35 research outputs found

    A soft supernumerary hand for rehabilitation in sub-acute stroke: a pilot study

    Get PDF
    : In patients with subacute stroke, task specific training (TST) has been shown to accelerate functional recovery of the upper limb. However, many patients do not have sufficient active extension of the fingers to perform this treatment. In these patients, here we propose a new rehabilitation technique in which TST is performed through a soft robotic hand (SoftHand-X). In short, the extension of the robotic fingers is controlled by the patient through his residual, albeit minimal, active extension of the fingers or wrist, while the patient was required to relax the muscles to achieve full flexion of the robotic fingers. TST with SoftHand-X was attempted in 27 subacute stroke patients unable to perform TST due to insufficient active extension of the fingers. Four patients (14.8%) were able to perform the proposed treatment (10 daily sessions of 60 min each). They reported an excellent level of participation. After the treatment, both clinical score of spasticity and its electromyographic correlate (stretch reflex) decreased. In subacute stroke patients, TST using SoftHand-X is a well-accepted treatment, resulting in a decrease of spasticity. At present, it can be applied only in a small proportion of the patients who cannot perform conventional TST, though extensions are possible

    User Intent Detection and Control of a Soft Poly-Limb

    Get PDF
    abstract: This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.Dissertation/ThesisMasters Thesis Biomedical Engineering 201

    Principles of human movement augmentation and the challenges in making it a reality

    Get PDF
    Augmenting the body with artificial limbs controlled concurrently to one's natural limbs has long appeared in science fiction, but recent technological and neuroscientific advances have begun to make this possible. By allowing individuals to achieve otherwise impossible actions, movement augmentation could revolutionize medical and industrial applications and profoundly change the way humans interact with the environment. Here, we construct a movement augmentation taxonomy through what is augmented and how it is achieved. With this framework, we analyze augmentation that extends the number of degrees-of-freedom, discuss critical features of effective augmentation such as physiological control signals, sensory feedback and learning as well as application scenarios, and propose a vision for the field

    Development of Low Cost Supernumerary Robotic Fingers as an Assistive Device

    Get PDF
    This paper presents the development of new type of wearable robot namely Supernumerary Robotic Finger (SRF) as  an  assistive   robot  for  healthy  people  or  people   with hemiparesis or hemiplegia. SRF comprises of two manipulators attached  in user’s wrist. Three flex sensors are utilized to measure the finger bending of the user’s finger. The posture of SRF is driven by modified glove sensor. The kinematics of both robotic thumb (RT) and robotic finger (RF) is studied using D-H parameter method and RoboAnalyzer software in order to understand the kinematic behavior of this robot. Each of RT and RF has three degrees of freedom (DOF). The posture of RT and RF is controlled using bending angles of thumb and finger from the user that are read by flex sensor. Based on the experimental results for people with healthy hand, the proposed SRF can assist object manipulation task in grasping, holding, and manipulating an object by using single hand when normally it only can be done by using two hands. From the experimental results on a person with healthy hand, the proposed of SRF can be employed as an assistive device for people with hemiparesis or hemiplegia. This device will enable people with diminished hand function work more independently

    A magnetic compatible supernumerary robotic finger for functional magnetic resonance imaging (fMRI) acquisitions: Device description and preliminary results

    Get PDF
    The Supernumerary robotic limbs are a recently introduced class of wearable robots that, differently from traditional prostheses and exoskeletons, aim at adding extra effectors (i.e., arms, legs, or fingers) to the human user, rather than substituting or enhancing the natural ones. However, it is still undefined whether the use of supernumerary robotic limbs could specifically lead to neural modifications in brain dynamics. The illusion of owning the part of body has been already proven in many experimental observations, such as those relying on multisensory integration (e.g., rubber hand illusion), prosthesis and even on virtual reality. In this paper we present a description of a novel magnetic compatible supernumerary robotic finger together with preliminary observations from two functional magnetic resonance imaging (fMRI) experiments, in which brain activity was measured before and after a period of training with the robotic device, and during the use of the novel MRI-compatible version of the supernumerary robotic finger. Results showed that the usage of the MR-compatible robotic finger is safe and does not produce artifacts on MRI images. Moreover, the training with the supernumerary robotic finger recruits a network of motor-related cortical regions (i.e. primary and supplementary motor areas), hence the same motor network of a fully physiological voluntary motor gestures

    Human motor augmentation - spinal motor neurons control of redundant degrees-of-freedom

    Get PDF
    In 1963, Stan Lee introduced a new villain to the Spiderman Universe: Dr Octopus – a human equipped with multiple robotic arms that can be controlled seamlessly in coordination with his natural limbs. Throughout the last decades, turning such fiction into real-life applications gave rise to the research field of human motor augmentation, ultimately aiming to enable humans to perform motor tasks that are sheer impossible with our natural limbs alone. While a significant process was made in designing artificial supernumerary limbs, a central problem remains: identifying adequate bodily signals that allow moving supernumerary degrees-of-freedom together with our natural ones. So far, neural activity in the brain seems to hold the greatest potential for providing all the flexibility needed to ensure such coordination between natural and supernumerary degrees-of-freedom. However, accessing neural populations in the cortical regions is accompanied by an unacceptable risk for most users. A different group of neural cells can be found in the outmost layer of the motor pathway, driving the contraction of muscles and generation of force – spinal motor neurons. The development of novel neural interfaces has made it possible to study single motor neuron activity with minimal harm to the user. This allows a direct and non-invasive window into the neural activity orchestrating human movement. In this dissertation, I investigate whether these neurons innervating our muscles could provide supernumerary control signals. The results indicate, in essence, that features extracted non-invasively from motor neuron activity have the potential to overcome current limitations in supernumerary control and thus could significantly advance human motor augmentation.Open Acces

    Orochi: Investigating Requirements and Expectations for Multipurpose Daily Used Supernumerary Robotic Limbs

    Get PDF
    Supernumerary robotic limbs (SRLs) present many opportunities for daily use. However, their obtrusiveness and limitations in interaction genericity hinder their daily use. To address challenges of daily use, we extracted three design considerations from previous literature and embodied them in a wearable we call Orochi. The considerations include the following: 1) multipurpose use, 2) wearability by context, and 3) unobtrusiveness in public. We implemented Orochi as a snake-shaped robot with 25 DoFs and two end effectors, and demonstrated several novel interactions enabled by its limber design. Using Orochi, we conducted hands-on focus groups to explore how multipurpose SRLs are used daily and we conducted a survey to explore how they are perceived when used in public. Participants approved Orochi's design and proposed different use cases and postures in which it could be worn. Orochi's unobtrusive design was generally well received, yet novel interactions raise several challenges for social acceptance. We discuss the significance of our results by highlighting future research opportunities based on the design, implementation, and evaluation of Orochi

    Human to robot hand motion mapping methods: review and classification

    Get PDF
    In this article, the variety of approaches proposed in literature to address the problem of mapping human to robot hand motions are summarized and discussed. We particularly attempt to organize under macro-categories the great quantity of presented methods, that are often difficult to be seen from a general point of view due to different fields of application, specific use of algorithms, terminology and declared goals of the mappings. Firstly, a brief historical overview is reported, in order to provide a look on the emergence of the human to robot hand mapping problem as a both conceptual and analytical challenge that is still open nowadays. Thereafter, the survey mainly focuses on a classification of modern mapping methods under six categories: direct joint, direct Cartesian, taskoriented, dimensionality reduction based, pose recognition based and hybrid mappings. For each of these categories, the general view that associates the related reported studies is provided, and representative references are highlighted. Finally, a concluding discussion along with the authors’ point of view regarding future desirable trends are reported.This work was supported in part by the European Commission’s Horizon 2020 Framework Programme with the project REMODEL under Grant 870133 and in part by the Spanish Government under Grant PID2020-114819GB-I00.Peer ReviewedPostprint (published version

    Conception et évaluation d'actionneurs à embrayages magnétorhéologiques pour la robotique collaborative

    Get PDF
    La robotique collaborative se démarque de la robotique industrielle par sa sécurité dans le but de travailler en collaboration avec les humains. Toutefois, la majorité des robots collaboratifs sériels reposent sur un actionnement à haut ratio de réduction, ce qui augmente considérablement la masse reflétée à l’effecteur du robot, et donc, nuit à la sécurité. Pour pallier cette masse reflétée et maintenir un seuil minimal de sécurité, les vitesses d’opération sont abaissées, nuisant ainsi directement à la productivité des entreprises. Afin de minimiser la masse reflétée à l’effecteur, les masses des actionneurs ainsi que leur inertie reflétée doivent être minimisés. Les embrayages à fluide magnétorhéologique (MR) maintenus en glissement continus découplent l’inertie provenant de la source de puissance, souvent un moteur et un réducteur, offrant ainsi un actionneur possédant un haut rapport couple-inertie. Toutefois, les embrayages MR, utilisés de façon antagoniste, ajoutent des composantes à l’actionneur ce qui réduit la densité de couple, et donc, augmente la masse reflétée à l’effecteur du robot. Certains actionneurs MR [1–3] ont été développés, mais leur basse densité de couple contrebalance leur faible inertie lorsqu’utilisés comme actionneurs aux articulations de robots collaboratifs sériels. Cette constatation a mené à ma question de recherche : Comment profiter de la faible inertie des actionneurs MR pour maximiser les performances dynamiques des robots collaboratifs sériels? L’objectif de ce projet de recherche vise donc à étudier le potentiel des embrayages MR en robotique collaborative. Pour ce faire, deux architectures MR sont développées et testées expérimentalement. La première architecture consiste en une articulation robotisée modulaire comportant des embrayages MR en glissement continu et possédant un rapport couple/masse et une taille équivalente à l’actionneur d’Universal Robots (UR) de couple égal, mais possédant un rapport couple/inertie 150 fois supérieur. À l’intérieur de l’articulation, deux chaines de puissance (2 moteurs et 2 embrayages MR) indépendantes se rejoignent à la sortie du joint offrant ainsi une redondance et augmentant la densité de couple comparativement à une architecture standard (1 moteur pour 2 embrayages MR). La deuxième architecture étudiée consiste en un actionnement délocalisé du robot où les embrayages MR sont situés à la base du robot et une transmission hydrostatique à membranes déroulantes achemine la puissance aux articulations. Cette architecture a été testée expérimentalement dans un contexte de bras robotisé surnuméraire. Contrairement à l’articulation MR, cette architecture n’offre pas une modularité habituellement recherchée en robotique sérielle, mais offre la possibilité de réduire l’inertie de la structure avec la délocalisation de l’actionnement. Finalement, les deux architectures développées ont été comparées à une architecture standard (haut ratio avec réducteur harmonique) afin de situer le potentiel du MR en robotique collaborative. Cette analyse théorique a démontré que pour un robot collaboratif sériel à 6 degrés de liberté, les architectures MR ont le potentiel d’accélérer 6 et 3 fois plus (respectivement) que le robot standard d’UR, composé d’actionneurs à hauts ratios
    corecore