sequential) algorithms depend on basic search 

strategies, such as, depth-first or breadth-first search. In a depth-first search of a 

graph, we start at a vertex and each time an edge is discovered, the search is contin

ued from the new vertex and is not renewed at the old vertex until all edges from the 

new vertex are exhausted. In a breadth-first search, on the other hand, we start at a 

vertex and first search all vertices at a distance of one from it. Next all vertices at a 

distance of two from the start-vertex are searched and so forth, until the graph is 

traversed. 
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The input graph is stored in the common shared memory as an m x 2 array, 

LIST, an unordered list of edges labeled as e 1, e 2, . . . , em . The i th edge 

ei = (u, v ), with u < v as a convention, is stored in LIST[i], where LIST[i, l] := u 

and LIST[i, 2] := v, for 1 ~ i ~ m and 1 ~ u < v ~ n. 

3 .2 Previous Works 

The connected-components and spanning-forest algorithms, besides being impor

tant in their own right, can also serve as basic subroutines in designing more com

plex algorithms, as are evident from the results in Chapter 4. Therefore, considerable 

work has been done to solve these problems on different classes of PRAM models. 

Table 3.1 reviews the time and processor complexities of the available literature on 

fast and efficient, parallel connected-components or spanning-forest algorithms. For 

detailed discussions on several such algorithms, readers may refer to Moitra and 

Iyenger (1987) or Quinn and Deo (1984). The basic strategies used in developing 

these algorithms are breadth-first search, transitive closure, and vertex collapse. As 

can be observed from Table 3.1, many of the earlier results are based on the assump

tion of unbounded parallelism. Moreover, most of these algorithms require adjacency 

matrix as the input data structure so that the underlying graph problem can be solved 

by manipulating matrices. Consequently, these techniques lead to optimal or near

optimal algorithms only for dense graphs. For example, optimal speedups are 

achieved for connected-components or spanning-forest algorithms due to Chin, Lam, 
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n2 
and Chen (1982), and Vishkin (1984) using p ~ -- processors. Kwan and 

log2 n 

Ruzzo (1984) implemented a spanning-forest algorithm on the CREW model with 

p ~ __!!!:__ processors, taking care of sparse graphs. Using adjacency list as the data 
log n 

structure, Koubek and Krsnakova (1985) designed near-optimal algorithms for con-

nected components on both CREW and EREW models which utilize O ( m + n ) 
log n 

processors and O (m + n) space. The connected-components algorithms due to Cole 

and Vishkin ( 1986) are optimal for m ~ n log* n, where log* n = min 

{ i I log(i) n ~ 1} is the iterated logarithm, when the model is CRCW or CREW and 

the edges of the graph are represented in a vector of length 2m in a forward-star 

fashion; however, on the EREW model the algorithm is near-optimal. Kruskal, 

Rudolph and Snir (1986) used an unordered list of edges as the data structure. Their 

implementation of the connected-components or spanning-forest requires O ( pn + m) 

space. On the CREW model the algorithm attains the optimal speedup satisfying 

p ~ ✓ 
1 

m and log p ~ !E..; while on the EREW model the optimal speedup (for 
og m n 

all but the sparsest graphs where m = 0 (n ) ) is achieved when 

1 
2-e m 

P ~ m , 0 < E ~ 1, and log p ~ -. 
n 

In this chapter, we develop parallel algorithms for connected components and 

spanning forest. They achieve optimal speedups for all graphs by using 

P :,; 
1 

~In processors. For dense graphs where m = 0 (n 2 ), our algorithms are 
og min) 
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asymptotically faster than those of Kruskal, Rudolph, and Snir ( 1986). The imple

mentation of these algorithms require O ( pn + m) space, which is optimal by our 

choice of p. 

In passing we now mention some algorithms for the problems under considera

tion on fixed connection computers. Doshi and Yarman (1987) have described an 

optimal algorithm for spanning forest on a fixed-size linear array. Yeh and Lee 

(1984) have developed connected-components algorithm on a tree-structured parallel 

computer. Huang (1985) has implemented connected-components and spanning

forest algorithms on mesh-of-trees networks. On mesh-connected computers, Ham

brusch (1983), Nassimi and Sahni (1980), and Stout (1985) have developed algo

rithms for connected components, and Atallah and Kosaraju (1984) have presented an 

algorithm for spanning forest. The spanning-forest algorithms due to Miller and 

Stout (1987a, 1987b) are designed for Pyramid and hypercube machines. For an 

overview of the time and processor complexities of these and several other algo

rithms, refer to Das, Deo, and Prasad (1988b), where authors have designed optimally 

adaptive connected-components and spanning-forest algorithms on hypercube comput-

ers. 
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TABLE 3.1. PARALLEL GRAPH ALGOR.fIHMS ON PRAM MODELS t 

PROBLEM MODEL TIME ( Tp) PROCESSORS RESEARCHERS 

Connected CRCW 0( log n) n + 2m Shiloach & Vishkin (1982) 
Components, 

2 
Spanning 0( !!.._) p Vishkin (1984) 

p 
Forest 

0( log n) 0( m + n) Koubek & Krsnakova (1985) 

0 ( log n log(2) n 0 ((m + n) a(m ' n) ) Cole & Vishkin (1986) 

logC3> n) 
Tp 

3 
CREW 0 ( log n log d) 0(-n-) Savage & Ja' Ja' (1981) 

log n 

0( log2 n) 0( m + n log n) Savage & Ja' Ja' (1981) 

0( log2 n) 
n r w: n l Hirschberg et al. (1979) 

n2 
Chin et al. (1982) 0( - + log2 n) p 

p 

0( log2 n) 0( m + n ) 
log n 

Koubek & Krsnakova (1985) 

0( Iog2 n) n + 2m Wyllie (1979) 

O( m log n 
p 

p Kwan & Ruzzo (1984) 

+ log n log p) 

0 ( !!:!. + n log p 
p p 

p Kruskal et al. (1986) 

+ p log p) 

0( log2 n) 0((m + n) a(m, n)) 
Tp 

Cole & Vishkin (1986) 

EREW 0( log2 n) 
n2 

O( log n ) Nath & Maheshwari (1982) 

0( !!:!. + pt +t p Kruskal et al. (1986) 
p 

+ n log p) 
p 

0( log2 n) 0( m + n ) 
log n 

Koubek & Krsnakova (1985) 

- 1 Cl) ,~ 0( Jog2 n) 0((m +n) -?> Cole & Vishkin (1986) ,, 
m Das (this dissertation ) 0( - + n logp) p 
p 

'd is diameter of graph; O <es 1; a (m, n) is an inverse Ackcrmann's function. 
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3.3 Connected Components 

The parallel algorithm PARALLEL_ CONNECT, based on a divide-and-conquer 

strategy, computes the connected components of an undirected graph, represented as 

an unordered list (LIST) of edges. The algorithm uses a linear array ROOT (of size 

pn ), stored in the shared memory. At the termination of the algorithm, the number of 

distinct entries in subarray ROOT[l . . n] is the number of connected components 

in the graph. The element ROOT[ j], for 1 ~ j ~ n, stores the root of the component 

to which the vertex vj belongs. The (final) root of a component is the smallest

indexed vertex in that component. Initially, ROOT[(i - l)n + j] := j for 1 ~ j ~ n 

and 1 ~ i ~ p , indicating that vertex v j is a component by itself in the subgraph pro-

cessed by processor Pi . After the execution of the algorithm 

PARALLEL_CONNECT, the set of vertices yi = {vj I ROOT[ j] = vi and 

1 ~ i ~ j ~ n } belongs to a connected component numbered i . The parallel algo

rithm is sketched as follows. 

procedure PA~ \LLEL _ CONNECT; 

begin 

for all i , 1 ~ i ~ p , do (* initialization *) 

parbegin 

for each j, 1 ~ j ~ n , do 

ROOT[(i - l)n + j] := j; 

parend; 

for all i , 1 ~ i ~ p , do 

parbegin 

(* initial computation *) 

The processor Pi constructs an adjacency list of a subgraph Gi of n 
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vertices and r; l edges stored in LIST[(i - l)r; l + 1 .. ir; }; 
computes the connected components of G i by a sequential algorithm; 

and outputs the result in ROOT[(i - l)n + 1 . . in], where 

ROOT[(i - l)n + j] contains the root of the component of the sub

graph Gi to which the vertex vj belongs. 

parend; 

MERGE_ CONNECT; (* procedure for parallel merging *) 

# of connected components <-- # of distinct entries in subarray ROOT[l .. n ]; 

end. 

Note that the information contained in the ROOT subarray of an individual pro

cessor Pi induces a forest f i = (VG , E /; ) of n vertices with the edge-set E Ii = 

{(u,v) I ROOT[(i - l)n +v] =u and 1 ~u <v ~n}. If a vertex is a root by 

itself, the induced self-loop is discarded. Some of the edges, say ( y, z ), correspond

ing to this forest may not exist in the original subgraph Gi processed by Pi, but arise 

here due to the existence of a path from y to z in G i • It implies the following 

Lemma. 

Lemma 3.1: The induced forest fi preserves the connectedness of subgraph Gi, for 

1 ~ i ~ p. 

Proof: Assume that in the subgraph Gi originally processed by processor Pi, 

1 ~ i ~ p, there is an edge (u, v) between two given vertices u and v, with u < v. 

Then, after the initial computation of the algorithm PARALLEL_ CONNECT, the 

ROOT subarray of Pi will contain ROOT[(i - l)n + v] = ROOT[(i - l)n + u] 
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= ru, say, assuming that the sequential connected-components algorithm performs 

correctly. In the corresponding induced forest fi, we get a path (u, ru, v) or an 

edge (u, v) depending on whether vertex u is distinct from or identical to its root-

vertex ru. 

Next, consider that there is an edge-sequence of length greater than one between 

the given vertices u and v of Gi. Without loss of generality, let the vertices along 

the edge-sequence be (u, y, ... , w, ... , z, v ), where any or both of y and z may 

be absent. Now, if u is the smallest-indexed vertex among these, by the preceding 

argument either the edge (u , v) or the path (u, ru, v) exists in the generated induced 

forest. On the other hand, if w is the smallest-indexed vertex, then 

ROOT[(i - l)n + u] = ROOT[(i - l)n + y] = . . . = ROOT[(i - l)n + z] = 

ROOT[(i - l)n + v] = ROOT[(i - l)n + w] = rw, say. Accordingly, the induced 

forest will have the path (u , rw, v ). 

Thus, if two vertices are connected in the subgraph Gi processed by Pi, then . 

they remain connected in the induced forest f i generated by it. □ 

As a consequence of Lemma 3.1, the problem of merging the connected com

ponents of two subgraphs G i and G j computed by processors Pi and P j , respec

tively, essentially reduces to the problem of merging two induced forests (available in 

ROOT subarrays of Pi and Pj ), each having at most n - 1 edges. To simplify 

presenting parallel algorithm MERGE_ CONNECT, the number of processors will be 

assumed to be p = 2b for b :2: 1. 
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procedure MERGE_ CONNECT; 

begin 

(* log p steps of merging *) 

for each k , 1 ~ k ~ b , do 

end. 

l2b - 2k-l - 1J 
for all i , 0 ~ i ~ 

2
k , do 

(* Processor Pl+ i 2" merges its solution with that of Pl+ i 2"+ 21c - 1 *) 

parbegin 

The processor Pl+ i 2" extracts the edges (excluding duplicate edges) of 

the induced forests contained in subarrays ROOT[ (i 2k )n + 1 

(i2k + l)n] and ROOT[(i2k + 2k-l)n + 1 . . (i2k + 2k-l + l)n]; 

constructs an adjacency list; and computes the connected components 

of this induced merged-forest by a sequential algorithm. The output is 

stored in the ROOT subarray of processor Pl+ i 2" • 

parend; 

Lemma 3 .2: During an iteration k , for 1 ~ k ~ b = log p , when two subsolutions 

obtained by processors Pl+ i 2" and Pl+ i 2"+ 21c-1 are merged, the elemen_t 

ROOT[(i 2k)n + j], for 1 ~ j ~ n, is assigned the smallest-indexed vertex as the root 

of the merged component to which the vertex vj belongs. 

Proof: We apply an induction on k. During the first merging iteration (when k = 1), 

processor P 2; + 1, for 0 :;; i :;; l ~ -1j, merges its subsolution with that of processor 

P 2i + 2· By Lemma 3.1, the forests f 2i + 1 and/ 2i + 2 induced by ROOT subarrays 

of these two processors preserve, respectively, the connectedness of subgraphs 
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G li + 1 and G li + 2 originally assigned to them. (This can be treated as the base case 

when k = 0.) Assuming that a single adjacency list can be correctly constructed by 

extracting the edges from these two induced forests, and that the implementation of 

the sequential connected-components algorithm is correct, the ROOT subarray of pro

cessor P li + 1 will contain the merged solution. In other words, the element 

ROOT[2in + }], for 1 s; j s; n, stores the root of the component to which vertex vj 

belongs in the so-far merged solution. Similar argument holds for all merging itera

tions. □ 

Theorem 3 .1: The algorithm PARALLEL CONNECT correctly computes the con

nected components of G = (VG, Ea) without memory read- or write-conflicts. 

Proof: We prove the theorem by showing that if any two vertices u and v , with 

u < v , belong to a particular connected component in the original graph G , then they 

remain so in the forest f 1 induced by the ROOT subarray of processor P 1 at the ter

mination of the algorithm PARALLEL_ CONNECT. Assume that there is an edge 

(u, v) in G which is initially assigned to a processor P ~' 1 s; J3 s; p. The message

flow during an execution of the algorithm in an 8-processor parallel computer is as 

shown in Figure 3.1. Generalizing this to a p-processor system, there is a unique 

directed route of communication along which the connected components produced by 

the processor P ~ passes through during different merging steps and finally reaches 

the processor P 1. Since vertices u and v were connected initially at P ~' they belong 
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to the same connected component (by Lemma 3.1) in all the forests induced by vari

ous ROOT subarrays along this specified route. Also, after each merging iteration, 

they receive the smallest-indexed vertex as the root of the component to which they 

belong (by Lemma 3.2). 

Next, if the given vertices u and v of G are connected via an edge-sequence of 

length greater than one, they will belong to the same connected component in the 

induced forest f 1 because we can apply the preceding argument on each edge in the 

sequence. Since each processor accesses exclusively different parts of the shared 

memory, there is no read- or write-conflict of a memory cell at any stage of the 

parallel algorithm. D 

Figure 3.1. Message Communication in an 8-Processor Computer 
During an Execution of Algorithm PARALLEL_CONNECT. 

T 
Merging 

Initial 
Computation 
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3.3.1 An Example 

We illustrate the algorithm PARALLEL_CONNECT with a graph in Figure 3.2, 

using p = 4 processors. The input consists of n = 14 vertices and an unordered list 

of edges, 

LIST= {(v1, V3), (V3, V10), (v1, V11), (v3, V11), (v1, V2), (v7, V9), (vg, V9), (V7, Vg), 

(v 10, v 11), (vs, v 6), (v 13, v 14), (v 12, v 13), (v 10, v 12), (v 4, v 9), (v 12, v 14)} • 

Since there are m = 15 edges, initially each of the processors P 1, P 2, and P 3 is allo

cated 4 edges while P 4 gets the remaining 3 edges. Each processor constructs the 

adjacency list of its own edges, computes the roots of the components therein, and 

stores the result in its portion of the array ROOT, which is of size 4 x 14 = 56. For 

ease of understanding, we partition the ROOT array into four separate arrays, namely 

R 1, R 2, R 3, and R 4 each of size 14. The result of the initial computation of con

nected components by individual processors is shown in the following. 

G1: {(v1, V3), (v3, V10), (v1, V11), (v3, V11)} 

R1: 1 2 1 4 5 6 7 8 9 1 1 12 13 14 

G2: {(vi, V2), (v7, V9), (vg, V9), (V7, Vg)} 

R2: 1 1 3 4 5 6 7 7 7 10 11 12 13 14 

---------------------------------------------------------------------------------------------
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G3: { (v 10, V 11), (v 5, V 6), (v 13, V 14), (v 12, V 13)} 

R 3: 1 2 3 4 5 5 7 8 9 10 10 12 12 12 

G4: {(v 10, v 12), (v 4, v 9), (v12, v14)} 

R 4: 1 2 3 4 5 6 7 8 4 10 11 10 13 10 

The forests induced by root-information of different processors are depicted in 

Figure 3.3. We see that the forest f 1 induced by R 1 contains the edge (v 1, v 10), 

which did not exist in the original subgraph G 1 allocated to processor P 1. Also, self

loops are not included in the induced forests. The components involving single ver

tices have not been shown. Next, the subsolutions obtained by different processors 

are merged as follows, in two iterations. After the first merging iteration, the forests 

induced by arrays R 1 and R3 are as shown in Figure 3.4. 

(a) First merging iteration: 

Merging off 1 and f 2 

R1: 1 2 1 4 5 6 7 8 9 1 1 

1 1 1 4 5 6 7 7 7 1 1 

12 13 14 (before merging) 

12 13 14 (merged solution) 



Merging off 3 and f 4 

R 3: 1 2 3 4 5 5 7 8 9 10 10 

1 2 3 4 5 5 7 8 4 10 10 

(b) Second merging iteration: 

Merging off 1 and f 3 

12 12 12 

10 10 10 
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(before merging) 

(merged solution) 

R 1: 1 1 1 4 5 6 7 7 7 1 1 12 13 14 (beforemerging) 

11145544 4 1 1 1 1 1 (merged solution) 

The final contents of array R 1 after the second merging iteration is the output of 

the algorithm PARALLEL_ CONNECT, and is interpreted as follows. There are 

three connected components of the graph in Figure 3.2, represented by the distinct 

integers (1, 4, and 5) in R 1• Vertices v1,v2,v3,v 10,v 11,v 12,v 13, and V14 are in 

component numbered 1; vertices v 4, v 7, v 8, and v 9 are in component numbered 4; 

and vertices v 5 and v 6 are in component numbered 5. This can be readily seen from 

Figure 3.5. 



2 

12 9 e 7 8 

13 eu 14 4 7 

Figure 3.2. A Disconnected Graph. 

1 

2 

• 
5 

Figure 3.3. Induced Forests After Initial Computation. 

• 
6 
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5 

6 

Figure 3.4. Induced Forests After First Merging Iteration. 

5 

6 

Figure 3.5. Connected Components of the Graph in Figure 3.2. 
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3.3.2 Complexity Analysis 

Let Tff ON be the total time required by the algorithm PARALLEL_ CONNECT 

using p processors, and Tf ON be the time to find the connected components by the 

best-known sequential algorithm, say the one based on a breadth-first or a depth-first 

search (Reingold et al. 1977; Tarjan 1972). It is known that TfON = O (m + n) for 

a graph with n vertices and m edges. The same amount of time is needed to form a 

linked adjacency list given the unordered list of edges as the input. If MCON denotes 

the time required by the procedure MERGE_ CONNECT and tc , the _time required 

for finding the number of distinct components from the subarray ROOT[l . . n ], we 

can write Tj0 N = KI ( r; l + n ) + MCON + tc ' where KI is a positive constant. 

The first term on the right-hand side of the preceding expression represents the time 

required by each processor for constructing the adjacency list and finding the con-

nected components of r; l edges, including the time required for initializing the 

array ROOT. Using a single processor, tc = n. Each execution of the parbegin ... 

parend loop of procedure MERGE CONNECT requires 

K 1 [(2n - 2) + n] = K 1 (3n - 2) time units in the worst-case. This time includes 

constructing an adjacency list of at most 2n - 2 edges of two induced forests and 

computing their connected components. Since there are log p merging iterations, 

MCON = K 1 (3n - 2) log p . Therefore, the overall time complexity and the 

speedup of the algorithm PARALLEL_ CONNECT are, respectively, 



rf 0N = K 1 ( r; l + n) + K 1 (3n - 2) log p + n , and 

sCON = 
p 

TfON 

yCON 
p 

= 0 (m + n) 

m 
K 1 ( - + n) + K 1 (3n - 2) log p + n 

p 
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The following theorem gives an asymptotic complexity on the performance of the 

algorithm PARALLEL_ CONNECT. 

Theorem 3 .2: Let the connected components of a graph G of n vertices and m edges 

be computed using p processors in time TP by the parallel divide-and-conquer algo-

rithm, PARALLEL_ CONNECT. Then p (Tp )2 ~ 0 (mn log m ), and the equality 
n 

min holds when p = 0 ( ---- ). 
log (min) 

Proof: When m is sufficiently large compared to p , r; l may be approiimated to 

m. Ignoring the constants in the foregoing analysis of parallel time does not affect 
p 

the validity of the proof presented below. So we write, 

i.e., 

m 
TP ~ - + n log p , 

p 
m 

forl~p~-
n 

m m 2 
2 2 p(Tp)2 ~ p(-+n logp)2=-+2mn logp +pn log p (3.1) 

p p 
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We consider the following three cases to complete the proof. 

m~ 2 m 
(i) When p = 0 ( l ( I ) ), we get p (Tp) ~ 0 (mn log - ). 

og m n n 

(ii) When p < 0 ( 
1 

~In ) ), the first term on the right hand side of Expression 
og min 

m 2 m 
(3.1) is - > 0 (mn log - ). 

p n 

(iii) When p > 0 ( 
1 

~In ) ), the third term on the right hand side of (3.1) 
og min 

becomes pn 2 log2 p > e (mn log m ), because log2 p > ( log ( m In ))2 

n log (min) 

~ 0 ( log2 m ). 
n 

The preceding three cases imply that the lower bound on the product p (Tp )2 is 

given by 0 (mn log m ), which is achieved by the use of p = 0 ( 
1 
~ In ) ) pro-

n og min 

cessors. Since the initial granularity ( or the amount of data allocated to each proces-

sor) of the parallel divide-and-conquer algorithm is r; l, the optimal granularity is 

0 (n log~). □ 
n 

Corollary 3 .1: 

(a) When the given graph is dense, i.e., m = e (n 2 ), p (Tp )2 = Q (n 3 log n ), and 

p = e ( -
1 

n ). Hence, TP = Q (n log n ). Since T 1 = 0 (n 2 ), the speedup 
og n 

n sp = e < -- ) = e < P ). 
log n 
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(b) When the given graph is sparse, i.e., m = e (n ), p (TP )2 = n (n 2 ), and 

p = 8 (1). Thus, TP = Q (n ). Since T 1 = 8 (n ), SP = 8 (1) = 8 ( p ). □ 

In the foregoing analysis, the asymptotic optimal value of p can be derived as 

follows. The running time of the algorithm PARALLEL CONNECT is approximated 

to 

m 
TP = K 1 (- + n) + K 1 (3n - 2) log p + n 

p 

o( p (Tp)2 ) 
Now, p (Tp )2 achieves a minimum value when op = 0. That is, 

(3.2) 

(3.3) 

ar 
Computing a: from Equation (3.2) and substituting in Equation (3.3) we get, 

2mK1 
TP - -- + 2K 1 (3n - 2) = 0 which yields after the substitution of the value of 

p 

TP from Equation (3.2), 

(7K 1 + 1) 2K 1 4K 1 
p log p [ 3K 1 + --- - - - --- ] = 

log p n n log p 

For large values of m, n, and p we can write p log p :::: ! ( : ), i.e., 

p :s; 0 ( m In ), following the argument presented in Section 2.4.1. Therefore, 
log (min) 

the algorithm PARALLEL_ CONNECT is optimal for any graph using p processors, 

min h h. al · h · where 1 :s; p :s; ---- • For example, for dense grap s t 1s gont m 1s 
log (min) 
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optimally adaptive up to 1 ~ p ~ _n_ , whereas for sparse graphs only up to a 
log n 

constant number of processors. Since the average density of a graph is proportional 

to .!!!:... , the optimal performance is density-dependent. 
n 

3 .4 Spanning For est 

The parallel algorithm PARALLEL _FOREST finds a spanning forest of a given 

undirected graph, also based on divide-and-conquer strategy. Each processor Pi has 

a queue Qi (stored in the shared memory) of size at most n - 1. A subgraph is 

assigned to Pi which stores in its queue the label of the edges as they are being 

included in the forest. At the termination of the algorithm, all edges in the spanning 

forest are available in the queue Q 1. The information regarding the tree-roots of its 

vertices is stored in an array ROOT[l .. n ], stored in the shared memory. (This is 

unlike the algorithm PARALLEL_CONNECT, where the array ROOT has size pn.) 

The root of a tree in a forest is the smallest-indexed vertex in that tree. Usually, 

fincing a spanning forest of a graph is concerned with the edges to be included in the 

forest and may not involve the computation of the array ROOT. However, for detect

ing bipartiteness (Section 4.5), we need to identify the roots of the trees. Though the 

algorithmic description of the procedures PARALLEL FOREST and 

MERGE _FOREST can be derived (with appropriate modifications) from those of the 

parallel connected-components algorithm, we present them in the following for com

pleteness. 



procedure PARALLEL _FOREST; 

begin 

for all i , l ~ i ~ p , do (* initialization *) 

parbegin 

for each j, (i - 1) r; l + 1 ~ j ~ i r; l do 

ROOT[(i - l)n + j] := j; 

parend; 

for all i , l ~ i ~ p , do (* initial computation *) 

parbegin 
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The processor Pi constructs an adjacency list of a subgraph Gi of n 

vertices and r; l edges stored in LIST[(i - l)r; l + 1 .. ir; l ]; 
computes a spanning forest Fi of Gi by a sequential breadth-first or 

depth-first search. Pi stores the edges of Fi in the queue Qi and 

counts the number of edges included in Fi . 

parend; 

if the number of edges in any forest Fi, l ~ i ~ p, is n - l 

then copy the forest-edges in Qi to Q 1 

else MERGE _FOREST; (* procedure for parallel merging *) 

Processor P 1 constructs an adjacency list of the spanning-forest-edges in Q 1 

and generates the array ROOT by sequential graph-search; 

end. 

To simplify presenting the algorithm, we assume that the number of processors 

is p = 2b , b ~ l. 

procedure MERGE _FOREST; 

begin 

for each k , l ~ k ~ b , do 

begin 

(* log p steps of merging *) 

for all i, 0 ~ i ~ l 2b - ~:-l -1 j, do 



end. 
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(* Processor P 1 + i 21r. merges its solution with that of P 1 + i 21r. + 21r.-1 *) 

parbegin 

Processor Pl+ i 21r. constructs an adjacency list of the edges avail

able in Q l+ i 21r. and Q l+ i 21r.+ 21r.-1 , and computes a spanning forest 

by a sequential algorithm. The edges of the resulting forest 

Fl+ i 21r. are stored in the queue Q l+ i21 along with a count on the 

number of edges therein. 

parend; 

if any forest contains n - 1 edges 

then copy those forest-edges into Q 1 and exit; 

end 

Theorem 3 .3: The set of edges stored in queue Q 1 of processor P 1 at the termination 

of the algorithm PARALLEL FOREST defines a spanning forest of the graph 

G = (Ve, Ee). 

Proof: Assuming that the sequential spanning-forest algorithm performs correctly, the 

theorem can be proved along the same line as Theorem 3 .1. □ 

3.4.1 An Example 

In the following we illustrate the algorithm PARALLEL_FOREST on the graph 

in Figure 3.2, using 4 processors. The processor Pi for 1 ~ i ~ 4 has a queue Qi. 

The result of the initial computation of spanning forests by individual processors 

using breadth-first search is presented below. In this example, for the sake of clarity, 

a forest-edge in a queue is represented not by its label but by the pair of its end-
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vertices, as stored in the array LIST. Note that the spanning forest produced will 

depend on the order in which the breadth-first traversal works on the vertices of G; 

here we assume some fixed but arbitrary order. 

G1: {(vi, V3), (v3, V10), (vi, V11), (v3, V11)} 

Q 1: {(vi, v3), (vi, v 11), (v 3, v 10)} 

G2: {(v1, V2), (v7, V9), (vg, V9), (v7, Vg)} 

Q 2: {(v 1, v2), (v 7, v9), (v 7, v8)} 

G3: {(v10, vu), (vs, v6), (v13, V14), (v12, V13)} 

Q3: {(vs, v6), (v10, v11), (v12, V13), (v13, V14)} 

G4: {(V10, V12), (V4, V9), (V12, V14)} 

Q4: {(v4, V9), (v10, V12), (v12, V14)} 

Now the subsolutions obtained by different processors are merged. While merg

ing two forests, say F 1 and F 2, the processor P 1 first constructs an adjacency list of 

the edges in queues Q 1 and Q 2, computes a spanning forest by a breadth-first search 

and then stores the forest-edges in Q 1. There are two merging iterations in our 

example. At the end of the second iteration, the array ROOT is computed. 
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(a) First merging iteration: 

Merging of Q 1 and Q 2 

Q 1: {(v 1, v 3), (v 1, v 11), (v 1, v 2), (v 3, v 10), (v 7, v 9), (v 7, v 8)} (merged forest) 

Merging of Q 3 and Q 4 

Q 3: { (v 4, v 9), (vs, v 6), (v 10, v 11), (v 10, v 1i), (v 12, v 13), (v 12, v 14)} (merged forest) 

(b) Second merging iteration: 

Merging of Q 1 and Q 3 

Q1: {(v1, V3), (v1, v11), (v1, V2), (v3, v10), (v4, V9), (vs, v6), 

(v7, v9), (v7, vg), (v 10, v 12), (v 12, v 13), (v 12, v 14)} (merged forest) 

ROOT: 1 1 1 4 5 5 4 4 4 1 1 1 1 1 

The output of the algorithm PARALLEL_FOREST is interpreted as follows. A 

spanning forest of the graph in Figure 3.2 consists of eleven edges contained in the 

queue Q 1, and is depicted in Figure 3.6. The number of distinct integers in the array 

ROOT (which is three here) is the number of trees in this spanning forest. With the 

help of ROOT, we determine the root of a tree to which a forest-edge belongs. 



59 

1 4 5 

3 
11 2 6 

10 

13 14 

Figure 3.6. A Spanning Forest of the Graph in Figure 3.2. 

3.4.2 Time Complexity 

The time required by the best-known sequential algorithm (Tarjan 1972) for 

finding a spanning forest of a graph with n vertices and m edges is 

Tf OR = 0 (m + n ). Since a forest has no more than n - 1 edges, one iteration of the 

algorithm MERGE FOREST requires at most K 2 (3n - 2) time, where K 2 is a posi

tive constant. There are log p merging iterations. Each processor has the count of the 

number of edges included in the forest handled by it, and "whether any forest con

tains n - 1 edges" can be checked in at most log p time. If the merging terminates 

before log p iterations, then copying of the appropriate forest-edges into Q 1 requires 
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n - 1 ti.me in the worst case. Therefore, the total merging time to compute a span

ning forest is given by, M FOR ~ [ K 2 (3n - 2) + log p ] log p . Initialization of 

ROOT array and its final computation require, respectively, r; l and no more than 

K 2 (2n - 1) times. Thus the time complexity of the algorithm PARALLEL _FOREST 

is 

Tt OR ~ K 2 [ ( r; l + n) + (2n - 1) ] + [ K 2 (3n - 2) + log p ]log p + r; l · 
The asymptotic performance and the p (Tp )2 complexity are the same as those 

obtained for the algorithm PARALLEL CONNECT. The algorithm 

min 
PARALLEL FOREST also achieves optimal speedup for 1 ~ p ~ ---- pro

log (min) 

cessors. 

3 .4.3 Remarks 

(1) The algorithm PARALLEL _FOREST can be used directly to find the con

nected components of a graph. The number of distinct entries in array 

ROOT[ 1 . . n] gives the number of connected components, and ROOT[ j] is the 

component number of the vertex v j , for 1 ~ j ~ n . 

(2) The algorithm PARALLEL_ CONNECT or PARALLEL _FOREST can be 

applied to design optimal parallel algorithm for computing the transitive closure G * 
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of an undirected graph G. In G * the edge (u, v ), where u < v, exists if and only if 

u and v belong to the same component of G . 

(3) As suggested by Chin, Lam, and Chen (1982), the algorithm for finding the 

weakly connected components of a directed graph can be obtained by first ignoring 

the edge orientations, removing the duplicate edges, and then applying either of the 

preceding algorithms. 

3 .5 Discussion 

The divide-and-conquer-based parallel algorithms for connected components and 

spanning forest presented in this chapter are not parallelization of existing sequential 

algorithms. Since stacks and queues are very sequential in nature as data structures, 

conflict-free access to their elements by different processors incurs overhead; so 

direct parallelization of depth-first or breadth-first search techniques to solve these 

problems is not attractive. From that point of view, our strategy has significance. In 

the underlying divide-and-conquer strategy, the input graph is partitioned almost 

equally among processors; each processor operates sequentially on its subproblem, 

and then subsolutions are merged iteratively to obtain the final solution. Many paral

lel sorting and selection algorithms use a similar approach. We have also applied 

this technique to find minimum spanning forest on a weighted graph (Das, Deo, and 

Prasad 1988a). We believe that this approach will lead to optimal parallel algorithms 

for other problems as well. For such an algorithm, the time complexity of merging 



62 

- which involves critical computation and communication in a shared memory 

model without concurrent access facility - will be the dominating factor in the 

overall performance. We choose optimal grain-size to make a proper trade-off 

between the computation and communication time complexities. The optimal number 

of processors and hence the optimal granularity are functions of the number of ver

tices and edges in the graph. To derive the optimality condition, the processor-(time)2 

product has been minimized with respect to the number of processors. 

Another novelty of our algorithms is the use of simple data structure, namely an 

unordered list of edges, in contrast to adjacency matrix or adjacency list. Many exist

ing parallel algorithms are optimal for dense graphs but are unacceptably inefficient 

for sparse graphs. Our algorithms are equally efficient for dense as well as sparse 

graphs, and are optimally adaptive within the derived range of processors. The work

ing data structures are also simple, and ensure that the processors do not conflict in 

reading from or writing into a memory cell. The total required space is optimal by 

the choice of the number of processors to be used. 

Although the algorithms presented in this chapter have been designed for shared 

memory computers, the use of simple merging algorithms and large grain-size prom

ise their efficient implementation (with less communication, restricted only to neigh

boring processors) on fixed connection computers as well, such as a hypercube. For 

details, see Das, Deo, and Prasad (1988b). 



CHAPTER 4 

FOREST-BASED GRAPH ALGORITHMS 

This chapter is devoted to designing three efficient parallel graph algorithms 

based on spanning forest or, in particular, spanning tree. The problems include com

puting a fundamental cycle set and the bridges of a connected graph and determining 

the bipartiteness of a graph. Cycles of a graph give information as to how well the 

graph is connected. The set of cycles remains invariant under isomorphism of 

graphs. In certain applications, e.g., the program analysis and evaluation, the theory 

of data structures, etc., it is advantageous to have a list of all the cycles of a graph. A 

fundamental set of cycles forms a basis for the cycle space of a graph. Therefore, 

finding a fundamental cycle set is an important graph connectivity problem. The 

removal of a bridge increases the number of connected components of a graph by 

one. Thus the problem of locating bridges is important in order to ascertain the con

nectedness of a graph. 

The algorithms PARALLEL_FOREST and PARALLEL_CONNECT (described 

in Chapter 3) are used as subalgorithms to efficiently solve the above three problems. 

Each of our proposed algorithms achieves an optimal speedup using an appropriate 

number of processors, which is different for different problems and is shown to be 

dependent on the density of the input graph. 

Section 4.2 discusses the previous works; the necessary definitions are provided 
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in Section 4.1. Sections 4.3, 4.4, and 4.5, respectively, describe the algorithms for 

computing fundamental cycle set, finding bridges, and determining bipartiteness of a 

graph. These sections also analyze the performance of the corresponding algorithms, 

and derive a lower bound on the processor-(time)2 product for each of them. Finally, 

Section 4.6 summarizes the result. 

4.1 Definitions 

A co-tree CT = (VG, Ecr) of a connected graph G = (VG , EG) with respect to 

a spanning tree T = (VG , Er) is the subgraph with the edge-set Ecr = EG - Er of 

m - (n - 1) edges, where n and m are, respectively, the number of vertices and 

edges in the graph G. Any edge ei of a co-tree is called a chord of the spanning 

tree T. Adding a co-tree edge ei to T creates a fundamental cycle, FCi. The collec

tion of all m - n + 1 cycles with respect to T is called a fundamental cycle set 

(FCS). The importance of an FCS is that any arbitrary cycle in the graph can be 

expressed as a linear combination of the fundamental cycles by the symmetric 

difference operation, denoted by 0 , where 

FCi (±) FC1 = {e I e e FCi U FC1 , e 4 FCi fl FC1 }. An edge e e EG of a 

connected graph G is called a bridge if the graph Ge = G - { e } = (VG , EG - { e } ) 

is disconnected. A graph G is bipartite if its vertex-set VG can be partitioned into 

two subsets V 1 and V 2 such that every edge in EG has one end-vertex in V 1 and the 

other one in V 2• As in Chapter 3, we use an array LIST (of size m x 2) of unor-
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dered edges as the data structure for the input graph. 

4.2 Previous Works 

Table 4.1 reviews the literature on fast and efficient parallel algorithms for the 

aforementioned three problems, employing the PRAM models of computation. As 

can be observed from Table 4.1, many of the earlier results are based on the assump

tion of unbounded parallelism. Moreover, most of these algorithms are optimal or 

near-optimal only for dense graphs. For example, optimal speedups are achieved for 

bridge-finding algorithms due to Tarjan and Vishkin (1985), and Tsin and Chin 

n2 
( 1984) using p ::; 

2 
processors. Using adjacency list as the data structure, 

log n 

Koubek and Krsnakova (1985) designed a near-optimal algorithm for bridges on 

EREW model which utilizes O ( m + n ) processors and O (m + n ) space. 
log n 

Let us highlight the performances of the parallel algorithms we design in this 

chapter. The fundamental-cycle-set algorithm attains an optimal speedup using 

✓mn 
p ::; --- processors for graphs of any density and using p ::; ✓mn when 

log ✓mn 

m = n 1 + E for O < E::; 1. A modified version of this algorithm is optimally adaptive 

for p ::; m processors for all graphs. The bridge-finding algorithm requires 
log m 

p ::; _n_ processors for optimality and is efficient for dense graphs only. The 
log n 

min 
parallel algorithm for bipartiteness-checking is optimal for p ::; ---- processors 

log (min) 
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on graphs of varying density. The implementation of our algorithms require 

O ( pn + m) space, which is optimal by our choice of p . 

On various fixed connection models, several parallel algorithms have been 

reported for the problems under consideration. Doshi and Yarman (1987) have 

described an optimal algorithm for finding bridges on a fixed-size linear array. Yeh 

(1986) has designed optimal algorithms for fundamental cycles and bridges on a 

tree-structured computer. Atallah and Kosaraju (1984) have presented algorithms for 

the fundamental cycles, the bridges, and for checking bipartiteness for mesh

connected computers. Miller and Stout (1987a, 1987b) have developed algorithms 

for bridges, and bipartiteness-checking for Pyramid and hypercube machines. For an 

overview of the time and processor complexities of these algorithms, refer to Das, 

Deo, and Prasad (1988b ), who have designed optimal algorithms for all these prob

lems on hypercube computers. 
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TABLE 4.1. FOREST-BASED PARALLEL GRAPH ALGORITHMS ON PRAM t 

PROBLEM MODEL TIME (TD) PROCESSORS RESEARCHERS 

1. Fundamental CREW 0( log2 n) 0( n 3 ) Savage &Ja, Ja, (1981) 
Cycle Set 

m nK, K~l Tsin & Chin (1984) 0(- log n 
nK 

+ ; + log2 n) 

0( log2 n) 0(n(m - n + 1)) Ghosh (1986) 

0 ( log n log d) 0( n 3
) Ghosh (1986) 

EREW 
mn Das (this dissertation) 0(-+p p 
p 
+ n log p) 

mn Das (this dissertation) 0( - +n logp) p 
p 

2. Bridges CRCW 0( log n) 0( m + n) Tarjan & Vishkin (1985) 

CREW 0( log2 n) 0( n 2 log n) Savage &Ja, Ja, (1981) 

0( .!!.._ + log2 n) 
K 

nK, K ~ 1 Tsin & Chin (1984) 

2 
O( .E_) p Tarjan & Vishkin (1985) 

p 

0 ( log2 n) 0(n(m - n + 1)) Ghosh (1986) 

0( log n log d) 0( n 3
) Ghosh (1986) 

EREW 0 ( log2 n) O( m + n ) 
log n 

Koubek et al. (1985) 

m n 2 
Das (this dissertation) 0(-+- p 

p p 
+ n log p) 

3. Bipartite EREW 
m Das (this dissertation) 0( - + n log p) p 
p 

t d is diameter of graph; O < e ~ 1; a (m , n ) is an inverse Ackermann, s function. 
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4.3 Computing Fundamental Cycle Set 

For this section, the given graph G is assumed to be connected. (Note that, if 

necessary, we can always check for connectedness of the graph with the help of the 

algorithm PARALLEL_ CONNECT.) The best-known sequential algorithm, based on 

either breadth-first or depth-first search, finds a fundamental cycle set (FCS) of a con

nected graph in TfCS = 0 (mn) time (Reingold, Nievergelt, and Deo 1977). In the 

proposed algorithm PARALLEL _FCS, a spanning tree T is first computed. Then a 

co-tree is identified in parallel with the help of a boolean array MARK of size m, 

each bit of which is assigned to an edge. Initially, MARK[i] := 0, for 1 ~ i ~ m . 

Note that a row-index of the array LIST gives the label of an edge of the input 

graph. After the execution of the algorithm PARALLEL FOREST, the labels of all 

edges in the spanning tree T are stored in the queue Q 1; and for these tree-edges the 

corresponding MARK bits are 1 's. The unmarked edges are those of the co-tree CT. 

Each of the co-tree edges forms a fundamental cycle when added to a subset of edges 

in the corresponding spanning tree. Each processor scans its share of edges and, if a 

particular edge belongs to the co-tree, it finds the associated fundamental cycle. Addi

tional storage is required by the following algorithm to store the fundamental cycles. 

procedure PARALLEL_FCS; 

begin 

PARALLEL_FOREST; 

for all i , 1 ~ i ~ p , do 

parbegin 

(* find a spanning tree T *) 

(* construct the co-tree CT of G *) 

for each j, (i - 1) r; l + 1 ~ j ~ i r; l do 



begin 

MARK[ j] := O; 

end; 

for each j, (i - 1) r n ; 
1 l + 1 ~ j ~ i r n ; l l do 

begin 

parend; 

MARK[ Q 1 [ j]] := 1; 

end; 

for all ei = (vi', vi" ) e Ee do 

parbegin 

if MARK[i] = 0 then (* execute only for co-tree edges *) 

begin 

find the path PATHi from vi' to vi" in T; 

FCi := PATHi u {ei }; (* i th fundamental cycle *) 

end; 

parend; 

end. 

4.3.1 Complexity Analysis 
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The construction of the co-tree CT requires 8 ( m + n ) time. In the foregoing 
p 

algorithm, the second parbegin ... parend loop is executed for only those edges 

which are in CT. Each processor works on the queue Q 1 and constructs for itself a 

linked adjacency list of the edges in the spanning tree T. The concurrent reading of 

the queue is avoided by pipelining the access to the edges by different processors. 

For a connected graph, a spanning tree has n - l edges; hence the adjacency lists 

can be constructed in O [(n - 1) + ( p - 1) + n ] time. Next each processor is in 
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charge of r; l edges of LIST, and each sequentially finds the path PATH; in T 

corresponding to a co-tree edge ei = (vi', vi" ) as indicated below. The vertex vi' is 

labeled 1. Then starting at vi' and using a breadth-first search, each vertex u is 

labeled L + 1 where L is the label of the predecessor of u. We stop when vi" 

acquires a label. Clearly, the labeling of the vertices requires O (n) time. The 

required path PATHi is traced by starting at vertex vi" and proceeding backwards so 

that the next vertex visited has a label one less than that of the current vertex. While 

tracing the path, the total time spent on scanning edges at individual vertices is O (n ) 

because each edge, except the initial and final ones, is scanned at most twice. The 

length of the path is n - 1 in the worst case, and so the entire path-finding procedure 

requires no more than O (n) time. Therefore each processor spends at most O ( mn ) 
p 

time to find the cycles corresponding to all edges assigned to it. The asymptotic time 

complexity of the algorithm PARALLEL _FCS is 

TFCS ~ TPFOR + O ( m + n ) + O (n + P ) + O ( mn ) 
p p p 

m m +n mn = 0 ( - + n) + 0 (n log p) + 0 ( -- ) + 0 (n + p) + 0 ( - ) 
p p p 

:::: 0 ( mn ) + 0 (n log p) + 0 ( p) 
p 

(4.1) 

The speedup is given by, 

SPFCS = _____ 0_(.;.._m_n..;_) ____ = _____ 0__,;...;( p;;...._) ___ _ 
2 • 

0 ( _m_n ) + 0 (n log p) + 0 ( p) O (1) + O ( P log P) + 0 ( ]!_ ) 
p m mn 
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Now, for optimal speedup, p log p ~ m and p ~ ✓mn, both of which are 

✓mn 
satisfied for any graph by a choice of p ~ 

log ✓mn · 

Theorem 4.1: If a fundamental cycle set of a graph of n vertices and m edges is 

computed using p processors in time TP by the algorithm PARALLEL _PCS, then 

p (Tp )2 ~ 0 ( (✓mn )3 log ✓mn ), and the lower bound is achieved when 

p =0( ~ ). 
log mn 

Proof: Ignoring the constants in the asymptotic time complexity, the lower bound on 

TP can be written as TP ~ mn + n log p + p 
p 

m2n2 
-- + 2mn 2 log p + pn 2 log2 p + p 3 + 2mnp + 2p 2n log p. 

p 

Considering three cases corresponding to whether p is less than, equal to, or 

✓mn 
greater than 0 ( ~ ), the proof follows. 

log mn 
□ 

Theorem 4.2: If p = ✓mn , then p log p ~ m is asymptotically satisfied for graphs 

with large number n of vertices and m = n 1 + E edges, for O < E ~ 1. 

Proof: Let p = ✓mn . Then p log p ~ m yields 

log ✓mn :;;; ✓: (4.2) 

Consider a graph having m = n 1 + £ edges, for O < E ::;; 1. Then ✓ : = n ½ and 



1 + ~ 
✓mn = n 2 • From Inequality (4.2), we get 

Now, 

= 

E 

(1 + ; ) log n ~ n 2 

E 

lim ~ _ lim 
n ➔ oo log n n ➔ oo 

E 

E 
E --1 
- n2 
2 

1 
n 

lim ( ~ n 2 ) ➔ 00, for E > 0. 
n ➔ oo 2 
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(4.3) 

by L 'Hospital's Rule. 

It implies that Inequality ( 4.3) is satisfied for O < E ~ 1, since for a graph without 

multiple edges between two vertices, E cannot be greater than 1 for the chosen value 

of m . Hence the proof. □ 

4.3.2 A Modified Implementation 

The parallel time in Expression ( 4.1) as well as the performance of the algo- . 

rithm PARALLEL_FCS according to Theorems 4.1 and 4.2 are based on the linear 

pipelined access of the edges in the queue for the construction of a co-tree. As we 

have seen, by this mechanism, adjacency lists corresponding to a spanning tree are 

available at all processors in O (n + p ) time. However, a simple but elegant improve

ment is as follows. By using the BROADCAST subroutine (Section 2.3), the 

spanning-tree-edges from the queue can be accessed by all processors in a binary 

tree-like pipelined fashion. Consequently, the construction of adjacency lists require a 
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total of O [(n - 2) + log p + n] time. Thus, the overall asymptotic time complexity 

of the algorithm for computing fundamental cycles is improved to 

mn 
TP = 0 ( - ) + 0 (n log p) 

p 

O(p) The modified speedup is SP = ___ ____,;...:......;. __ _ 
0 (1) + 0 ( p log p ) 

m 

(4.4) 

Therefore, the asymptotic optimal number of processors is given by the inequality 

p log p ~ m and the corresponding time is TP = O ( mn ). 
p 

Theorem 4.3: The modified implementation of the PARALLEL_FCS-algorithm 

satisfies p (Tp )2 ~ 8 (mn 2 log m ), and the lower bound is attained for 

m 
P = e < -- ). 

log m 

Proof- Starting with TP ~ mn + n log p, when we ignore the multiplicative con
p 

stants in the order notation, the proof is simple. □ 

It is to be noted that the modified implementation of the preceding algorithm 

has better performance because of its lower value of p (Tp )2 and because it is 

m 
optimally adaptive up to a larger number (namely, p ~ -- ) of processors com

log m 

pared to the earlier version. It is the modified time complexity of the co-tree genera-

tion which will be used to analyze the bridge-finding algorithm in the next section. 
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4.4 Finding Bridges 

We assume a connected graph G for this section also. The algorithm 

PARALLEL_BRIDGE, outlined below, is a parallelization of Comeil's (1971) 

sequential algorithm to identify the bridges in a connected graph G . It utilizes the 

fact that a bridge must belong to every spanning tree of G . Corneil' s algorithm first 

forms a spanning tree and the corresponding co-tree of G. Then it collapses into 

supervertices all the vertices of the spanning tree belonging to a particular component 

of the co-tree. An edge in the resulting graph (which might have parallel edges) is a 

bridge if and only if it was a bridge in G (Corneil 1971). For illustration, consider a 

connected subgraph (Figure 4.1) of the graph in Figure 3.1. The edge e 13 = (v 10, v 12) 

is a bridge. A spanning tree for this graph and the corresponding co-tree are shown 

in Figure 4.2. The vertices v 3, v 10, and v 11 are collapsed together in the spanning 

tree; so are the vertices v 13 and v 14. This results in a graph shown in Figure 4.3, 

which also has the edge e 13 as a bridge. 

For the implementation of the algorithm PARALLEL _BRIDGE, we use a bit 

vector IDENTITY of size m , which is initialized to all zeros and stored in the shared 

memory. When an edge e is detected as a bridge, IDENTITY[e] is set to 1. The 

algorithm is formally presented in the following. 
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1 11 12 

3 10 13 14 

Figure 4.1. A Graph With a Bridge. 

1 11 12 1 11 12 

• 

• • 
3 10 13 14 3 10 13 14 

Figure 4.2. (a) A Spanning Tree. (b) The Corresponding Co-tree. 

1 12 

{3, 10, 11) {13, 14) 

Figure 4.3. The Resulting Graph With Collapsed Vertices. 



procedure PARALLEL BRIDGE; 

begin 

PARALLEL_ FOREST; (* find a spanning tree T *) 

construct the co-tree CT of G ; 

PARALLEL_ CONNECT; (* find the connected components of CT *) 

construct a new graph H = (V H , EH) such that 

V H = { (i I i is a connected component of CT } 

EH = { (i, j) I ( y , z) is an edge of T, y e component i 

and z e component j of CT } ; 

for all e e EH do 

end. 

parbegin 

if H - { e } is connected then e is not a bridge 

else IDENTITY[e] := 1; 

parend; 

4.4.1 Time Complexity 
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As shown in the (modified) asymptotic analysis of the algorithm 

P ARALLEL_FCS, a spanning tree and its co-tree are formed in O ( m + n) 
p 

+ 0 (n log p) + 0 ( m + n ) + 0 (n + log p) time, using a binary-tree like pipelin
p 

ing. The connected components of CT are computed in O ( .!!!:.. + n) + 0 (n log p ) 
p 

time. The new graph H is constructed sequentially -in O (n) time, since the number of 

components in the co-tree CT is no more than n - 1, and IEH I = n - 1. In the par

begin . . . parend loop, each processor examines the connectivity of H - { e } in 

0 (n) time. Since each processor handles r n ; l l edges, the total required time is 
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2 
0 ( .!!:._ ). The overall asymptotic time complexity of the algorithm 

p 

PARALLEL_ BRIDGE is given by 

m n2 
yBRI = 0 ( - ) + 0 (n log p) + 0 ( - ) . 

p p p 

The best-known sequential algorithm computes the bridges in rfRI = 0 (m + n) time 

(Tarjan 1974). Therefore, the speedup of the algorithm PARALLEL_BRIDGE is 

sBRI = 
p 

0( p) 

0 (1) + 0 ( np log P ) + 0 ( !i:_ ) 
m m 

For dense graphs, with m = 0 (n 2 ), an asymptotic optimal number of processors is 

given by the inequality p log p ~ 0 (n ) 

2 
TP = 0 ( .!!:._ ), and the speedup is optimal. 

p 

which yields 
n 

P = e < -1- ), 
og n 

Theorem 4 .4: For the PARALLEL_ BRIDGE-algorithm, p (Tp )2 = Q (n 3 log n ); and . 

the lower bound is achieved when p = e ( _n_ ). 
log n 

2 
Proof· Starting with TP ~ !!:.._ + n log p , and approaching along the same line as 

p 

Theorem 3.1, the proof is straightforward. □ 
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4.4.2 Remark 

Another possible algorithm for finding the bridges could utilize the property that 

a bridge must not belong to any fundamental cycle. Thus, if all the edges in a funda

mental cycle set are removed from a graph, the remaining edges are the bridges. 

However, this approach has worse complexity for dense as well as sparse graphs in 

comparison to the bridge-finding algorithm we have presented. 

4.5 Determining Bipartiteness 

The algorithm PARALLEL BIPARTITE determines whether an undirected 

graph G is bipartite. It first selects a spanning forest F of G, by applying the algo

rithm PARALLEL_FOREST, whose output is a list of forest-edges along with the 

array ROOT[l .. n ], which gives the roots of the trees in the forest. Recall that the 

smallest-indexed vertex in a tree is its root. For each rooted tree, the algorithm com

putes the depths of its vertices by a breadth-first search. We use an array DEPTH of 

size n, where DEPTH[i] stores the depth of the vertex vi from the root of the tree to 

which it belongs. Designate a vertex to be in the subset V 1 if its depth is even, and 

in V 2 if its depth is odd. Now, the graph G is bipartite if and only if the depths 

assigned to the end-vertices of every edge of G is of different parity. In the follow

ing algorithm, each processor verifies this condition for a subset of edges assigned to 

it. (Similar approach has been taken by Miller and Stout (1987a) on the Pyramid 

machine.) We use a bit vector PARITY of size m, which is initialized to all 1 's and 



79 

stored in the shared memory. When an edge e has the same parity for the depths of 

its two end-vertices, then PARITY[e] is set to 0. Thereafter, log n steps of commun

ication are required to collect the final result at processor P 1. Formally, the algorithm 

is described below. 

procedure PARALLEL BIPARTITE; 

begin 

PARALLEL _FOREST; (* compute a spanning forest F *) 

for all tree t e F do 

parbegin 

determine the depth of each vertex in t from its root 

and store the depths into the array DEPTH; 

parend; 

for all e e Ee do 

parbegin 

if both end-vertices of e have either even or odd depths 

then PARITY[e] := O; 

parend; 

if any of the PARITY bits is O then G is not bipartite 

else G is bipartite; 

end. 

4.5.1 Time Complexity 

Computing array DEPTH requires no more than O [(n - 1) + n] time. To avoid 

having to make concurrent reading of this array in the next stage, all processors copy 

it in a binary-tree pipelined fashion in O [(n - 1) + log p] time. The generation of 

the PARITY bit-vector for the edges and checking bipartiteness are performed in 
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m 
parallel in O ( - ) + log p time. Therefore, the asymptotic time required by 

p 

PARALLEL BIPARTITE is 

TBIP ~ 0 ( m + n) + 0 (n log p) + 0 (n) + 0 (n + log p) + 0 ( m ) + log p 
p p p 

m ::: 0 ( - ) + 0 (n log p ) . 
p 

Using depth-first search, a sequential algorithm for checking the bipartiteness of a 

graph achieves the lower bound of Tf1P = 0 ( m + n) time (Reingold et al. 1977); 

therefore the asymptotic speedup of our parallel algorithm is 

sBIP = 
p 

O(p) 

0 ( 1) + 0 ( np log p ) 
m 

For optimality of SP we derive the condition p log p ~ !!!:_ , which is satisfied by 
n 

min choosing p ~ ---- . We state the following theorem which can be proved 
log (min) 

along the same line as Theorem 3 .1. 

Theorem 4.5: The algorithm PARALLEL BIPARTITE satisfies p (Tp )2 

m = Q (mn log - ). 
n 
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4.6 Discussion 

We have presented efficient parallel algorithms for finding a fundamental cycle 

set and the bridges of a connected graph and for determining bipartiteness of a graph. 

The divide-and-conquer-based parallel algorithms for a spanning forest and the con

nected components presented in Chapter 3 have been used as subroutines to design 

these algorithms. Except the one for finding bridges (which is efficient for dense 

graphs only), the algorithms achieve optimal speedups for graphs of varying densi

ties. The modified implementation of the fundamental-cycle-set algorithm has better 

performance. The optimal number of processors and hence the optimal granularity 

for each algorithm are found to be functions of the number of vertices and edges in 

the graph. A simple data structure, namely an unordered list of edges, has been used. 

The working data structures require optimal space. Although the algorithms 

presented in this chapter have been designed for shared memory computers, the use 

of large grain-size promises their efficient implementation (with less communication . 

cost) on fixed connection computers as well, such as a hypercube (Das, Deo, and 

Prasad 1988b). 



CHAPTER 5 

THE ASSIGNMENT PROBLEM 

The assignment problem is an important combinatorial optimization problem, 

which finds a minimum-cost (or maximum-profit) assignment of n workers to n jobs 

in a one-to-one fashion, given that assigning a worker Wi to a job 11 is associated 

with a nonnegative cost (or profit), ciJ. In this chapter, we present two parallel algo

rithms for solving an n x n assignment problem on an EREW PRAM model. The 

performance analysis reveals that each of the proposed algorithms achieves optimal 

speedup for dense graphs, and is optimally scalable up to a certain number of proces

sors. A lower bound on the processor-(time)2 product for each algorithm is also 

derived. 

In Section 5.1, we present a formulation of the problem. Section 5.2 describes a 

3 

parallelization of the Hungarian method. This algorithm runs in O ( !!:.._ + n 2 log p ) 
p 

time and achieves optimal speedup using 1 S p S -
1 

n processors. The second 
og n 

algorithm, based on a variation of dynamic programming strategy, has been sketched 

in Section 5.3. This algorithm is designed by finding a min-cost flow in an appropri-

3 
ate network in O ( .!!_ + pn) time, and is optimal for 1 Sp S n. Section 5.4 con

p 

eludes the chapter. 

82 



83 

5.1 Background 

In order to build a mathematical model, for 1 ~ i ~ n and 1 ~ j ~ n , define the 

variables 

X·. = { 1, if Wi is assigned Jj 

l] 

0, otherwise 

Formally, the minimum-cost assignment problem is defined as: 

n n 
Minimize ~ ~ c x ,LJ ,LJ ij ij subject to 

i=lj=l 

n n 
L xij = l, for 1 ~ i ~ n, and 

j = 1 
L xij = l, for 1 ~ j ~ n . 

i = 1 

This problem is also known as the minimum-weight matching in a complete bipartite 

graph of 2n vertices, where each of the two subsets of the vertex-set contains n ver

tices. (A matching in a graph G = (VG, EG) is a subset of edges, no two of which 

have a common end-vertex. Given nonnegative weights to the edges in EG, the 

minimum-weight matching problem is to find a matching that minimizes the sum of 

the weights on matched edges.) 

The assignment problem can be solved by the Hungarian method (Papadimitriou 

and Steiglitz 1982) or by finding a min-cost flow in an appropriate network (Lawler 

1976) -- each requiring O(n 3 ) time with cost matrix, CM= [cij]n x n , as the data 

structure. The best-known sequential implementation of an algorithm in the second 
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class uses Fibonacci heap as the data structure, and has time complexity 

O (mn + n 2 log n) for a 2n -vertex bipartite graph of m edges (Fredman and Tatjan 

1985). Though sequentially faster on sparse graphs, this algorithm does not appear to 

be easily parallelizable. We observe that the Hungarian and the min-cost flow algo

rithms, with cost matrix as input stored in the shared memory, have potential parallel

ism and are efficient for dense graphs. In comparison with many other polynomial

time-solvable graph problems (Das and Deo 1988; Quinn and Deo 1984), virtually no 

attempt has been made to design deterministic parallel algorithms for the assignJ?lent 

problem. Fast parallel, randomized algorithms for a special case of this problem are 

reported by Galil (1986). Only recently, Pawagi (1987) has developed a divide-and

conquer-based algorithm to compute a maximum-weight matching in an n -vertex tree 

(represented by the adjacency list of its vertices), requiring O (log2 n) time with 

0 (n) processors on a CREW PRAM model. 

5.2 Parallel Hungarian Algorithm 

A solution to the assignment problem is to select n elements in the cost matrix 

CM such that there is exactly one element in each row, and exactly one element in 

each column. A set of zeros satisfying these two requirements must yield an optimal 

solution because all costs are nonnegative. The Hungarian method appropriately 

transforms the cost matrix to produce a desired set of zeros without altering the set of 

optimal solutions to the original problem. 



procedure PARALLEL HUNGARIAN; 

(* Input: An n x n matrix CM = [cij] of nonnegative integers *) 

(* Output: An optimal assignment in an array MATCH *) 

begin 

Step0: make a copy CC of the cost matrix CM; 

Step 1 : for all i , 1 ~ i ~ p , do 

parbegin 
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(* for each row in CM subtract the smallest entry in the row from every 

entry in it *) 

for each r, ( i - 1) r; l + 1 s; r s; i r; l do 

begin 

ZROW [r] := O; CROW [r] := O; 

for each j , 1 ~ j ~ n , do 

find jm := j such that CM [r , j] is minimum; 

for each j, 1 ~ j ~ n , do 

begin 

CM [r, j] := CM [r, j] - CM [r, jm]; 

if CM[r, j] = 0 then ZROW[r] := ZROW[r] + 1; 

end 

end; 

parend; 

Step2: for all j_ 1 ~ j ~ p , do 

parbegin 

(* for each column with all positive entries subtract the smallest entry in 

the column from every entry in it *) 

for each s , ( j - I) r; l + 1 s; s s; j r; l , do 

begin 

ZCOL [s] := O; RCOL [s] := O; 

for each i , 1 ~ i ~ n , do 

find im := i such that CM [i, s] is minimum; 



if CM[im, s] > 0 then 

for each i , 1 ~ i ~ n , do 

CM[i, s] := CM[i, s] - CM[im, s]; 

for each i , 1 ~ i ~ n , do 

if CM[i, s] = 0 then ZCOL[s] := ZCOL[s] + 1; 

end; 

parend; 

Step3: for all i, 1 ~ i ~ n, do MATCH[i] := 0; N := 0; 

while there exist active rows and/or columns do 
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(* repeat until each zero has at least one vertical/horizontal line through it *) 

begin 

for all r , 1 ~ r ~ n , do 

find rm := r such that r is an active row and ZROW[r] is minimum; 

for all s , 1 ~ s ~ n , do 

find sm := s such thats is an active column and ZCOL [s] is 

minimum; 

if ZROW[rm] ~ ZCOL[sm] then 

(* row rm has the least number of zeros *) 

begin 

(* the first active column containing a zero in row rm is made inac

tive, and a vertical line is drawn through it *) · 

for all j , 1 ~ j ~ n , do 

CROW [rm] := smallest active column-index j such that 

CM[rm, j] = 0; 

N := N + 1; MATCH [rm] := CROW [rm]; 

ZCOL[CROW[rm]] := 0; RCOL[CROW[rm]] := 0; 

for all r , 1 ~ r ~ n , do 

end 

if (ZROW [r] > 0) and ( CM [r, CROW [rm]] = 0) then 

ZROW[r] := ZROW[r] - 1; ZROW[rm] := O; 

else (* column sm has the least number of zeros *) 

begin 

(* the first active row containing a zero in column sm is made 



inactive, and a horizontal line is drawn through it *) 

for all i , 1 ~ i ~ n , do 
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RCOL [sm] := smallest active row-index i such that 

CM[i, sm] = O; 

N := N + 1; MATCH [RCOL [sm]] := sm; 

ZROW [RCOL [sm]] := 0; CROW [RCOL [sm]] := 0; 

for all s , 1 ~ s ~ n , do 

if (ZCOL [s] > 0) and (CM [RCOL [sm ], s] = 0) then 

ZCOL [s] := ZCOL [s] - 1; ZCOL [sm] := O; 

end; 

end; (* while *) 

Step4: if N = n then (* a feasible solution of all zero entries is found *) 

the array MATCH contains an optimal assignment, compute optimal cost 

from the matrix CC , and exit 

else (* N < n , an optimal set of zeros not yet found *) 

begin 

for all i , 1 ~ i ~ p , do 

parbegin 

for each r, (i - l)r ;l + 1,;, r,;, ir ;l do 

if CROW [r] > 0 then 

for each j , 1 ~ j ~ n , do 

begin 

parend; 

find jm := j such that RCOL [ j] > 0 and CM [r, j] is 

minimum; 

ROWMIN [r] := CM [r, jm ]; 

end 

find the global minimum GLOMIN among those in array ROWMIN; 

(* GLOMIN is the minimum entry with no line through it in the 

transformed cost matrix *) 

for all i and j , 1 ~ i , j ~ n , do 

parbegin 



end. 

(* subtract GLOMIN from each entry with no lines through it *) 

if (CROW [i] > 0) and (RCOL [ j] > 0) then 

CM[i, j] := CM[i, j] - GLOMIN; 
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(* add GLO MIN to each entry with both horizontal and vertical lines 

through it *) 

if (CROW [i] = 0) and (RCOL [ j] = 0) then 

CM[i, j] := CM[i, j] + GLOMIN; 

parend; 

(* activate all rows and columns *) 

for all r, 1 $; r $; n, do compute ZROW[r]; 

for alls, 1 $; s $; n, do compute ZCOL [s ]; 

go to Step3; 

end; 

5.2.1 An Example 

Let us illustrate the algorithm PARALLEL HUNGARIAN by finding a 

minimum-cost assignment for matrix CM of order 5 x 5. Instead of overwriting on 

CM itself, for simplicity the matrices obtained after different steps of the algorithm 

will be given different names. 

5 7 5 1 6 (1) 

3 9 11 12 7 (3) 

CM= 4 10 2 5 8 (2) 

7 12 3 9 8 (3) 

3 4 9 1 5 (1) 

In Stepl we subtract the minimum entry in each row (shown in parentheses on the 
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right) from that row, which produces the matrix CM 1. We count the number of 

zeros in each row. Applying Step2, only 2nd and 5th columns are found to have all 

positive entries. Their minimum entries are shown in parentheses at the bottom of 

CM 1• Subtracting them from corresponding columns generates the matrix CM 2. The 

number of zeros in each column is also counted. 

I 

4 6 4 0 
I $ 5 4 3 4 1 

0 6 8 9 4 (t -3- - ·t--i- -0 
I 

I 
CM 1 = 2 8 0 3 6 CM2 = 2 5 $ 3 2 

' 4 9 0 6 5 4 6 ~ 6 1 
I I 

2 3 8 0 4 -i--@--s- -tt - ir 
I I 
I 

(3) (4) 

The minimum possible ~umber of lines are drawn in Step3 in order to cross out all 

the zeros in CM 2• The zeros selected to draw these lines are enclosed in circles. The 

contents of arrays ZROW, CROW, ZCOL, and RCOL after different iterations in the 

while loop of Step3 (so long as an active row or column exists), are shown in Table 

5.1. We see that only four lines are used, which is less than the order (i.e., five) of 

the matrix. Therefore the else part of Step4 is executed - first finding 1 as the 

minimum uncrossed entry in CM 2 , then subtracting 1 from all uncrossed entries and 

adding it to all doubly crossed entries. Next, all rows and columns are activated by 

recomputing arrays ZROW and ZCOL. The newly-transformed matrix is CM 3• 



' I I I 

CM 3 = 

i 4 J @ 

~ 
I I I 

(D J ~ 10 
I I 

~ 4 ® ~ 
~ $ ~ ¾ 
I I I 

T ~ t 
I 

1 
I 
I 

I 
(i) 
I 

¢ 
I 
1 
I 

® 
I 

(!) 
I 
I 
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Repeating Step3 we now need exactly five lines to cross out all the zeros. Once again 

a snapshot of the contents in ZROW, CROW, ZCOL, and RCOL in various iterations 

is provided in Table 5.2. The zeros within circles in CM 3 correspond to an optimal 

solution (out of possibly several), and is given by the array MATCH. 

1 2 3 4 5 

MATCH= I 4 I I I 3 I 5 I 2 I 

This implies x 14 = x 21 = x 33 = x 45 = x 52 = 1, while all other xii 's are zeros. Hence a . 

minimum-cost assignment is given by the worker-job pairs: { (1, 4), (2, 1), (3, 3), (4, 

5), (5, 2)}, as shown in Figure 5.1; its cost is calculated with the help of the original 

matrix CM as: 2 + 8 + 1 + 3 + 4 = 18. As expected, the minimum cost is equal to 

the total amount subtracted from the original matrix in Step 1 and Step2, plus the 1 

subtracted in Step4. 
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Figure 5.1. An Optimal Assignment for Matrix CM. 
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TABLE 5.1. EXECUTION SNAPSHOTS ON MATRIX CM2 

(ZROW[r], CROW[r]) (ZCOL [s ], RCOL [s]) 

rands ➔ 1 2 3 4 5 1 2 3 4 5 

Initially (1, 4) (2, 1) (1, 3) (1, 3) (3, 2) (1, 2) (1, 5) (2, 3) (2, 1) (2, 2) 

After choosing (0, 4) (2, 1) (1, 3) (1, 3) (2, 2) (1, 2) (1, 5) (2, 3) (0, 0) (2, 2) 
edge (1, 4) 

After choosing (0, 4) (2, 1) (0, 3) (0, 3) (2, 2) (1, 2) (1, 5) (0, 0) (0, 0) (2, 2) 
edge (3, 3) 

After choosing (0, 4) (0, 0) (0, 3) (0, 3) (2, 2) (0, 2) (1, 5) (0, 0) (0, 0) (1, 5) 
edge (2, 1) 

After choosing (0, 4) (0, 0) (0, 3) (0, 3) (0, 0) (0, 2) (0, 5) (0, 0) (0, 0) (0, 5) 
edge (5, 2) 

TABLE 5.2. EXECUTION SNAPSHOTS ON MATRIX CM3 

(ZROW[r], CROW[r]) (ZCOL[s], RCOL[~]) 

rands ➔ 1 2 3 4 5 1 2 3 4 5 

Initially (2, 4) (2, 1) (1, 3) (2, 3) (2, 2) (1, 2) (1, 5) (2, 3) (1, 1) (4, 1) 

After choosing (2, 4) (2, 1) (0, 3) (1, 5) (2, 2) (1, 2) (1, 5) (0, 0) (1, 1) (4, 1) 
edge (3, 3) 

After choosing (1, 4) (1, 1) (0, 3) (0, 5) (1, 2) (1, 2) (1, 5) (0, 0) (1, 1) (0, 0) 
edge (4, 5) 

After choosing (0, 4) (1, 1) (0, 3) (0, 5) (1, 2) (1, 2) (1, 5) (0, 0) (0, 0) (0, 0) 
edge (1, 4) 

After choosing (0, 4) (0, 1) (0, 3) (0, 5) (1, 2) . (0, 0) (1, 5) (0, 0) (0, 0) (0, 0) 
edge (2, 1) 

After choosing 
edge (5, 2) 

(0, 4) (0, 1) (0, 3) (0, 5) (0, 2) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 
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5.2.2 Complexity Analysis 

We analyze the total parallel time TP required by the preceding algorithm, 

applying the known result that the minimum of n elements can be found in 

r; l + log p time using p processors on the EREW PRAM model (Section 2.4. l ). 

StepO and Step 1, respectively, can be performed in nf; l and (3n + 2)r; l time. 

Time taken by Step2 is less than or equal to the time required by Stepl. The if ••• 

then or the else clause in the while loop of Step3 can be executed in at most 

(2r; l + log p + 4) time. Since the while loop has no more than n iterations, Step3 

requires n ( 5 r; l + 3 log p + 5) time in the worst case. Step4 talces 

(6nf; l + r; l + log p) time in the worst case. It is easy to see that the number of 

iterations involving Step3 and Step4 is at most n. Therefore, the total computation. 

time, with p processors, is 

For large n ' r; l == ; and, therefore, in the worst case, 

lln3 8n 2 4n 
T == -- + -- + 3n 2 log p + 5n 2 + n log p + - . 

p p p p 
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Thus, the following theorem. 

3 
Theorem 5 .1: An n x n assignment problem can be solved in O ( .!!:_ + n 2 log p ) 

p 

time, with p processors on an EREW PRAM model, for 1 ::;; p ::;; n. □ 

In the following we compute a lower bound on p (Tp )2 complexity and the 

optimal number of processors to be used. The measure p (Tp )2 achieves a minimum 

a( P (Tp)2) aTP 
when ap = 0, which, in our case, yields TP + 2p ap = 0. Substituting 

aT 
the values for TP and a: we get, after some simplification, 

1 11 2 4 
p log p [3 + - + -- + --- ] = lln + 8 + - . 

n log p n log p n 

lln 
For large values of n and p, this may be simplified as p log p ::: -

3
- , i.e., 

n p = 0 ( -
1
-- ). Therefore the algorithm PARALLEL HUNGARIAN achieves 
og n 

optimal speedup using p processors, in the range 1 ::;; p ::;; 
log n 

n 

Theorem 5 .2: For the PARALLEL_ HUNGARIAN algorithm, p (Tp )2 ~ 0 (n 5 log n) 

and the equality holds when p = e ( _n_ ). 
log n 

Proof· For large p and n, and ignoring the multiplicative constants, we can write 

n3 
TP ~ - + n 2 log p , and therefore 

p 



n6 
p (Tp)2 ~ - + 2n 5 log p + pn 4 log2 p 

p 

We consider the following three cases to complete the proof. 

(i) When p = 0 ( -
1 

n ), we get p(Tp)2 = 0 (n 5 log n); 
og n 
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(5.1) 

(ii) When p < e ( -
1 

n ), the first term on the right hand side of Expression (5.1) 
og n 

n6 
is - > 0 (n 5 log n); and 

p 

(iii) When p > e ( _n_ ), the last term on the right hand side of (5.1) is 
log n 

pn 4 log2 p > e (n 5 log n) because log2 p > ( log ( _n_) )2 ~ 0 ( log2 n). 
log n 

Hence the claim that 0 (n 5 log n) is a lower bound on the product p (Tp )2, 

n 
which is achieved with 0 ( -

1
-- ) processors. □ 
og n 

5.3 Parallel Min-Cost Flow Algorithm 

An n x n assignment problem can be reduced to a min-cost flow problem in a 

(2n + 2)-vertex network as shown in Figure 5.2, and can be solved with exactly n 

flow augmentations (Lawler 1976). A flow network is a directed graph with a source 

(no edges going into it) and a sink (no edges going out of it); each directed edge has 

a capacity and a cost per unit flow. The min-cost flow problem finds a flow pattern in 

a given network that minimizes total cost. Syslo, Deo, and Kowalik (1983) may be 

consulted for more formal definitions. 
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Stage 1 Stage 2 Stage .3 Stage 4 

.. , CM11' 

1, 0 

oo, CMIUI, 

Figure 5.2. Flow Network for the Assignment Problem. 

In Figure 5.2, the vertices SO and SI represent, respectively, the source and the 

sink. The first element on each arc (or directed edge) denotes its capacity and the 

second, its cost. The job-indices (as depicted in Stage 3 of Figure 5.2) have been 

primed in order to distinguish from the worker-indices in Stage 2. Each flow aug

mentation in this network is carried out along a shortest path from the source to the 

sink, followed by the creation of back edges and modification of the network. For a 

detailed description of a sequential algorithm (due to Busacker and Gowen) for solv

ing the min-cost flow problem, refer to Syslo et al. (1983). On the EREW PRAM 

model, a parallel implementation of Dijkstra's shortest path algorithm requires 
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2 
0 ( .!!:.._ + n log p ) time (Paige and Kruskal 1985). This leads to a parallel algorithm 

p 

for the assignment problem having the same performance as achieved by the 

PARALLEL_ HUNGARIAN algorithm. 

Alternately, exploiting the fact that the flow-network and its modifications have 

arcs only between adjacent stages, we parallelize a variation of a dynamic program

ming algorithm to find shortest paths. For each vertex (also called state), a return is 

defined as its shortest distance from the source. Let Fq [i] be the return of vertex i 

when the system is at stage q, 1 s; q s; 4. The working data structures for the parallel 

algorithm consist of a variable F 4[S/] which contains the shortest distance from 

source to sink, and four linear arrays - F2, F3, DSO, and DSI - each of size n. 

Arrays F 2 and F 3 store the returns of the vertices in Stages 2 and 3, respectively. 

Initially DSO and DSI contain all zeros. The condition DSO [i] = 0 implies that 

there exists an arc < SO , i > with unit capacity and zero cost, while DSO [i] = 00 

means the arc <SO, i> is saturated (i.e., no longer exists) and an arc < i, SO> is 

created having unit capacity and zero cost. Similarly, DSI[ j'] = 00 implies that 

< j', SI> is saturated and there is an arc <SI, j' > with unit capacity and zero cost, 

while DSI[ j'] = 0 indicates the existence of the arc < j', SI>. We also use an 

n x n matrix D to represent the costs of infinite-capacity arcs between Stages 2 and 

3. The (ij' fh element of this matrix is a two-tuple: ( D [i, j' ], D [ j ', i] ). Initially, 

D [i, j' ] := CM [i, j' ], the cost of assigning the worker Wi to the job Jj' , and 

D [ j ', i] := oo signifying that the arc < j ', i > is absent. When an arc < i, j' > is 
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included in a shortest path, we assign D [ j ', i ] := - D [ i , j ' ] as the cost of the new 

arc< j', i>. Since only one unit of flow is augmented in each iteration, this new arc 

has unit capacity. On the other hand, if < j ', i > is an arc in a shortest path, we 

assign D [ j ', i] := 00• At termination of the min-cost flow algorithm, the arcs 

< i, j' > with D [ j ', i] < 0 correspond to an optimal solution to the assignment 

problem. Assuming that the rettµn of the source F 1 [SO] := 0, the returns of other 

vertices are computed by the following procedure. 

procedure SHORTEST DISTANCE; 
- .i. 

begin 

for all i, 1:::;; i :::;; n, do F2[i] := DSO [i]; (* Step 1 *) 

for all j', 1':::;; j':::;; n', do 

F 3 [ j ' ] := min { F 2[i ] + D [ i , j' ] I 1 :::;; i :::;; n } ; (* Step 2 *) 

for all i , 1 :::;; i :::;; n , do 

F 2 [ i ] := min { F 2[ i ] , min { F 3 [ j' ] + D [ j ', i ] I 1' :::;; j ' :::;; n '} } ; (* Step 3 *) 

for all j', 1':::;; j':::;; n', do 

F 3 [ j' ] := min { F 3 [ j' ] , min { F 2[ i] + D [ i , j' ] I 1 ~ i :::;; n } } ; (* Step 4 *) 

F 4[SI] := min {F3[ j'] + DSI[ j'] I 1':::;; j':::;; n '}; (* Step 5 *) 

end. 

Theorem 5.3: Prior to each flow-augmentation, the al orithm 

SHORTEST_DISTANCE correctly computes the shortest distance from the source to 

the sink. 

roof: Let u ' be a vertex in Stage 3 satisfying minimum F 3[u'] for 1' ::;; u' :::;; n ', as 
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computed by Step 5 of the algorithm, and the arc < u ', SI> is in a shortest path. 

Also, let CM [ Y, u' ] S CM [i , u' ] for 1 S i s n , and F 2[ y] := O where y is a ver

tex in Stage 2. Then the output of Step 2 is F 3[u'] := CM [ y, u' ]. 

I, 0 

/ 

,,,. 1, 0 

\ 

I 

\ 1, - CMrv, 
I 

Figure 5.3. Proof of Correctness of the Algorithm SHORTEST_DISTANCE. 

Assume the existence of vertices z and v' in Stages 2 and 3, respectively, such 

that D [v', z] := -D [z, v'] := - CM[z, v'] and F3[v'] := CM[ y, v' ]. Since 

< v ', z> is a back edge with unit capacity, the back edges < z, SO> and < SI, v' > 

will be present, i.e., DSO [z] := DSI[v'] := 00• This is depicted in Figure 5.3. Now, 

if CM [ y, v' ] - CM [z, v' ] + CM [z, u' ] < CM [ y, u' ] then after the execution 

of Step 4 we get F 3[u' ] := CM [ y, v' ] - CM [z, v' ] + CM [z, u' ]. Therefore, 
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F 3[u' ] := min { CM [ y, u' ], CM [ y, v' ] - CM [z, v' ] + CM [z, u' ] }, 

over all triplets y, v', and z such that 1 ~ y, z ~ n, 1' ~ v' '# u' ~ n', and< v', z> 

is a back edge with D [v', z] < 0. □ 

As a corollary to Theorem 5.3, note that a shortest path from a vertex in Stage 2 

to a vertex in Stage 3 (in Figure 5.2) consists of either a single arc or three arcs, one 

of which is a back edge. Backtracking the returns and costs, a shortest path (out of 

possibly many) can be computed as follows: 

procedure SHORTEST_PATH; 

begin 

for all j', 1' ~ j' ~ n', do 

jl := min { j' I F4[Sl]-F3[j'] = O}; 

for all i , 1 ~ i ~ n , do 

i1 := min { i I F3[jl]-F2[i]-D[i,jl] =0}; 

for all j', 1' ~ j' ~ n', do 

j2 := min { j' I F2[il] -F3[j'] +D[il,j'] =0}; 

if j 2 '# j 1 then 

begin 

for all i , l ~ i ~ n , do 

i2 := min { i I F3[ j2] - F2[i] - D [i, j2] = O; 

the shortest path is given by (SO, i 2, j2, i 1, j 1, SI); 

D [ j2, i2] := - D [i2, j2]; D [ j2, il] := 00; 

D [ j 1, il] := - D [i 1, j 1]; DSO [i2] := oo; DSI[ j 1] := 00; 

end 



else 

begin 

the shortest path is given by (SO , i 1, j 1, SI); 

D [ j 1, i 1] := - D [i 1, j 1]; DSO [i 1] := oo; DSI [ j 1] := oo; 

end; 

end. 

5.3.1 Time Complexity 
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The computation progresses stage-by-stage, allocating one processor to each ver-

tex in a stage. Each of Step 1 and Step 5 of the algorithm SHORTEST_DISTANCE 

performs without memory read- or write-conflicts, and requires f; l time. However, 

a straightforward implementation of other steps gives rise to the concurrent reading 

of a memory cell; this is avoided by pipelining the operations of different processors 

which can be performed in f; l ( n + p - 1) time. In the worst case, a shortest path 

can be found from algorithm SHORTEST_PATH in 4 (f; l + log p) + 5 time 

without any memory conflict. Therefore, the total parallel time TP required by n flow 

augmentations is given by, 

TP = n [ 3 f; l (n + p + 1) + 4 log p + 5] 

~ n [ 3 ( !!:... + 1) (n + p + 1) + 4 log p + 5 ] 
p 

n3 
= 0( - + pn). 

p 
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Theorem 5 .4: The parallel min-cost flow algorithm corresponding to an assignment 

problem attains the optimal speedup for p = 0 (n ), and it satisfies 

. ac P crp )2 ) 9 16 4 1 
Proof: Letnng dp = 0 we get, p [ 6 + J!_ + - + og P ] = 3n + 3. 

n n n 

Hence the optimal speedup is achieved when p = 0 ( n ). Following the reasoning 

used in the proof of Theorem 5.2, we can show that the product p (Tp )2 attains the 

asymptotic lower bound of 0 (n 5 ) for p = 0 (n ). □ 

Since finding all ordered pairs < i, j' > with negative D [ j ', i] values requires 

n r; l time, the parallel algorithm for the assignment problem exhibits the same 

asymptotic performance as stated in Theorem 5.4. 

5.4 Discussion 

Two deterministic parallel algorithms have been presented to solve the assign

ment problem (i.e., to find a minimum-weight matching in a complete bipartite 

graph). For dense graphs, each algorithm is optimal when employing up to a certain 

number of processors (which is a function of the problem size). The algorithm, 

which solves the assignment problem by computing a min-cost flow, is more parallel

izable than the Hungarian method, because the former is optimally scalable up to a 

larger number of processors and has a lower value for the processor-(time)2 product 

than the latter. 



CHAPTER 6 

APPROXIMATE COLORING OF GRAPHS 

A variety of problems in production scheduling (Christofides 1975; Matula, 

Marble, and Isaacson 1972), construction of examination timetables (Syslo et al. 

1983; Welsh and Powell 1967), register allocation in compiler code generation and 

optimization (Chai tan et al. 1981) can be expressed as graph coloring problems. A 

vertex coloring of a graph G = (VG , EG) is an assignment of positive integers, the 

colors, to the vertices of G such that no two adjacent vertices are of the same color. 

Throughout this chapter, "coloring" will always mean vertex coloring. A k-coloring 

of G is a coloring of G with at most k colors. The smallest integer k for which G is 

k-colorable is called its chromatic number, x(G ). Since the determination of x(G )

coloring of a graph (even 3-coloring of a planar graph with maximum vertex-degree 

4) is an NP-complete problem (Garey and Johnson 1979), various approximate algo

rithms (sequential) have been proposed to produce k-coloring in polynomial time 

such that x(G) !::: k s n (Christofides 1975; Dutton and Brigham 1981; Matula et al. 

1972; Syslo et al. 1983). Another effort has been to develop polynomial-time 

sequential algorithms for coloring planar graphs using fixed number of colors. (Note 

that a planar graph can be exactly colored using S 4 colors.) Because of the availabil

ity of parallel computers, some effort has also gone into designing parallel algo

rithms. 

104 
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Though very recent work concentrates on parallel coloring of restricted graphs, 

relatively little attempt has been made in speeding up approximate algorithms for 

coloring general graphs by solving them on realistic parallel computers.* In this 

chapter, using an EREW PRAM model, we parallelize two known approximate 

graph-coloring algorithms, namely, the largest-degree-first (LF) algorithm originally 

proposed by Welsh and Powell (1967), and an algorithm (henceforth referred to as 

the DB algorithm) due to Dutton and Brigham (1981). 

For analyzing the performance of parallel approximate coloring algorithms, we 

compare the execution time of a given parallel algorithm with that of the correspond

ing sequential algorithm rather than considering the (possibly none) best sequential 

algorithm. The notion of "best" is not properly defined for approximate algorithms 

due to the fact that the algorithm which has the faster execution time, may not neces

sarily require the smaller number of colors and vice versa. Therefore, if AL is a 

sequential approximate algorithm which solves a problem in time T AL , and PAL is 

the corresponding parallel algorithm requiring TpAL time, then the speedup SpAL of 

the parallel approximate algorithm PAL using p processors will be defined as the 

ratio of T AL to TpAL. The definitions of efficiency and optimal speedup remain the 

same as used in Chapter 2. 

• In this context it is worth mentioning a strictly distributed algorithm from Shamir and Upfal (1984), which runs in 
O(max(d(n), log 11)) time for random graphs with mean degree d(n). The required number of colors is "almost surely" 

bounded by ~. 
logd(n) 
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Section 6.1 presents the literature survey. Sections 6.2 and 6.3, respectively, 

describe the implementation and complexity analysis of the parallel LF (PLF) and the 

parallel DB (PDB) algorithms. We deri~e bounds for the optimal number of proces

sors, and indicate the class of graphs for which these algorithms attain optimal 

speedup. The DB algorithm is found to be more easily parallelizable than the LF 

algorithm. Section 6.4 concludes the chapter. 

6.1 Previous Works 

Table 6.1 summarizes the salient results on parallel algorithms for vertex color

ing. As can be observed, except for the one due to Goldberg (1986), these fast algo

rithms deal with restricted classes of graphs, namely, planar, embedded planar, 

constant-degree, and so on. Diks (1986) has presented a parallel algorithm to color 

outerplanar graphs with minimum possible number (at most 3) of colors. Karloff's 

(1986) algorithm works only for Brooks graphs, for which maximum vertex-degree 

~ ~ 3 and the complete graph on ~ + 1 vertices is not a subgraph. This algorithm 

runs in poly-logarithmic time for such graphs with ~ = 0 (log0 <1)n ). Bauemoppel 

and Jung (1985) have considered a special ( A, µ)-type graphs, for A, µ ~ 1, which 

include fixed-degree, fixed-genus, planar, and outerplanar graphs. For example, planar 

graphs are of (4, 1)-type and can be colored with at most eight colors within 

0 (log2 n) depth on a uniform Boolean circuit of polynomial size. Goldberg (1986) 

has designed from scratch a new parallel approximate algorithm which bisects the 
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graph (by partitioning the vertex-set into two almost equal-sized subsets such that the 

number of edges cut is minimized), and recursively colors each of the subgraphs 

using disjoint sets of colors. The algorithm requires poly-logarithmic time using 

linear number of processors. 

TABLE 6.1. PARALLEL ALGORITIIMS FOR VERTEX COLORING 

CLASS OF UPPER MODEL TIME NO.OF RESEARQIBRS 
GRAPHS BOUND ON PROCESSORS 

COLORS 

Outerplanar 3 CRCW 0 (log n) O(n) Diks (1986) 

Planar 5 EREW 0 (log5 n) O(n3 ) Naor (1987) 

5 CRCW 0 (log3 n) polynomial Boyar & Karloff (1987) 
6 CRCW O(log n) O(n 4

) Diks (1986) 

7 CRCW 0 (log log• n) O(n) Goldberg et al. (1987) 
7 EREW O(1og2 n) O(n) Goldberg et al. (1987) 

Embedded planar 5 CRCW 0 (log log• n) O(n) Goldberg et al. (1987) 
5 CRCW 0 (log log• n) O(n) Boyar & Karloff (1987) 

Constant-degree 6+1 EREW O(log• n) O(n) Goldberg & Plotkin (1987) 
(Max degree = 6) 6+1 EREW O(6 log 6 O(n) Goldberg et al. (1987) 

(log• n + 6)) 

( A, µ)-type 24+ p.-2 Boolean O(log2 n) O(n0Cl) )' Bauerno ppel & Jung (1985) 
11., µ~ 1 circuit 

Max degree = 6 6+1 EREW O(log2 n) O(n2 m6) Luby (1986) 

4 CRCW poly-logarithmic polynomial Karchmer & Naor (1988) 
Brooks' Theorem 4~3 EREW 0 (min(4, ../n) O(n2 m4) Karloff (1986) 

1ogO0>n) 
~· 

Unrestricted ✓2m+¼ EREW O(log3 n) O(m + n) Goldberg (1986) 

1 
+-

2 
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6.2 The PLF Algorithm 

In the sequential LF algorithm (Matula et al. 1972; Syslo et al. 1983; Welsh and 

Powell 1967), the vertices are sorted by their degrees in a nonincreasing order (in 

case of a tie, the vertex with the larger index appears first). Such an ordering is 

called the largest-degree-first (LF)-ordering. Initially, the vertex with the largest 

degree is assigned color 1. At each iteration, an uncolored vertex from the sorted list 

is assigned the smallest possible color number. A linked adjacency list provides an 

efficient data structure for the sequential algorithm. 

In order that all the neighbors of a vertex vi, 1 ~ i ~ n, can be accessed simul

taneously in the parallel LF (PLF) algorithm, we use an adjacency list matrix first 

proposed by Eckstein and Alton (1977), consisting of an array VERTEXLIST of size 

n x L1 as the data structure, where L1 = max { d (i) I 1 ~ i ~ n } and d (i) is the degree 

of vertex vi. For each vertex vi, the first d (i) locations of the row VERTEXLIST[i] 

contain the neighbors (in any order) of vi and the remaining L1 - d (i) locations con

tain O's. The output is the number k of distinct colors needed to color the graph 

along with an array COLOR of size n which gives the colors assigned to the ver

tices. Initially, COLOR[i] = 0 for 1 ~ i ~ n. As working data structures, the PLF 

algorithm uses two arrays, DEGREE and SORT, each of size n. Entry DEGREE[i] 

is the degree of the vertex vi. The LP-ordering of the vertices is contained in the 

array SORT. We use another array, NEIGHBOR_ COLOR, of size n x L1 . For each 

uncolored vertex vi, the i th row of NEIGHBOR COLOR contains the information 
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regarding the colors of its neighbors. Initially, NEIGHBOR_ COLOR[i, j] = 0, for 

1 :::; i :::; n and 1 :::; j :::; d (i ). All these data structures are stored in the global shared 

memory. 

The PLF algorithm works in two phases. In the first phase with VER TEXLIST 

as the input, the algorithm computes the degree of each vertex; and sorts the vertices 

according to LF-ordering. In the second phase, colors are assigned to vertices in array 

SORT. When a vertex u is assigned a color c, we record that information (in paral

lel) for all of its neighbors. That is, NEIGHBOR_ COLOR[ v, c] is assigned 1 if 

(u, v) e EG. Thus, at any instant, the smallest possible color for vertex v 

corresponds to the first O entry in the v th row of NEIGHBOR_ COLOR. 

procedure PLF; 

begin 

for all i , 1 :::; i :::; p , do 

parbegin 

for each j, (i - 1) r; l + 1 ~ j ~ i r; l do 

begin 

COLOR [ j] := O; 

DEGREE [ j] := O; 

for each / , 1 :::; l :::; ~ , do 

if VERTEXLIST [ j, l] > 0 then DEGREE [ j] := DEGREE [}] + 1 

else go to 1; 

1: for each"(, 1 :::; 'Y:::; DEGREE [ j], do 

NEIGHBOR_ COLOR [ j, y] := O; 

end; 

parend; 

sort the vertices according to LF-ordering; 



k := O; (* k is an estimate of x( G ) *) 

for each i , 1 :::; i :::; n do 

begin 

for all j, 1 :::; j :::; DEGREE [SORT [i ]], do 

parbegin 
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find the smallest j, say c, such that NEIGHBOR_ COLOR [SORT 

[i], c] = 0. If no such j exists, then c := DEGREE [SORT [i]] + 1; 

end. 

parend; 

COLOR [SORT [i]] := c; 

if k < c then k := c ; 
for all j, 1 :::; j :::; DEGREE [SORT [i]], do 

parbegin 

end 

NEIGHBOR_COLOR [VERTEXLIST [SORT [i], j], c] := 1; 

parend; 

It is easy to show that the proposed implementation of the PLF algorithm per

forms correctly without memory read- or write-conflict, and it colors a graph exactly 

the way the sequential LF algorithm does. Also, the use of an elegant data structure 

(namely, adjacency list matrix) alleviates the inherent sequential nature of the linked 

adjacency list. 

6.2.1 Complexity Analysis 

Using p :::; n processors, we calculate the time required by the PLF algorithm. 

The parallel time Td to compute the degrees of the vertices is given by 

T _ max 
d -1:::;i:::;p 

i1~l 
{ ~ d(j)} 

j=(i-l)in/pl+l 
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where C 1 is a positive constant and Li is the maximum vertex-degree. The total ini

tialization time Ti ::;; r; l (~ + 1). Since the degree of a vertex is no more than 

n - 1, the LP-ordering is obtained in Ts = C 2 n time by sequential radix sorting. 

While coloring the vertex u ' we allocate r d ~) l vertices to each processor' which 

works on its portion of the array NEIGHBOR_ COLOR and finds the smallest index 

j such that NEIGHBOR_ COLOR [u, j] = 0. If no such j exists, it returns 

d (u) + 1. Then merging takes place in order to find the smallest integer, say c, 

among the indices obtained by individual processors. (There are log p merging itera

tions.) The vertex u is assigned the color c , which can be broadcasted to all proces

sors in log p time. Now, the assignment of 1 to NEIGHBOR_ COLOR [v, c ], where 

(u' V) E Ee' requires rd;) l time. The total time Tc for assigning colors is given 

by 

Tc = C3 L [ r d(u)l + log PJ + L [ rd(v)l + log PJ 
ueV . P veV P 

Therefore, the overall time complexity T PLF of the PLF algorithm is 
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= C ' 1 .!!:. ~ + n + C ' 2 n + C '3 m + C '4 n log p , for large n . 
p p p 

It is easy to show that the sequential LF algorithm requires T LF = 0 (m ) time. Then 

the speedup of the PLF algorithm is given by 

TLF 
SPLF = -T-- = 

PLF 

O(m) 

For optimal speedup, i.e., SPLF = 0 ( p) for large n and m, we derive two conditions 

n ~ :::: O(m) (6.1) 

m p log p :::: 0( - ) (6.2) 
n 

Clearly, Condition (6.1) is satisfied by regular or near-regular graphs. For any graph 

satisfying (6.1), Condition (6.2) yields an optimal granularity. The optimal number 

min 
of processors is p ::; 0 ( ---- ) . For a regular graph of degree o, we get 

log (min) 

p ::; 0 ( ~ ). However, the PLF algorithm is inefficient for those sparse graphs 
log u 

which have m = 0 (n) edges and a few but fixed number of vertices, each of degree 

0 (n ). For such graphs, computing the degrees of the vertices becomes the 

bottleneck and Condition (6.1) is not satisfied. 
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6.3 The PDB Algorithm 

The sequential DB algorithm (Dutton and Brigham 1981) aims at creating a 

complete graph by successively merging nonadjacent vertex-pairs. At the end, the 

size of the complete graph gives an estimate of the chromatic number. The heuristic 

selects at each iteration that vertex-pair for merger which has the maximum number 

of common adjacent vertices. This ensures that the formation of a complete graph 

requires more iterations, and hence fewer colors, to color the original graph (Willi

ams and Milne 1984 ). At any instant, 'vertex' vi represents the original vertex vi 

along with those merged 'into' vi, directly or indirectly, by previous iterations. All 

vertices merged into the vertex vi, 1 ~ i ~ n, are assigned the i th color. 

The adjacency matrix A = [aij ln x n of the graph G is stored in the common 

shared memory. Let Ea= {(vi, vj) I 1 ~ i ~ n -1, j > i and (vi, vj) f Ea}. 

. - . - n (n - 1) 
Physically, (vi, vj) e Ea 1ff aij = 0. Clearly, I Ea I = 

2 
- m . For each 

Observe that the number CAij of common adjacent vertices of a nonadjacent vertex

pair (vi, vj) is nothing but the number of 1 's in the resultant bit vector obtained by 

ANDing the rows i and j of the adjacency matrix A . Similarly, the merging of ver

tex vj into vi is essentially replacing the row (and also the column) i by the resultant 

bit vector obtained by ORing the rows i and j and logically deleting row (and 

column) j in matrix A . The vertex with larger index will be merged into the one 

with smaller index. The colors assigned to the vertices are available in the array 
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COLOR of size n . The implementation of the parallel DB (PDB) algorithm uses the 

following data structures stored in the shared memory. 

Index Matrix (INDEX): This is an n x n boolean matrix. Initially INDEX[i, i] := 1 

for 1 ~ i ~ n, and INDEX[i, j] := 0 for 1 ~ i < j ~ n. When vertex vj is merged 

into vi, j > i, then INDEX[i, j] := 1 and INDEX[ j, j] := 0. The diagonal entries 

of the INDEX matrix serve as status bits for the vertices. For example, 

INDEX[ j, j] = 0 indicates that the row (and the column) j of the adjacency matrix 

A is logically deleted. After the termination of the PDB algorithm, the rows i for 

which INDEX[i, i] = 1 correspond to the vertices of the resulting complete graph; 

and the columns j such that INDEX[i, j] = 1 correspond to the set vertices merged 

into the vertex vi including itself. A record Rij (defined below) for which either 

INDEX[i, i] or INDEX[ j, j] is 0, is considered to be inactive. 

Priority Queue (Qi) and Record (Rij ): For each vertex vi, 1 ~ i ~ n, there is a prior

ity queue Qi of size at most n - 1. An element of Qi is a two-field record 

Rij = ( j, Cij ), where j > i and (vi, vj) e Ea. The top element of this queue con

tains the record corresponding to the lexicographically largest CAij value in the fol

lowing sense. It is that Rij which satisfies CAij > CArs for all (vn vs) e Ea and 

i ;;:. r, j ;;:. s. If CAij = CArs we assume, without loss of generality, that CAij > CArs 

if either i < r, or i = r and j < s . A queue Q <I> with the status bit INDEX[ <I>, <I>] = 0 

is said to be inactive. 
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Change-Bit (CB) Vector: One bit is assigned to each vertex. At the beginning of each 

iteration, the CB vector is initialized to zero. When merging a vertex, say w, into u 

changes the value of the element auv in the adjacency matrix from O to 1, then 

CB[v] := 1. Physically it means that (v, w) was an edge before merger, and merging 

w into u, the pair of vertices u and v are no longer nonadjacent. Setting CB[v] to 1 

helps in eliminating the record Ruv = (v, CAuv) from queue Qu and in recomputing 

the CAvj values (if any) for the records in Qv. 

procedure PDB; 

begin 

for all /, 1 $; / $; p, do 

parbegin 

for each i, ([ - l)r; l + 1 ~ i ~ Ir; l do 

begin 

INDEX[i, i] := 1; 

for each j, i + l $; j $; n , do 

begin 

INDEX[i, j] := 0; 

if aij = 0 then insert vertex v j in queue Qi ; 

end; 

end; 

parend; 

for each i , l $; i $; n , do 

for each vi e Qi do 

begin 

end; 

parallel ANDing of rows i and j of the adjacency matrix A. 

Compute the CAij value, create the record Rij, and store it in Qi; 
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for all / , 1 ~ / ~ p , do 

parbegin 

for each i , (I - 1) r; l + 1 ~ i ~ Ir; l do 

begin 

build the priority queue Qi by heap management such 

that the top element corresponds to the lexicographically 

largest record in that queue; 

end 

parend; 

k := n; 

while there is an active queue with an active record do 

begin 

initialize the CB vector to O's; 

find the lexicographically largest active record, say Rij, among the 

top elements of all active queues; (* vertex v j is to be merged 

into vi*) 

INDEX[i, j] := 1; INDEX[ j, j] := 0; 

parallel ORing of rows i and j of A . Overwrite the row and 

column i of A by the ORed bit vector. At the same time, update 

the CB vector; 

for each v , i + 1 ~ v ~ n , do 

begin 

if CB[v] = 1 then 

begin 

end; 

recompute CAvq values of the records in Qv ; 

eliminate inactive records from Qv and readjust it; 

end; 

readjust the queue Qi; 

if the top element of any other queue is inactive then 

delete it and bring an active record to the top of that queue; 
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k := k - l; (* at termination, k is an estimation of X( G ) *) 

end; 

C := 1; 

for each i , l :::;; i :::;; n , do 

begin 

if INDEX[i, i] = 1 then 

begin 

end; 

for all j , i :::;; j :::;; n , do 

parbegin 

if INDEX[i, j] = 1 then COLOR[ j] := c; 

parend; 

C := C + 1; 

end; 

Note that letting different processors compute different CAij values would 

require concurrent reading of a memory cell. This is avoided by employing all p pro

cessors in computing one Cij value at a time. Similarly, the records cannot be gen- . 

erated while storing the vertices in different queues. It can be easily shown that the 

proposed parallel DB algorithm performs correctly without memory read- or write-

conflicts. 

6.3.1 Complexity Analysis 

Using p :::;; n processors, the worst-case parallel time required by the PDB algo

rithm is calculated as follows. Initialization of the INDEX matrix and finding the 
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elements of the queues (i.e., the set Ea of nonadjacent vertex-pairs) require 

K 1 n (~ ; 
1
) time, for some constant K 1. Two bit-vectors, each of size n , can be 

ANDed in r; l time, and the number of 1 's in the resulting bit vector can be 

counted in r; l + log p time. Thus the total time needed to compute all CA;j values 

is K 2 [ n (\ - l) - m ] [ r ~ l + log p]. Each queue can accommodate at most 

n - l records. So each priority queue is built in time at most K 3 n and the thus tot~l 

n2 
parallel time for queue building is no more than K 3 - units. The vertex-pair to 

p 

be merged can be found in ~ r; l + log p time, and the ORing of two n bit vectors 

requires r; l time. Updating the CA;j values of relevant records in the queue can be 

performed in at most K 4 [ n [ r ~ l + log p] ] time. Since the PD B algorithm has 

n - k iterations, its worst-case time complexity TPDB is given by, 

n (n - 1) [ n
2 

- n - 2m ] [f 2nl J n
2 

TPDB ~ K1 p +K2 
2 

p +logp +K3 p 

+ (n - k) [f ~ l + log p] + (n - k) [ K 3 n + K 4 [ n [f ~ l + log P] ]] . 

Next, we discuss the bounds on the asymptotic performance of the PDB algo-
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rithm for large graphs. Clearly no iteration is needed to color a complete graph, so a 

regular graph of degree o = n - 2 will provide a lower bound on T PDB • In this case 

an estimate for chromatic number is k = n - l, and TPDB = a[ ~2 
+ n log p]. 

Since the sequential time complexity is T DB = 0 (n 2 ), the speedup is obtained as 

0( p) 
= -- = ----[..,,....:--"-----],--TpDB 1 . 

O(l) + o P ~gp 

To attain the optimal speedup we satisfy p log p :::: 0 (n ), i.e., p ~ 0 [-n-]. On 
log n 

the other hand, the upper bound on TPDB is achieved by 2-chromatic (i.e., k = 2) 

graphs such as a bipartite graph. For these graphs, T DB = 0 (n 3 ) and 

T PDB = 0 [ ~
3 

+ n 2 log p ] . Once again the optimal speedup is achieved by using 

p ~ 0 [-n-] processors. Therefore, the PDB algorithm is · efficient for graphs of 
log n 

varying chromatic numbers or densities; this means that the DB algorithm is easily 

parallelizable. 

6.4 Discussion 

We have parallelized two known approximate graph-coloring algorithms for a 

shared memory parallel computation model, which does not allow concurrent read or 
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write from the same memory cell. Using an elegant data structure, the parallel 

largest-degree-first algorithm has been implemented avoiding write-conflict. This 

algorithm works efficiently for regular or near-regular graphs. Its implementation can 

be directly applied to parallelize the degree-saturation (DSA TUR) algorithm due to 

Brelaz (1979), where an uncolored vertex with the maximum number of differently 

colored adjacent vertices is the next possible candidate for coloring. The parallel 

DSATUR algorithm will be optimal for any graph using p :,; o[ 
10

; n ] processors. 

We also believe that for other variations of the LF algorithm (Christofides 1975; 

Matula et al. 1972; Syslo et al. 1983), our parallelization technique can be efficiently 

adopted. The second algorithm discussed in this paper is found to be costlier but 

more easily parallelizable, and yields optimal speedup for graphs of varying densities. 

Each of our parallel algorithms colors a graph exactly the way its sequential counter

part does; so we need not recompute an upper bound on the number of colors used. 



CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

With the motivation of contributing to the area of parallel algorithms, we have 

designed efficient parallel algorithms to solve several problems on undirected graphs. 

According to the sequential time complexities, the problems of our interest can be 

classified as follows. 

(i) Linear time: connected components, spanning forest, bridges, and bipartiteness. 

(ii) . Cubic time: fundamental cycle set, and assignment problem. 

(iii) Exponential time: vertex-coloring. Two approximate coloring algorithms are 

considered; one of linear time and the other of cubic time complexity. 

The model of computation is an EREW PRAM consisting of a fixed number of 

processors, which is an abstract generalization of shared memory computers available 

commercially. Consequently, our parallel algorithms are independent of specific 

architectural features of a target shared memory machine. It has further been shown 

by Das, Deo, and Prasad ( 1988b) that many of fu.ese algorithms yield similar asymp

totic performance even on hypercube computers, which are of fixed connection type 

without global shared memory and communication is via a message-passing mechan

ism. 
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Divide-and-conquer strategy has been chosen as a paradigm for designing most 

of our parallel algorithms. In this strategy, the given problem is partitioned into sub

problems of almost equal size. Each of these subproblems are solved by different 

processors, and the ultimate solution is obtained by gradual merging of subsolutions. 

Interprocessor communication is required during merge phases. To achieve maximum 

speedup as well as efficiency, two critical factors - computation and communication 

times - need to be balanced as much as possible. In order to satisfy this condition, 

we define a new performance measure for parallel algorithms. This new measure, 

called processor-(time)2, helps us to choose an optimal number of processors to be 

employed so that the parallel algorithm is optimally adaptive. 

For conflict-free random access by different processors, we have used three sim

ple and known data structures for input graphs, such as unordered list of edges 

(Chapters 3 and 4), adjacency list matrix (Section 6.2), and cost/adjacency matrix 

(Chapter 5 and Section 6.3). The parallel algorithms based on an unordered list of 

edges are optimally adaptive for sparse as well as dense graphs. Since they do not 

directly parallelize depth-first or breadth-first searches, they avoid the use of the so

called sequential data structures, stacks and queues. Similarly, in one of our parallel 

graph-coloring algorithms, the inherent sequential nature of linked adjacency lists is 

alleviated by using adjacency list matrix, which can be accessed randomly and yet 

preserve sparsity to some extent. 
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All of our parallel algorithms are deterministic in nature, in contrast to random

ized algorithms, where coins are flipped and correct answers are returned with high 

probability. Though randomization may lead to better performance in many cases, it 

is rather difficult to apply. 

There are several scopes for extending the work presented in this dissertation. 

We consider them by chapter and off er some general thoughts. One scope for further 

work is to obtain faster merging algorithms for connected-components and spanning

forest algorithms on an EREW PRAM model with bounded parallelism. As a guide

line, if idling of processors can be avoided during merge phases ( on the average, 

50% of the processors are idle), the worst-case parallel time required by these algo

rithms could be reduced further. Achieving this would mean that all algorithms in 

Chapters 3 and 4 would remain optimally adaptive even for a larger number of pro-

cessors. 

It is still not known whether the assignment problem can be solved in deter

ministic (or randomized), poly-logarithmic time using a polynomial number of pro

cessors. Designing optimal parallel algorithms for a minimum-weight matching in 

sparse bipartite graphs is another interesting topic to be investigated. 

Since there are classes of "bad" graphs for which every polynomial-time color

ing algorithm performs poorly (Johnson 1974; Mitchem 1976), it is worth paralleliz

ing other approximation algorithms in order to have several parallel coloring algo

rithms to choose from. 
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Theory and practice make research complete, especially in a new area like paral

lel computing, where there is a wide variety of computation models and different ad 

hoc techniques for algorithm design. Many intricacies are taken care of while coding 

and running an algorithm on an actual parallel machine, which otherwise may remain 

unnoticed. For example, computing experience gives insight on methods to minimize 

implementation overheads to increase speedup and efficiency, methods for the design 

of efficient data structures, the size of the constants involved in the order-analysis of 

time complexities, and so on. Therefore, experiments can be conducted to study 

empirical performance of the proposed algorithms on commercial shared memory (as 

well as fixed connection) computers, with random graphs as input. Experimental 

results will demonstrate variations in speedup and efficiency as functions of grain

size, number of processors, size and density of input graphs, load balancing, etc. 

Ultimately, we expect to build a library of efficient parallel programs for solving 

graph problems on commercial parallel machines. 

From the view point of systematic algorithm design, the suitability of divide

and-conquer strategy in designing efficient parallel algorithms for other classes of 

graph problems, such as shortest path, max-flow, cardinality matching, etc., may also 

be explored. 
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