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ABSTRACT 
 

Human motor augmentation - spinal motor neurons control of 
redundant degrees-of-freedom 

Mario Bräcklein 
 

In 1963, Stan Lee introduced a new villain to the Spiderman Universe: Dr Octopus – a 

human equipped with multiple robotic arms that can be controlled seamlessly in coordination 

with his natural limbs. Throughout the last decades, turning such fiction into real-life 

applications gave rise to the research field of human motor augmentation, ultimately aiming 

to enable humans to perform motor tasks that are sheer impossible with our natural limbs 

alone. While a significant process was made in designing artificial supernumerary limbs, a 

central problem remains: identifying adequate bodily signals that allow moving 

supernumerary degrees-of-freedom together with our natural ones. So far, neural activity in 

the brain seems to hold the greatest potential for providing all the flexibility needed to ensure 

such coordination between natural and supernumerary degrees-of-freedom. However, 

accessing neural populations in the cortical regions is accompanied by an unacceptable risk 

for most users. A different group of neural cells can be found in the outmost layer of the 

motor pathway, driving the contraction of muscles and generation of force – spinal motor 

neurons. The development of novel neural interfaces has made it possible to study single 

motor neuron activity with minimal harm to the user. This allows a direct and non-invasive 

window into the neural activity orchestrating human movement. In this dissertation, I 

investigate whether these neurons innervating our muscles could provide supernumerary 

control signals. The results indicate, in essence, that features extracted non-invasively from 

motor neuron activity have the potential to overcome current limitations in supernumerary 

control and thus could significantly advance human motor augmentation.  
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1 The short definitions only serve as an exemplification and do not aim to provide a sophisticated explanation 
of the respective terms.  
In addition, abbreviations are reintroduced in each chapter. 
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CCHAPTER 1 INTRODUCTION 

 

Equipping humans with artificial robotic limbs that can be controlled as effortlessly as 

the natural ones is a popular theme in science fiction and art (Kac 1997). In the last decades, 

the field of human motor augmentation has emerged to turn this phantasm into reality: 

extending human motor capacities beyond anatomical boundaries. Since then, significant 

progress has been made, especially in the development of artificial supernumerary limbs. One 

major bottleneck, however, is the coordination of natural limbs and such artificial actuators. 

A harmonized orchestration of, for example, a robotic third arm or cursor in augmented and 

virtual realities, demands the central nervous system (CNS) to provide control commands to 

and receive sensorimotor information from such additional effectors. While compromises for 

coordinating natural and supernumerary degrees-of-freedom (sDoF) were found for 

specialised and general-purpose applications (Prattichizzo et al. 2021), they come at the 

expense of limiting natural motor function. Hence, current control paradigms do not allow for 

an effective extension of all natural DoF and thus do not leverage the full potential of human 

motor augmentation. Assuming it exists, a fully sovereign navigation paradigm based on 

bodily signals that can be accessed easily and modulated volitionally without impeding 

existing motor functions is yet to be found. 
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1.1 Outline of dissertation 

In this dissertation, I present work solely focusing on finding new ways to produce 

supernumerary control signals. I reveal and assess the potential that lies in the activity of 

motor neurons, the final link in the motor pathway that bridges the CNS and muscles, to act 

as an adequate resource for extending human motor function. 

In the remainder of Chapter 1, I review the current state-of-the-art in human motor 

augmentation research, characterise current attempts to coordinate natural limbs and sDoF, 

identify limitations and describe why motor neurons could comprise all the necessary 

features to overcome these roadblocks (section 1.2). In section 1.3, I provide additional 

context on how motor neuron activity can be tracked and monitored non-invasively and 

review how the CNS orchestrates motor neurons in movement generation and what potential 

resources this opens up to extract features for additional control in section 1.4. 

In Chapter 2, I use a novel neural interface to investigate whether spectral components 

within the beta range (13-30 Hz) of spinal motor neurons, can be modulated partially 

uncoupled from the resulting force of the innervated muscle. The work in this chapter 

suggests that high-frequency components to motor neuron pools may allow an expansion of 

DoF. 

In Chapter 3, I aim to establish a better understanding of beta oscillations at the level 

of motor neurons, observed in Chapter 2, and their relationship to cortical beta components 

by simultaneously recording motor neuron and cortical activity. Furthermore, by using the 

experimental biofeedback paradigm from Chapter 2, I test how volitional modulations of beta 

activity in the periphery relate to cortical beta power. 
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In Chapter 4, I focus on single motor neurons as an alternative potential resource for 

controlling sDoF in contrast to the beta frequency feature from Chapters 2 and 3 which was 

extracted from an entire motor neuron pool. I introduce a biofeedback task that encouraged 

subjects to gain flexible control over motor neuron pairs. I provide evidence for potential 

strategies that could allow subjects to succeed in the biofeedback task for various 

combinations of motor neuron pairs.  

In Chapter 5, I conclude all findings and discuss potential future directions that could 

help to translate the findings made in this dissertation towards novel human-machine 

applications. Finally, I will provide my personal view on the role motor neurons could play in 

human motor augmentation.  

 

1.2 Human motor augmentation 

Whether moving a chair, walking up a flight of stairs, preparing food, or typing a text 

message – the only way for humans to interact with their environment is via their motor 

output. From the earliest beginnings of human civilisations to the present day, humans have 

used technology to extend such motor skills to accomplish novel interactions that are 

impossible with the natural motor functions alone (Ambrose 2001). This includes simple tools 

such as stones to open nuts that cannot be opened with the bare hands alone, a bicycle to 

cover further distances, or even more sophisticated technologies such as exoskeletons (Dollar 

& Herr 2008) and suits (Lee et al. 2017) to reduce the physical load on the human body during 

heavy lifting, and carrying of objects (de Looze et al. 2016) or robotic devices to extend the 

spatial reach of the natural limbs during surgery (Sung & Gill 2001) or outer space 

manipulations (Gu & Xu 1995). The use of technology to enable humans to perform motor 
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tasks impossible with the natural motor function alone is understood as human motor 

augmentation (Eden et al. 2022).  

While bicycles or exoskeletons improve an existing motor function, a new category of human 

motor augmentation has recently emerged, aiming to extend the overall motor capacities by 

allowing humans to orchestrate sDoF, such as controlling artificial supernumerary limbs 

(Dominijanni et al. 2021; Eden et al. 2022). This type of augmentation, recently coined as “DoF 

augmentation” (Eden et al. 2022), has the potential to tremendously reshape the way humans 

interact with their environment beyond what is possible with our natural limbs alone.1 

Recent advances in wearable robotics and human-machine interfaces have promoted 

the rapid development of a multiplicity of artificial supernumerary limbs (Makin et al. 2017), 

for instance, artificial fingers (Clode 2018; Cunningham et al. 2018; Hussain et al. 2015; 

Malvezzi et al. 2019; Prattichizzo et al. 2014a; Wu & Asada 2014a), arms (Bonilla & Asada 

2014; Guggenheim et al. 2020; Khodambashi et al. 2016; Nguyen et al. 2019; Parietti et al. 

2014; Parietti & Asada 2017; Penaloza et al. 2019; Sanchez et al. 2019; Sasaki et al. 2017; 

Veronneau et al. 2020), and legs (Hao et al. 2020; Khazoom et al. 2020; Parietti et al. 2015; 

Treers et al. 2017). The potential application spectrum of these artificial actuators is vast. It 

reaches from, for example, overhead assembly work (Parietti et al. 2014), load reduction 

(Bonilla & Asada 2014; Hao et al. 2020; Parietti et al. 2015), stabilisation aid (Kurek & Asada 

2017), surgical robotics (Huang et al. 2020), ‘third hand’ applications to overcome bimanual 

constraints (Guggenheim et al. 2020; Nguyen et al. 2019; Veronneau et al. 2020) by enhancing 

dexterity of single hands (Prattichizzo et al. 2014a; Wu & Asada 2014a), to applications in 

 
1 For this reason, the remainder of this dissertation focuses on DoF augmentation when referring to human 
motor augmentation in general.  
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entertainment such as playing the piano with an extra thumb (Cunningham et al. 2018) or 

drumming with an extra arm (Khodambashi et al. 2016). 

For a supernumerary limb to provide an effective augmentation of motor capabilities, 

seamless integration of the additional sDoF with the existing effectors in the human body 

needs to be given (Dominijanni et al. 2021; Eden et al. 2022). For example, this can be the 

concurrent manipulation of the human hand equipped with an artificial third thumb (Clode 

2018). Hence, in an ideal case, the control of sDoF should be as volitional as but independent 

from natural limb movement. Throughout the years, several concepts were developed to 

allow for effective coordination between natural and sDoF. These attempts can be grouped 

into three different categories as we recently introduced in Eden et al., 2022: 

“Autonomous DoF augmentation extends the number of DoFs involved in one or 

more tasks using autonomously controlled devices. For instance, a robot may help 

carry an object with its human user. 

DoF augmentation by transfer, in contrast, lets the user control the sDoFs. 

However, it only extends the number of movement DoFs involved in a task by re-

purposing other existing body DoFs that are task-irrelevant. An example would be 

a third arm controlled by foot movements for three-tool surgery. 

Augmentation by DoF extension lets the user control the sDoFs by extending the 

body’s total number of movement DoFs. An example would be a third arm driven 

by neural activity that can be controlled independently from and concurrently with 

the natural limbs while preserving the full” (Eden et al. 2022) 
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1.2.1 Autonomous augmentation 

One possible approach to allow for coordination between natural and sDoF is to 

employ an autonomous agent. In such cases, the user is not in direct control of the sDoF. 

Instead, an artificial intelligence (AI) (Bonilla & Asada 2014) or remote human operator 

(Veronneau et al. 2020) coordinates movement along sDoF, for example, an artificial third 

arm, to support the human user during specific tasks. Such autonomous agents are mainly 

utilised in specialised purpose applications such as overhead assembly work (Bonilla & Asada 

2014), aircraft manufacturing (Parietti & Asada 2014), or grasping support (Wu & Asada 

2014b), to just name a few. In Veronneau et al., for instance, the supernumerary limb was 

navigated by an additional human operator via a remote controller that mimics the 

kinematics of the supernumerary arm (Veronneau et al. 2020). Therefore, in such 

teleoperated scenarios, an additional human supervises the coordination between both 

natural and sDoF.  

A different approach is to replace the human operator with an AI agent to control the sDoF 

subserviently to the natural limb movement inside the task environment. To reduce the 

complexity in coordination between natural and sDoF, the tasks in which sDoF are utilised are 

well-defined, i.e. all steps within a task are known a priori and follow a specific order. 

Moreover, the natural limbs perform the complex aspect of a task. At the same time, the sDoF 

are used on simple executions such as holding an object in place (Bonilla & Asada 2014), 

reducing the load on the user while performing manufacturing tasks in a static body position 

(Parietti et al. 2014) or during near-ground work (Kurek & Asada 2017). In applications with a 

more dynamic task process, the AI agent observes the natural limb movement to identify 

control commands that serve the coordination between natural and artificial limbs. Such 
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motion coupling was shown, for example, using an artificial finger activated in synergy with 

the natural ones by analysing fingertip movement and gesture of the augmented hand 

(Prattichizzo et al. 2014b, 2014a; Wu & Asada 2016). Other prototypes mimic the lower 

extremities, such as artificial supernumerary legs (Hao et al. 2020; Khazoom et al. 2020; 

Parietti et al. 2015), exploiting information about the user’s gait cycle to provide support and 

load reduction during standing and walking. 

In conclusion, using autonomous agents to drive sDoF shows great potential for 

various use cases in domestic and industrial environments. Since an external operator is fully 

dedicated to orchestrating the augmentation device, it allows for the exploitation of complex 

robotic systems which may provide several sDoF at once. Moreover, as little to no input is 

required by the user during the usage of such sDoF, simple human-machine interfaces, e.g. 

inertial measurement units (Kurek & Asada 2017), provide enough information to operate 

these systems. This limited communication between the operator and the sDoF provides 

evidence for short learning and adaption periods by the user when leveraging these sDoF. 

Nevertheless, utilising such autonomous agents is limited to well-structured and simple tasks. 

The lack of voluntary control over the sDoF does not allow great flexibility during the 

application process. 

1.2.2 Augmentation by transfer 

In order to overcome this functional gap autonomous agents leave, the user itself 

needs to be in charge of coordinating both natural and sDoF. One concept exploits bodily 

signals to trigger predefined activations of the sDoF, for example, by using voice commands 

(Vatsal & Hoffman 2018), facial expressions (Fukuoka et al. 2019) or eye movement (Maimon-

Dror et al. 2017). Leigh and Maes identified specific hand gestures from muscle activity in the 
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forearm to trigger movements of the artificial actuator attached to the user’s wrist (Leigh & 

Maes 2016a). Such concepts, however, are limited to activating pre-defined motions of the 

sDoF. To ultimately utilise sDoF for general purpose applications, users require volitional and 

continuous control over sDoF. A common approach to enable users for such coordination is 

to employ body or myoelectric interfaces, traditionally found in computer (Simeone et al. 

2014; Velloso et al. 2015), robotics (Hannaford et al. 2013) and prosthetic control (Farina et 

al. 2014a; Ison et al. 2016), to record movement (Abdi et al. 2015; Clode 2018; Huang et al. 

2020; Sasaki et al. 2017) or muscle activation (Hussain et al. 2016; Parietti & Asada 2017) of 

certain body parts that do not directly interfere with the task-specific motions in which sDoF 

are used. For instance, Dani Clode designed a neat artificial third thumb to enhance the 

augmented hand's dexterity (Clode 2018), which was used to investigate the learning of 

supernumerary control (Kieliba et al. 2021). Figure 1-1 illustrates the third thumb design. The 

two DoF of the robotic limb, in this example, are controlled via pressure sensors mounted to 

the big toes of the user (Clode 2018).  

 

Figure 1-1: Artificial supernumerary limb model ‘Third Thumb’ by Dani Clode Design for enhanced dexterity. 
The artificial thumb is mounted to the wrist and equips the user with two sDoF. The Third Thumb is driven via 
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two motors worn on the forearm. The user controls these motors via a wireless body interface comprising two 
pressure sensors placed underneath the user’s big toes—courtesy of Dani Clode Design/daniclode.com. 

Similarly, the movement of one foot (Huang et al. 2020), both feet (Sanchez et al. 

2019), hand and foot (Cunningham et al. 2018) or the elbow (Wu & Asada 2015) may be used 

to drive sDoF. In contrast to these body interfaces that are worn by or assembled around the 

user’s limbs, camera systems may be used to remap natural limb movement into sDoF control 

signals (Abdi et al. 2015). Instead of recording the movement of entire limbs, single muscle 

activation recorded via surface electromyography (EMG) can also be mapped into control 

commands for sDoF. Previous prototypes explored, for example, the EMG of several torsi 

(Parietti & Asada 2017), facial (Hussain et al. 2017; Meraz et al. 2018) or shoulder and arm 

muscles (Gurgone et al. 2022) to generate control commands. Moreover, hybrid systems 

combine various approaches discussed above to optimise the coordination of sDoF. For 

example, Hussain et al., supplemented the activation of pre-defined movements of an 

artificial sixth finger triggered by the forearm EMG via continuous control of the grasping 

tightness via the biceps’ EMG (Hussain et al. 2016). A hybrid system comprising a motion 

capture camera system and bending sensors worn on the user’s foot (body interface), 

introduced by Sasaki et al., showed the potential of driving several sDoF concurrently (Sasaki 

et al. 2017). 

Taken together, such continuous control is achieved by remapping bodily signals not 

primarily used in the task-specific operation to manipulate sDoF. Hence, the movement of 

sDoF is not constrained to follow or imitate the user’s body. Instead, the users themselves 

have direct control, which enables the use of sDoF in complex application scenarios such as 

surgery (Huang et al. 2020, 2021), enhanced dexterity (Clode 2018; Leigh & Maes 2016b) or 

advanced industrial settings (Srinivas et al. 2015), to name a few. However, in such scenarios, 
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motor augmentation is at the expense of remapping the activation of natural limbs. 

Therefore, supernumerary control signals extracted from natural limb movement or muscle 

activation demand that the corresponding effectors are redundant at the time of 

supernumerary control. For example, in the work of Dani Clode, enhanced dexterity is 

achieved by controlling an artificial thumb in coordination with wrist and finger movements. 

The sDoF is operated by re-mapping bodily signals, i.e. toe movements. The ability to use the 

toes or even the feet for other motor tasks, such as walking, while operating the sDoF is lost 

due to the feet’s occupation for controlling the supernumerary thumb. This type of 

augmentation is context-dependent and may not always generalise well. To fully leverage the 

potential of human motor augmentation, the control of sDoF should be able to adapt to 

different functions and tasks without impeding natural limb functionality. 

1.2.3 Augmentation by extension 

Neither autonomous augmentation nor augmentation by transfer provide a 

supernumerary control scheme that can be volitionally used without impeding natural limb 

movement. The fundamental question is, thus, whether the CNS has at all the resources to 

provide a control channel that allows for human motor augmentation by coordinating 

between natural and sDoF (Dominijanni et al. 2021).  

Mehring et al., addressed this question by studying the movement abilities of subjects born 

with natural supernumerary limbs in the shape of an additional finger per hand (Mehring et 

al. 2019). These polydactyl subjects could control and navigate their supernumerary limbs, 

mostly independent of the fingers. This six-finger control was shown to be superior to five 

finger movements. Hence, it allowed the subjects to perform one-handed manipulation tasks 

impossible for normal-bodied humans. Moreover, the study revealed that polydactyl subjects 



Chapter 1 - INTRODUCTION 

24 
 

had not only independent muscles and nerves but also dedicated cortical structures to 

orchestrate the sDoF (Mehring et al. 2019). These findings indicate that the human brain has 

the resources needed to drive sDoF. However, how can normal-bodied humans leverage 

these resources? 

The human motor system decreases in complexity from the cortical level with millions 

of neurons, over hundreds to thousands of spinal motor neurons to the activation of single 

muscles and, finally, the movement of limbs. This motor pathway holds great redundancy or 

abundance (Latash 2012). Especially these early stages of the motor pathway may include a 

motor null space, i.e. change in underlying neural activation pattern while the motor output 

remains unaffected. Therefore, augmenting human motor function in normal-bodied 

individuals may rely on spare biological signals inside this null space of motor control, i.e. 

neural activity that can be modulated voluntarily without impeding or directly changing 

natural motor function (Kaufman et al. 2014). In fact, previous research suggested that the 

underlying high dimensional neural activity during specific motor tasks can be projected on 

low-dimensional manifolds (Gallego et al. 2017) not at all utilising the full dimensionality 

potentially available on the neuron level. Moreover, although only shown in the absence of 

movement, single neurons inside the primary motor cortex may behave dissociated from 

their correlated limb movement (Schieber 2011). This may mean that certain neural 

modulation appears inside a null space that does not directly alter the human motor output 

(Kaufman et al. 2014). However, the underlying mechanism behind these results is yet to be 

fully understood (Lebedev 2017). 

Several brain-computer interfaces (BCIs) studies explored adequate sources for 

supernumerary control signals inside such a neural null space. Pioneering non-human primate 
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studies demonstrated that supernumerary control features extracted from intracortical 

single-unit recordings could be modulated during natural limb movement (Milovanovic et al. 

2015; Orsborn et al. 2014). In a recent study performed by Penaloza and Nishio, able-bodied 

human subjects were instructed to perform a balancing task involving both of their arms 

(natural DoF) while the movement of a robotic arm (sDoF) was triggered via BCI control 

(Penaloza & Nishio 2018). The trigger signal, extracted non-invasively from the 

electroencephalogram (EEG), was used to activate predefined movements of the artificial 

limb. The results suggest that most subjects successfully performed the BCI task concurrently 

with the balancing task within a single experimental session. However, it remains unclear 

which underlying cortical mechanism provoked the movement of the artificial actuator as the 

trigger signal was extracted from a single EEG electrode determined by the highest power 

output during an imagination task (grasping of a bottle) rather than an underlying functional 

or anatomical cortical structure. On the contrary, efforts were made by different research 

groups also using BCI-based sDoF control, but from focal cortical areas. For example, in 

Cheung et al., human subjects were trained to perform a motor imagination task (movement 

of the right hand) while controlling a joystick (with the left hand)(Cheung et al. 2012). Cortical 

signals associated with motor imagination were extracted from the EEG. Subjects were then 

asked to navigate a cursor inside a 2D space in which one axis was controlled via joystick 

movement (natural DoF) and the other by cortical signals obtained from the EEG (sDoF). It 

was shown that, to some extent, the three subjects studied here were able to coordinate both 

motor imagination and hand movement. Similarly, Leeb et al., designed a virtual reality 

experiment in which subjects navigated an object along the horizontal axis via a joystick 

(natural DoF) and triggered a movement along the vertical axis (sDoF) via EEG (foot movement 

imagination task) (Leeb et al. 2013). Even though there was no continuous control along the 
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sDoF, it was shown that subjects were able to perform natural movement overt to EEG 

control. Both of these studies have used cortical signals arising from different cortical 

structures, i.e. different hemisphere (Cheung et al. 2012) and different cortical sites 

associated with different body parts (Leeb et al. 2013), compared to those responsible for the 

overt natural movement. Therefore, it remains unknown whether these control schemes only 

work in the absence of any movement of the limb associated with the motor imagination and 

thus relies on compensation or substitution as seen in the concepts utilising body or muscle 

interfaces discussed above (see section 1.2.2). 

Bashford et al., have recently shown that it is also possible to extract two control 

channels (one for natural and one for sDoF control) originating from the same cortical 

structure (Bashford et al. 2018). Three subjects performed a 2D target tracking task similar to 

the study conducted by Cheung et al., 2012. One axis was controlled by natural limb 

movement (keypress via finger movement) and the other by BCI activation. The sDoF was 

controlled continuously via a feature extracted from gamma-band activity via the 

electrocorticogram (ECoG) emerging from the same cortical structure associated with the 

finger movement. It was shown that subjects learnt to dissociate their motor ECoG signals 

from the originally correlated movements. Despite the pre-experimental association between 

both, gamma-band activity was modulated partially independently from the ongoing finger 

movement.  

The human brain is flexible and can learn and adjust to changing sensorimotor settings (Di 

Pino et al. 2014; Krakauer & Mazzoni 2011). The results of Bashford et al., similar to those 

obtained in non-human primates (Lansdell et al. 2020), provide evidence that such operant 

conditioning experimental settings may provoke the development of a BCI (sDoF) control map 

in addition to and independent from the natural control scheme. Such mapping may even 
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stay present after finishing the BCI task, as observed for other BCI control experiments 

(Jackson et al. 2006) and may be quickly re-employed via advanced decoder adaption 

(Silversmith et al. 2020). More research is necessary, but these findings provide evidence that 

humans may learn via operant conditioning to employ such sDoF control maps. 

These findings suggest that single neurons or entire neural populations yield the 

potential for controlling sDoF. However, human motor augmentation aims to provide sDoF 

control for general purpose applications. Hence, one of the biggest challenges in utilising such 

neural signals is their accessibility. Non-invasive BCIs such as EEG provide a wearable and cost-

efficient approach to recording cortical signals with a moderate temporal and spatial 

resolution. Similarly, magnetoencephalography (MEG), a different non-invasive method, 

overcomes some shortcomings in resolution observed in EEG systems. However, current MEG 

systems based on superconducting quantum interference devices require extensive cooling 

and magnetically shielded rooms, making their operation expensive and non-wearable. 

Moreover, both EEG and MEG are prone to artefacts and their inverse solution is ill-posed 

which restricts the confidence in which a neural population that may generate a 

supernumerary control signal can be tracked across and within sessions. Hence, EEG and MEG 

might not provide the reliability needed for general-purpose sDoF applications. Recordings of 

single neurons or field potentials via intracortical or ECoG systems, respectively, provide 

superior signal quality with a high temporal and spatial resolution. Thus, such systems allow 

us to acquire neural signals from focal cortical sites. Moreover, due to the better signal-to-

noise ratio, such systems allow for neural recordings with a high spectral resolution, as 

observed, for example, in Bashford et al., 2018. However, such procedures are highly invasive 

and, therefore, come with a great risk for the user and are unacceptable for human motor 

augmentation applications by current standards. 
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So far, none of the techniques discussed here provide a window into human motor 

control that bridges the access to direct neuronal recordings on one side and non-invasive 

and wearable design on the other. However, this gap could be closed with recent advances in 

EMG technology that made it possible to study and record non-cortical neural activity non-

invasively (Farina et al. 2016). Motor neurons are the final neural cells in the motor pathway, 

ultimately bridging the CNS and muscles to form movement. Their activity is present in the 

electrical field generated by muscle contractions and thus can be detected with minimal or 

even non-invasive EMG recording setups. Hence, decoding single motor neurons non-

invasively could be a viable alternative to current invasive approaches to track and monitor 

human neural populations (Farina & Holobar 2015; Holobar & Farina 2021; Sartori & Sawicki 

2021) and potentially extracting a control signal suitable for extending human motor function. 

1.3 EMG decomposition – non-invasive access to neural activity 

The CNS orchestrates movement generation by commanding the activation of skeletal 

muscles. Such motor commands emerging from the CNS are propagated and tuned via alpha 

motor neurons emerging from the ventral horn in the spinal cord on one side and innervating 

skeletal muscles on the other (Hounsgaard 2017; Merletti & Parker 2004). Therefore, motor 

neurons build a direct link between the output of the CNS and muscle activation (Hounsgaard 

2017). Descending synaptic input, as well as the outputs of afferent loops and spinal 

interneurons, trigger action potentials at the initial segment of the motor neuron’s axon. 

These action potentials are propagated along the motor neuron axon and arrive at the 

neuromuscular junction, a synapse between the motor neuron and its innervated muscle 

fibres. The transmission of motor neuron action potentials at this neuromuscular junction is 

considered to be reliable (Ruff Robert 2006; Wood & R. Slater 2001), always resulting in action 
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potentials along the innervated muscle fibres. For this reason, a motor neuron and its 

innervated muscle fibres are understood as a single functional unit, the motor unit (MU). Due 

to the secure transmission of action potentials via the neuromuscular junction, MU action 

potentials (MUAPs), i.e. action potentials propagated along the innervated muscle fibres, 

represent an amplified version of the initial action potential triggered at the dendrites of the 

corresponding motor neuron. These MUAPs generate electrical fields, which can be measured 

either inside the muscle or at skin level via EMG (see Figure 1-2). 

Regardless of the measurement technique, i.e. using intramuscular or surface 

electrodes, the EMG is the convolutive mixture of all MU activity (e.g. spike timings of 

individual MUAPs) with their respective MUAP shapes detected at the recording site. In order 

to access the central properties of MU activity, such as their discharge behaviour, for example, 

to analyse neural strategies that underpin force generation, the convolutive mixture captured 

in the EMG needs to be decomposed into the underlying neural activity. In the case of 

intramuscular EMG, where the observation site (EMG electrodes) is near the sources (MUs), 

the decomposition may be solved by spike sorting techniques known from intracortical 

recordings, such as template matching (Kleine et al. 2007). However, the decomposition 

problem becomes more challenging when the distance between the source and the 

observation site increases. During surface EMG recordings, when the electrodes are usually 

placed above the muscle belly at skin level, the electrical fields of the MUAPs need to traverse 

through various layers of tissue, for example, muscle, bone, adipose, and skin tissue, 

depending on the subject and the muscle before reaching the electrodes. These anatomical 

volume conductors act as a spatial low-pass filter with an unknown finite and non-linear 

impulse response, ultimately affecting the representation of original MUAP at the skin level 

(Farina et al. 2002).  
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Moreover, each EMG channel records an average of this underlying convolutive mixture of all 

MU activity at its respective locations. Hence, effects such as amplitude cancellations due to 

the biphasic nature of the signal itself further distort the MUAP representation in the EMG 

(Farina et al. 2008; Keenan et al. 2006). These degradations are compounded by the 

properties of the EMG electrodes (Roy et al. 1986) and insufficient knowledge about the exact 

MUAP location, and thus the spatial propagation of the generated electrical fields through 

the underlying tissue (Farina et al. 2014b), all resulting in not less than a blurred 

representation of MU activity in the EMG. 

 

Figure 1-2: Schematic overview of EMG generation. Motor neurons arise from the spinal cord on one side and 
innervate muscle fibres on the other. The secure transmission of motor neuron action potentials via the 
neuromuscular junction, i.e. a synapse between the motor neuron and the innervated muscle fibres, always 
results (in healthy individuals) in an action potential propagated along the muscle fibres. For this reason, the 
functional conglomerate of the motor neuron and its innervated muscle fibres is understood as a motor unit and 
their action potentials as motor unit action potentials. The electromagnetic fields due to motor unit action 
potentials traverse through various layers of tissue, affecting their representation before reaching electrodes on 
the skin's surface. The resulting electromyogram is thus the sum of all filtered motor unit action potentials. 
Reproduced from Farina & Holobar, 2016 
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Recent advances in EMG electrode design (Stegeman et al. 2012), computational 

modelling and advanced source separation algorithms (Holobar & Zazula 2007; Negro et al. 

2016a), however, made it possible to deconvolute the spatial-temporal mixture of motor 

neuron activity observed in the EMG into the underlying MUAP spike trains. Recordings from 

multiple EMG electrode channels arranged in a grid, i.e. high-density sEMG (HDsEMG), allow 

the tracking of the convoluted MU activity in time and space (Blok et al. 2002; Stegeman et 

al. 2012). By increasing the number of observations of the underlying MU activity, i.e. moving 

from traditional bi-polar EMG recordings towards HDsEMG, the spatial variability of the 

MUAP propagation inside the innervated muscle can be tracked. Thus, more recording sites 

in HDsEMG improve the discrimination between different MUs in the EMG (Merletti et al. 

2008). Over the last decades, several approaches have been developed to identify individual 

motor neurons from the EMG (Chen & Zhou 2016; Clarke et al. 2021; Gazzoni et al. 2004; 

Holobar & Zazula 2007; Negro et al. 2016b). One extensively validated and popular approach 

is to utilise blind source separation techniques based on convolutive kernel compensation 

(Holobar & Zazula 2007; Negro et al. 2016b).  

In general, the relationship between MUAP spike trains and the measured EMG can be 

described as a convolutive mixture in which the MUAP spike trains are modelled as δ-

impulses. Moreover, these MU spike trains are sparse due to the refractory period, which 

prevents MUs from uninterrupted firing. Therefore, the MU spike trains can be modelled as 

binary codes predominantly comprised of 0, with a few 1 indicating the timing of a MUAP 

discharge. Following, the measured EMG can be described as: 
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 ( ) = ( ) ( − ) + ( ) Eq. 1-1 

 

where the observation vector ( ) comprises the measured EMG signals of the  

recording channels at the -th sample. The central properties of the  detected MUs, i.e. the 

timings of MUAP discharges, are noted in the source vector ( ). The additive noise term ( ), assumed to be uncorrelated in time and space, comprises all electrical noise due to the 

recording setup itself and low-power MUAPs undistinguishable by the decomposition model 

(Bankman et al. 1993). The size of the additive noise term ( ) is determined by the number 

of the EMG recording channels . All MU firing comprised in the source vector are assumed 

to be sparse and independent. The mixing matrix , of size × , contains all MUAP shapes 

and their respective spatial variability due to the subject-specific low-pass filter at each 

observation site for each sample , whereas  ranges from 0 to − 1  (Negro et al. 2016a).  

is proportional to the average MUAP length.  

The goal of all decomposition techniques is to find the inverse solution, ( ), to the 

convolutive mixture in Eq. 1-1. This separation problem can be solved by transforming the 

convolutive mixture into an instantaneous one. For this reason, the source vector ( ) is 

extended by delayed version of the original sources themselves. The extension factor is 

limited by the refractory period and usually set to , i.e. the average MUAP length. Therefore, 

the extended source vector ̃( ) incorporates all original sources from Eq. 1-1 and − 1 

delayed versions resulting in total length of  × 1 at every sample . The original sources 

and their delayed versions in ̃( ) remain uncorrelated since  is limited by the refractory 

period and the MU spike trains are generally sparse. To avoid an ill posed equation, i.e. having 

more sources than observations, the observation matrix ( ) is extended by its delayed 
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repetitions, too. Hence, its extension factor  is suggested to be  ≥   (Negro et al. 

2016b), leading to an extended observation vector ( ) of size  × 1 at every sample 

. The extended version of Eq. 1-1 can be written as: 

 

 ( ) = ̃( ) + ( ) Eq. 1-2 

 

with the mixing matrix  defined as 

 

 =  ℎ ⋯ ℎ⋮ ⋱ ⋮ℎ ⋯ ℎ  Eq. 1-3 

 ℎ =  ⎣⎢⎢
⎡ℎ [0] ⋯ ℎ [ − 1] 0 ⋯ 00 ⋱ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋱ 00 ⋯ 0 ℎ [0] ⋯ ℎ [ − 1]⎦⎥⎥

⎤
 Eq. 1-4 

 

The MUAP of the -th MU detected at the -th electrode channel is captured in ℎ . All MUAPs 

in  are assumed to be constant throughout the recording, i.e. for all samples  (Negro et al. 

2016a). After the extension, all EMG channels are decorrelated by applying a spatial whitening 

to the observation matrix . The over-determined system in Eq. 1-2, i.e. more 

observations than sources, may then be solved using, for example, a fixed-point algorithm 

(Hyvarinen 1999; Negro et al. 2016a). At its core, the solution to this separation problem 

mimics an independent component analysis (Hyvärinen & Oja 2000), with the termination 
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criteria being sparseness rather than independence. Therefore, two sources, i.e. MU spike 

trains, are separated when they reach a maximum sparseness. 

Combined with HDsEMG, these decomposition techniques allow a direct and non-

invasive window into the underlying neural structure that orchestrates movement. Therefore, 

motor neurons are neural cells that can be tracked and monitored without surgery, thus with 

minimal to no harm to the human user. Over recent years, such novel neural interfaces 

comprised of surface EMG and decomposition algorithms were advanced to track multiple 

MUs in real-time during voluntary contractions (Barsakcioglu et al. 2021; Bräcklein et al. 2021, 

2022b, 2022a; Formento et al. 2021). The major challenge in translating traditional 

decomposition methods into real-time ready versions are the computational heavy and thus 

time-consuming whitening of the data, i.e. decorrelating all the HDsEMG channels, and the 

calculation of the inverse of the mixing matrix. One extensively validated approach to 

overcome these challenges is to train the whitening and the inverse of the mixing matrices on 

a training data set (Barsakcioglu et al. 2021). This data set is usually recorded before the actual 

real-time decomposition is employed. This method assumes that the MUAP shapes decoded 

in the training data set remain constant throughout the entire experimental session. This pre-

trained separation matrix can then be applied online to the recorded data stream, allowing 

decomposition of MU activity with neglectable delays.1  

 

 
1 Further details on the real-time decomposition technique developed by Barsakcioglu et al. can be found in 
section 2.2.4. 
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1.4 Motor neurons – a resource for augmentation? 

The recent developments in neural interfaces and advanced decomposition techniques 

allow access to neural activity in the periphery of the human motor system in the same way 

as intra-cortical recordings allow for the tracking of neural populations in the brain. Given 

their accessibility, motor neurons may be a promising candidate for augmentation. Yet, it 

needs to be shown if motor neurons can transmit multiple channels of information, i.e. one 

regarding movement of natural limb and one unrelated to motor behaviour.  

To achieve coordination of sDoF and natural limbs, two, ideally independent, control 

channels are needed. One that ensures the volitional control of all natural limbs and one that 

serves the control of sDoF. In the case of motor neurons, a potential supernumerary control 

signal would need to lie in a null space to motor behaviour, i.e. motor neuron activity that 

does not necessarily interfere with force generation. Such a null space could potentially be 

identified in the compound activity of many motor neurons, similar to what was recently 

shown in a BCI study, where signal components in the population activity of cortical neurons 

could be controlled volitionally without interfering with the movement triggered by the same 

neural population (Bashford et al. 2018). A different null space approach would be to 

volitionally control single motor neurons without impeding the motor behaviour of the 

innervated muscle.  

In the following section, I will refer to previous research related to the question of whether 

the activity of populations of motor neurons or single motor neurons comprises such a null 

space and suppose it exists, the possibility of being utilised for human motor augmentation. I 

will comment on two possible pathways for augmentation exploring high frequency 
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components in the compound activity of an entire motor neuron pool that are outside the 

muscular-skeletal bandwidth, and on the flexible control of individual motor neurons. 

1.4.1 Motor neuron populations – bandwidths of the common input 

The nervous system orchestrates movement by sending neural information through a 

diversity of synaptic inputs converging onto alpha motor neurons, including descending 

inputs from cortical regions and the brainstem (Lemon 2008) as well as proprioceptive and 

spinal inputs, for example, from sensory afferents (Windhorst 2007). If the net synaptic input 

to a single motor neuron, i.e. the integration of all excitable and inhibitory input signals, 

crosses an excitation threshold, the motor neuron starts to discharge action potentials leading 

to a twitch of the innervated muscle fibres. Hence, the compound activity of many active 

motor neurons innervating the same muscle leads to a contraction. The input signals received 

by such a pool of motor neurons, i.e. a group of motor neurons contributing towards a 

particular muscle contraction or movement, can be modelled into a common and 

independent input signal (Farina et al. 2014c; Negro et al. 2016c) as illustrated in Figure 1-3. 

The common input signal is received by all motor neurons in the pool, while an 

independent input differs across individual motor neurons. Regardless of common or 

independent input, the transformation of synaptic input to MUAP spike trains by the motor 

neurons is non-linear. This is mainly because each motor neuron has an excitation threshold 

determined by its size and intrinsic state (see section 1.4.2). Hence, motor neurons will not 

discharge action potentials for any net-synaptic input below this threshold. Although, once 

this critical threshold is surpassed, the firing rate of action potentials partially relates to the 

strength of the net synaptic input (however, it should be noted that the discharge rate of 

motor neurons is limited by the refractory period and saturation effects (Fuglevand et al. 
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2015)). The resulting MUAP train represents a sampling of the net synaptic input comprised 

of a common and independent component. Hence, the output of every active motor neuron 

within a pool reflects this common input distorted by independent components. Muscle 

activation and, thus, force production results from the cumulative activity of the entire motor 

neuron pool, i.e. the sum of all MUAP trains. Such a summation of the individual motor neuron 

contributions enhances the common activity while the influence of individual independent 

components is attenuated when populations are considered, as compared to activity in 

individual motor neurons (Farina et al. 2014c; Farina & Negro 2015). 

 

Figure 1-3: Schematic representation of the synaptic input to a motor neuron pool and the resulting force 
profile. The synaptic input to a motor neuron pool can be modelled into a common component that is shared 
across the population (here, the low-frequency component of this common input is termed control input and the 
high-frequency component common noise) and private independent input to each motor neuron (here termed as 
independent noise). Both common and independent components are present at the motor neuron output, i.e. 
action potential spike trains. However, the cumulative activity of the entire motor neuron pool mainly highlights 
the common input, whereas independent components cancel each other out. The average twitch response of the 
muscle fibres acts as a biomechanical low-pass filter with a cut-off frequency of approximately 10 Hz. Thus, only 
the low-frequency common input component (control input) is translated into force. This common low-frequency 
component is the effective neural drive, which ultimately determines the force output of the innervated muscle. 
This effective neural drive is superimposed on the right with the resulting force profile for considering a sub-pool 
of only three motor neurons (top) and the entire pool (bottom). As shown for only three motor neurons, if the 
number of neurons is small, the estimation of the effective drive can be noisy due to the non-linear nature of 
motor neurons. Reproduced from Farina & Negro, 2015 
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The strength of this common input signal to a motor neuron pool at a given frequency 

can be estimated using intramuscular coherence (IMC) (Castronovo et al. 2015; Dideriksen et 

al. 2018). Coherence generally measures the linear correlation in the spectral domain 

between two signals. In the case of intramuscular coherence, the spectral coupling within a 

motor neuron pool due to a common input drive is estimated, meaning the stronger the 

coupling, the larger the common component is at a given frequency. This common input signal 

has usually pronounced activity in the low frequencies (<10Hz) and a prominent peak at 

around 20Hz (see Figure 1-4). However, these high-frequency components do not get directly 

translated into the force of the innervated muscle. In fact, the resulting force profile only 

follows the low-frequency component (<10Hz) of the common input signal. The average 

twitch of the innervated muscle fibres limits the power spectrum of the resulting force 

(Dideriksen et al. 2012). These biomechanical constraints act as a low-pass filter allowing only 

a linear transmission of the low-frequency component of the common input to the resulting 

force profile of the innervated muscle(s) (Farina et al. 2014c). This low-frequency component 

is termed effective drive and is the ultimate code that determines movement (De Luca & Erim 

1994; Gandevia 2001; Thompson et al. 2018). 

In contrast, no obvious link to function can be assigned to higher frequency 

components of the common input drive, which is why they were previously coined as common 

noise (Dideriksen et al. 2012; Farina & Negro 2015; Negro et al. 2009). This high-frequency 

common noise component seems to be outside of the motor bandwidth due to the 

biomechanical constraints of muscles. Hence, activity in this spectral band could lie in a null 

space and not directly influence motor behaviour. However, if such a null space exists and 

whether or not activity inside this null space can be volitionally controlled without impeding 

force control of the innervated muscle is yet to be demonstrated. 
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Figure 1-4: Intramuscular coherence of a single motor neuron pool. Intramuscular coherence (IMC) is a method 
to estimate the strength of the common input signal received by a motor neuron pool. Different IMC estimates 
are shown for different sizes of motor neuron pools, indicated by the shades of grey. The dashed horizontal line 
indicates the significance threshold of the estimated coherence values. Similar to the detection of a common 
input signal in the cumulative spike train, i.e. the sum of all motor neuron action potentials within a pool, the 
strength of the IMC largely depends on the number of active motor neurons. The strength of common input in 
the lower frequencies drastically diverges towards a maximum when the number of analysed motor neurons 
increases. Higher frequency components become “visible”, i.e. reaching significant coherence values for such 
larger groups of active motor neurons. The discharge rate of individual motor neurons is insufficient to reproduce 
the high-frequency components of the input drive. The refectory period and saturation effects limit the maximum 
discharge rate of motor neurons to often less than 40 spikes-per-second, which is too slow to react to the fast 
oscillation. This effect is comparable to aliasing in classical signal processing (Nyquist 1928). Hence, the 
cumulative activity of many motor neurons is necessary to accurately estimate the common input drive's high-
frequency components to the entire pool. Even though only the low-frequency components (up to 10 Hz) are 
linearly translated into force production (effective neural drive), the IMC indicates prominent high-frequency 
components present in the common drive to the motor neuron pool. Yet, their functional role in force production 
is unknown. Reproduced from Dideriksen et al., 2018.  

1.4.2 Single motor neurons – rigid control and the role of biofeedback 

A single pool of motor neurons can consist of hundreds of individual neurons 

(Duchateau & Enoka 2022; Heckman & Enoka 2012). If just a handful of these motor neurons 

could be controlled flexibly, the information transfer via neural interfaces would increase 

tremendously. A few motor neurons controlled independently by the remaining tens to 

hundred motor neurons inside the same pool during force production would result in a 

multidimensional neural activation without a major impact on the force, in the same way as 
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the activity in single motor neurons determined by independent synaptic input is filtered in 

force generation (Farina et al. 2014c). Hence, the selective activation of a few motor neurons 

could provide the basis for driving sDoF without impeding the original functionality of the 

innervated muscle.   

While such a mechanism could revolutionise motor augmentation, independent control of all 

motor neurons would imply a vast increase in computational load in the CNS, with no known 

natural functional benefit for the human motor system. In fact, most observations suggest 

that, in contrast to independent control, individual motor neurons are activated in a highly 

stereotyped manner determined by the common input received and the neuron’s biophysical 

properties.  

In 1957, Henneman discovered a dependency between the anatomy of motor neurons and 

their sensitivity to discharge action potentials (Henneman 1957). The membrane resistance 

of a motor neuron is anti-correlated to its soma size, meaning that for the same synaptic 

input, smaller motor neurons start to discharge action potentials earlier and at higher rates 

than larger ones. This relationship between the size of a motor neuron and its discharge 

behaviour is known as size-principle. Henneman’s postulations state that a motor neuron’s 

response to a given input signal is solely determined by its properties. In combination with 

the concept of a common input signal that determines movement, motor neuron control is 

based on a simple, one-dimensional activation. This size-principle could be confirmed 

throughout the years in various muscles (Desmedt & Godaux 1977b; Milner-Brown et al. 

1973; Monster & Chan 1977; Oya et al. 2009; Riek & Bawa 1992; Thomas et al. 1986, 1987; 

van Zuylen et al. 1988) and seems to remain robust under various physiological conditions 

(Adam & De Luca 2003; Desmedt & Godaux 1977a; Fling et al. 2009; Jones et al. 1994; Thomas 

et al. 1986, 1987, 1978). 
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Despite this overall consensus that the activity of motor neuron pool underlies a rigid 

one-dimensional control scheme, humans seem to be able to gain control over individual 

neurons when provided with biofeedback on their spiking activity, using, for example, 

auditory and/or visual clues. In the 1960s, various research groups pioneered such 

investigations in volitional control of single motor neurons showing that subjects could quickly 

learn to modulate single neuron discharge rates (Basmajian 1963; Harrison & Mortensen 

1962; Wagman et al. 1965). These results were later confirmed in various finger (Kato & Tanji 

1972; Thomas et al. 1978) and arm muscles (Illyés 1977). While these findings seem to conflict 

with the size principle directly, i.e. smaller motor neurons get recruited before larger ones for 

the same net synaptic input, they share one caveat – the experiments were conducted in 

multifunctional muscles or changes in posture were allowed during the recording session. 

Recent studies argue that the nervous system accommodates such multifunctionality 

using multiple common inputs to the same muscle (Bawa et al. 2014). In line with this view, 

one can distinguish between an anatomical motor neuron pool, i.e. all motor neurons 

innervating muscle fibres of one muscle, and a functional motor neuron pool which comprises 

all motor neurons that contribute towards one specific motor task. Such functional motor 

neuron pools are not limited by anatomical boundaries. For example, they can span across 

multiple muscles, as observed in extrinsic and intrinsic hand muscles during grasping 

(Tanzarella et al. 2021). On the other hand, a single muscle can be comprised of several 

functional units (Hoffer et al. 1987; ter Haar Romeny et al. 1984; Wakeling 2009), i.e. motor 

neuron sub-pools that receive different common inputs depending on the motion in which 

the innervated muscle is involved. These findings suggest that the distribution of common 

input is not limited to anatomy, and thus task-specific activation of certain motor neurons in 

multifactional muscles is likely due to task-specific common inputs. It is for this reason that 
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volitional control of individual motor neurons and thus violations of the size principle should 

be assessed using this updated definition of motor neuron pools (i.e. grouping motor neurons 

based on their contribution to function rather than their anatomical innervations): 

“We suggest that when discussing recruitment order, the motoneuron pool should 

be operationally defined as the group of motoneurons that receive excitatory 

synaptic input to drive the functional movement, not the pool of motoneurons 

defined by anatomy. The validity of the Size Principle should then be evaluated 

within this operationally defined motoneuron pool to determine if recruitment 

proceeds from small to large.” (Bawa et al. 2014). 

Taking the functional grouping of motor neuron pools and the size principle into 

account, flexible control of individual neurons would rely on intentional modulation of either 

a neuron-specific input signal or its intrinsic excitability1. While the design of the original 

biofeedback studies from the last century does not allow to pin the underlying mechanism 

that led to flexible motor neuron control, they provide evidence for biofeedback providing 

subjects with crucial information to alter motor neuron firing patterns intentionally. Similarly, 

more recently, it was suggested that subjects exposed to closed-loop biofeedback could learn 

to break up pairs of muscles that are usually driven by the same task-dependent neural input 

(Laine et al. 2015), and establish new, arbitrary synergies of muscles (Nazarpour et al. 2012; 

Radhakrishnan et al. 2008). Nevertheless, if similar flexible activation, as previously suggested 

for muscle synergies, of motor neurons from the same functional pool could be achieved in a 

closed-loop biofeedback task is yet to be shown.  

 
1 Changes in the excitability of a neuron can be seen as a virtual change in its size. For example, if the intrinsic 
excitability of a neuron is decreased, it would start firing action potentials at higher net synaptic input compared 
to the base line value. 



Chapter 2 - MODULATING MOTOR NEURON BETA INSIDE A FORCE NULL SPACE 

43 
 

CCHAPTER 2 MODULATING MOTOR 

NEURON BETA INSIDE A FORCE NULL SPACE1 

 

Effective human motor augmentation should rely on biological signals that can be 

volitionally modulated without compromising natural motor control. We provided human 

subjects with real-time information on the power of two separate spectral bands of the 

spiking activity of motor neurons innervating the tibialis anterior muscle: the low-frequency 

band (<7Hz), which is directly translated into natural force control, and the beta band (13-

30Hz), which is outside the dynamics of the neuromuscular system. Subjects could gain 

control over the powers in these two bands to navigate a cursor towards specific targets in a 

2-D space (experiment 1) and to up- and down-modulate beta activity while keeping steady 

force contractions (experiment 2). Results indicate that beta projections to the spinal motor 

neuron pool can be voluntarily controlled partially decoupled from natural muscle 

contractions and, therefore, they could be valid control signals for implementing effective 

human motor augmentation platforms 

 
1 This chapter was published as “Towards human motor augmentation by voluntary decoupling beta activity in 
the neural drive to muscle and force production” in Journal of Neural Engineering (2021) with the co-authors 
Jaime Ibañez2,3, Deren Barsakcioglu2, and Dario Farina2; see (Bräcklein et al. 2021). The chapter has been slightly 
altered to accommodate the format of this thesis. 
 
2 Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, 
Imperial College London, London SW7 2AZ, United Kingdom 
3 Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 
London WC1N 3BG, United Kingdom 
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2.1 Introduction 

One of the biggest challenges in human-machine interfacing is the expansion of human 

capabilities by providing novel ways to interact with the environment (Nicolelis 2001). Real 

motor augmentation through supernumerary artificial limbs may provide users with new 

means of interaction with the environment through artificial actuators controlled using spare 

biological signals (Mehring et al. 2019). However, in most cases, human motor augmentation 

is achieved at the expense of limiting already existing motor functions, e.g., by making users 

learn to control endogenous bio-signals that would otherwise be used for the movement of 

existing parts of the body (Parietti & Asada 2017; Salvietti et al. 2017). Identifying biological 

signals that can be reliably decoded and volitionally controlled independently from natural 

motor function is critical to achieve real human motor augmentation.  

Neural or muscular signals are commonly used to implement human-machine interfaces 

(Donoghue 2002; Ferreira et al. 2008). Electromyography (EMG) represents a non-invasive, 

direct and simple source of information tightly linked to the intent to move natural limbs 

(Farina et al. 2014b, 2017; Farina & Holobar 2016; Merletti et al. 2001; Merletti & Farina 

2016). Due to biomechanical constraints, the effective frequency band within which common 

inputs to motor neurons translate into movements is rather narrow and concentrated at 

frequencies <7Hz (Farina et al. 2014d). EMG information contained at higher frequencies, 

such as the cortical beta band (13-30Hz), is known to be caused, at least in part, by projections 

from the motor cortex (Baker 2007; Gwin & Ferris 2012; Kilavik et al. 2013; Mima & Hallett 

1999; Negro & Farina 2011b). Yet, the functional role of these higher frequency components 

in the EMG is unclear (Baker 2007; Engel & Fries 2010; Jenkinson & Brown 2011; Little et al. 
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2019). If cortical beta signals observed in the muscles could be uncorrelated from motor 

function, they could be used to effectively expand the degrees-of-freedom of humans to 

control artificial limbs during muscle contractions by enabling a new control channel 

independent from the existing natural ones. In principle, this approach could indeed lead to 

duplicating the degrees-of-freedom of muscles from which independent beta sources are 

extracted. 

Here we hypothesize that spectral components within the beta range in the common 

inputs to a motor neuron pool can be partially decoupled from the low-frequency 

components and, therefore, they might provide a resource for controlling additional degrees-

of-freedom concurrently with the motor control of natural limbs. To test this hypothesis, we 

used a recently validated real-time EMG decomposition technique to extract the firing 

patterns of pools of motor neurons projecting to a single muscle to directly decode the neural 

input the muscle receives (Barsakcioglu et al. 2021; Barsakcioglu & Farina 2018). These firing 

patterns allowed us to separate information about the effective drive to the muscle 

(components at low frequencies causing muscle contraction and movements) from common 

projections to the motor neuron pool in the beta band (~20Hz) that are not directly translated 

into force because of their high frequency relative to the musculoskeletal bandwidth (Farina 

et al. 2014d). With this, we tested to what extent our subjects could independently control 

components in the neural projections to muscles that do not directly determine force and 

that are therefore not directly associated with the natural control of movements (Farina & 

Negro 2015). Figure 2-1 summarizes the concept of our framework where common 

contributions to a motor neuron pool in two separate frequency bandwidths are extracted 

from real-time decomposed motor neurons to allow subjects to volitionally control them 

assisted by visual feedback. Specifically, we run two experiments to test our hypothesis. In 
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the first experiment (which is the one represented in Figure 2-1), subjects had to learn to 

perform a 2-D target-tracking task by means of which they were encouraged to independently 

control the low (translated into force) and high (outside the force production bandwidth) 

spectral components in the activity of the motor neuron pool. With this, we aimed to assess 

the suitability of common high-frequency components in the motor neuron pool for 

controlling additional degrees-of-freedom while natural motor function was unaffected. In a 

second experiment, we studied if volitional modulation of beta activity in the muscles could 

occur in the context of steady force contractions. Overall, the results of this study show for 

the first time a potential way to extract endogenous bodily signals for human motor 

augmentation that could be controlled without distorting the natural motor repertoire and, 

by doing this, we provide new insights into the possible links of beta cortical oscillations with 

motor function. 
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Figure 2-1: Real-time spectral separation of the neural output of a motor neuron pool to augment the degrees-
of-freedom of muscles. In the model used here, the spinal motor neuron pool projecting to the tibialis anterior 
muscle of the right leg receives common neural projections in a broad frequency range. These projections are 
demodulated by the motor neuron pool to produce an output neural signal that includes low frequency 
components driving movements (effective drive to the muscle; <7Hz; blue arrow projecting to the muscle). In 
addition, motor neurons send common projections to the muscle in the beta band (~20Hz; yellow arrow) and 
each neuron receives an additional input, referred to as independent noise (grey arrow). Spiking activity of motor 
neurons is decomposed in real-time from high-density surface EMG. Decomposed spiking activity is used to 
retrieve information about the effective drive and beta projections. In experiment 1, this information is fed-back 
continuously through visual feedback to subjects who are asked to volitionally modulate the activity projected to 
motor neurons to navigate a cursor in a 2-D space. 

 

2.2 Materials and Methods 

2.2.1 Subjects 

Nine male, healthy subjects (age: 28.44 ± 5.10yrs [mean ± standard deviation]) were 

recruited and participated in the study. None of the subjects were familiar with the 

experimental paradigm nor experienced any neuromuscular diseases prior to the 
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experimental sessions. The ethics committee at Imperial College London approved the 

experiments (reference number: 18IC4685). 

2.2.2 Acquisition 

High-density surface EMG (HDsEMG) was acquired from tibialis anterior muscle of the 

dominant leg with a 64-electrode grid (5 columns and 13 rows; gold-coated; 1-mm diameter; 

8-mm interelectrode distance; OT Bioelettronica, Torino, Italy). The adhesive electrode grid 

was placed over the muscle belly aligned to the fiber direction. The signals were monopolar 

recorded, amplified via a Quattrocento Amplifier (OT Bioelettronica, Torino, Italy), sampled 

at 2048Hz, A/D converted to 16 bits, and digitally band passed filtered (10 – 500Hz). The 

communication between the amplifier and the computer was conducted via data packages of 

256 samples (one buffer corresponds to a signal length of 125ms). The foot of the dominant 

leg was locked into position to allow dorsiflexion of the ankle only. The force due to ankle 

dorsiflexion was recorded via a CCT TF-022 force transducer, amplified (OT Bioelettronica, 

Torino, Italy), and low-pass filtered at 33Hz. 

2.2.3 Biofeedback 

A MATLAB (The MathWorks, Inc., MA, USA) based version of the online decomposition 

algorithm described in the next subsection together with a custom-made biofeedback suite 

were used in all experiments. The biofeedback suite provided visual feedback on discharge 

timings of single motor neurons, sub-pools or the entire motor neuron pool, the force level 

exerted by the ankle in the longitudinal plane, the rectified EMG, and included a target-

tracking environment. 
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2.2.4 Online decomposition of motor neuron activity from HDsEMG 

Online decomposition of motor neuron activity was achieved using convolutive blind 

source separation techniques (Negro et al. 2016b; Zazula & Holobar 2007) for identifying 

motor neurons. The real-time decomposition methods used in this study is extensively 

described and validated in Barsakcioglu, et al., 2021. The real-time decomposition algorithm 

is calibrated through an initial training phase during which the separation matrix, to extract 

motor neuron activity from HDsEMG recordings, is computed along with other real-time 

decomposition parameters. This step involves convolutive sphering (extension of the 

observations followed by whitening) of the recorded HDsEMG signals followed by a fixed-

point iteration algorithm to extract individual separation vectors (for each source) forming 

the separation matrix, as well as a secondary iterative procedure during which the separation 

vectors are further refined. During this calibration phase, the final separation matrix is 

designed, using the whitening transformation matrix, such that the whitening, which involves 

singular value decomposition, is not required during the real-time decomposition, saving 

computational resources during real-time operation.  

The real-time decomposition phase comprises several processing steps until the final 

discharge timings of extracted motor neurons are determined. First is the extension of 

observations (i.e. recorded HDsEMG signals) followed by extraction of spike trains by 

multiplying the extended observations with the separation matrix. The extracted spike trains 

are squared, and the peaks are detected. The detected peaks are compared to noise and 

signal centroids (computed during the training stage) using Euclidean distance. The 

timestamps of each peak, classified as a valid discharge, is then output together with the 

information about which motor neuron it belongs to (i.e. spike label).  
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2.2.5 Intramuscular Coherence 

The intramuscular coherence (IMC) quantifies common inputs to the motor neuron 

pool in the different frequency bands (Castronovo et al. 2015; Dideriksen et al. 2018). The 

IMC was estimated by first randomly dividing the pool of motor neurons into two sub-pools 

of equal size, followed by calculating the maximum squared coherence between the spiking 

activity of the cumulative spike train (CST) obtained from the two pools by summing the 

spiking activity of the motor neurons in the two pools. This way the IMC was estimated as: 

 ( ) =  , ( )( ) ( )  Eq. 2-1 

where ( ) and ( ) are the power spectral densities of both CSTs (Welch’s, 

Hanning windows of 4s, 50% overlap), and , ( ) is the cross power spectral density. This 

procedure was repeated 100 times while the two motor neuron pools were randomly 

selected in each permutation. The average of all permutations was used to determine the 

peak of the common beta activity present in the motor neuron pool.  

Although the detected motor neuron pool is only a small sample of all motor neuron 

innervating the TA, this subgroup is sufficient to estimate the common neural input present 

to the entire anatomical pool of motor neurons (Barsakcioglu et al. 2021). 

2.2.6 Experimental Paradigm 

Pre-experimental Processing 

Subjects were asked to perform maximum isometric dorsiflexion of the right ankle to 

estimate the maximum voluntary contraction force (MVC) that the tibialis anterior could 

produce. The estimated MVC was then set as a reference for the subsequent parts of the 
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experiment. In a sub-MVC task, subjects were instructed to follow a 4s ramp trajectory (2.5% 

MVC per second) followed by a constant phase at 10% MVC of 40s. In both experiments, 

visually-guided force feedback produced by isometric tibialis anterior contractions was 

provided. Based on the EMG recorded during this sub-MVC task, the separation matrix used 

by the online decomposition algorithm was generated. The real-time estimates of motor 

neuron firing were visually presented to the subjects to make them recruit motor neurons 

one after another by gradually increasing the contraction level to 10% MVC. This pre-

experimental task was performed to visually inspect the decomposition results before 

proceeding with the main experiment as previously done in (Barsakcioglu et al. 2021). 

Notably, all subjects quickly succeeded (i.e. less than 10min) in recruiting single motor 

neurons progressively by producing mild contractions.  

After initializing the online decomposition algorithm, subjects were asked to perform an 

isometric contraction at 10% of the MVC for 40s while receiving visual feedback about the 

force exerted by the ankle. The motor neuron activity extracted from this period was used to 

generate the feature space for the following experimental sessions. The feature space was 

composed of two spectral components based on the neural input to the identified motor 

neuron pool. The estimation of this neural input corresponds with the CST, which is the sum 

of all discharge time series of all detected motor neurons. Both spectral features were 

obtained by bandpass filtering (3rd-order Butterworth bandpass filter) the CST and calculating 

the power of the filtered CST (FCST) over 256 samples to mimic the data stream present 

during the experiments. The cut-off frequencies for the bandpass of the low-frequency 

feature were set to 1-6Hz representing information within the effective bandwidth of motor 

control. The bandpass characteristics for the high-frequency feature were obtained by 

centering a 5Hz band around the most dominant frequency peak in the common beta activity 
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projected to the motor neuron pool. This peak was estimated by calculating the IMC. The 

standard deviations and the maximums of the obtained values for both features were used 

to standardize and maximum-norm the feature values during the following experiments. 

 

Figure 2-2: Schematic overview of the pre-processing and feedback chain during the target-tracking task. 
HDsEMG acquisition from the tibialis anterior and real-time decomposition of active motor neuron discharge 
timings. The sum of all detected motor neuron, i.e. the CST, is filtered in the respective feature bandwidths (green: 
low-frequency feature inside the effective bandwidth of muscle control; blue: high-frequency feature inside the 
beta band). Finally, the features are estimated by calculating the power of each individual FCST, mapped into the 
cursor coordinates, and backpropagated to the subjects via visual feedback by cursor movement inside the 2-D 
space. 

 

Experiment 1.1 – Target Tracking Task 

In the first experiment, subjects had to navigate a cursor in a 2-D space by modulating 

the common motor neuron activity within two spectral bands: i) inside the effective 

bandwidth of muscle control (1-6Hz); and ii) in a higher frequency band (beta band) known 

to receive an important amount of cortical common inputs (5Hz band centered around the 

peak frequency of the IMC within the beta spectrum). The standardized power of the signals 

in these two bands was maximum-normed and used to create a 2-D manifold (feature space) 

with units between 0 and 1 along both axes. The feature space included three targets of equal 

size placed along the low (TI: 0.7 F1, 0.1 F2 [distance from the origin scaled to the amplitude 

of the low- and high-frequency features F1 and F2]), high-frequency axis (TII: 0.1 F1, 0.7 F2), 
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and their diagonal (TIII: 0.5 F1, 0.5 F2), with their centers having all the same distance to the 

origin (see Figure 2-2). The target radius was set to 30% of the scaled feature amplitude. This 

target design was determined in pilot studies preceding the experiments. The final selection 

of target size and placement aimed to encourage naïve subjects to explore the feature space 

while ensuring that target hits could be achieved.  

The acquired HD-EMG signals were online decomposed and filtered in the respective bands 

as described above. Newly acquired data led to new values for F1 and F2 which determined 

the cursor’s position inside the target space (see Figure 2-2). The cursor movement was 

smoothed over six buffers (correspondence to 750ms) using a moving average to smooth the 

estimates of the cursor’s position for the visual presentation. In an initial familiarization 

phase, subjects were instructed to explore the target space while TI and TII were displayed. 

The gain to reach each target was set manually to ensure subjects could reach the targets 

without overexerting themselves to prevent symptoms of muscle fatigue. On average, the 

gain was increased to 1.98±0.89 F1 and 2.22±0.95 F2 for the low- and high-frequency 

features, respectively.  

The first part of the experiment was a target-tracking task, where the subjects were asked to 

move the cursor within 40s from the coordinate origin (0 F1, 0 F2) inside one of the three 

targets (randomly selected) and hold it there for at least seven buffers (one buffer size longer 

than the moving average; this corresponds to 875ms). In total, each target was presented 

three times, while the same target never appeared in two consecutive trials. At the end of 

each trial, subjects needed to move the cursor back into the resting position (origin of the 

coordinate system) and stay there for at least 10s before the new target was presented. A 

target hit was indicated via a color change of the target-of-interest from blue to green, while 

the color switched black when the subject failed to reach it within the 40s-time window.  
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Experiment 1.2 – Force-Tracking Task 

In a force feedback task, performed afterwards, subjects were instructed to follow the 

mean forces they had used to keep the cursor inside the target-of-interest area. For this 

purpose, the force exerted during the 875ms preceding a target hit was averaged across all 

successful trials. Subjects were provided with visually-guided force feedback only. Each block 

consisted of three constant force trajectories, mirroring the forces used in the previous 

target-tracking task. Each force trajectory was 20s long and separated by a 20s rest period. 

The order of the force trajectories was picked randomly from trial-to-trial. In total, this task 

was repeated three times and subjects were instructed to rest for 60s between trials to avoid 

muscle fatigue. 

 

Experiment 2 – Beta Modulation Task 

The second experiment assessed whether activity in the beta bandwidth present in 

the tibialis anterior could be modulated volitionally while holding a constant force level with 

the ankle. Subjects were asked to perform a force-tracking task while they were provided with 

feedback on both the exerted force level and the beta feature amplitude from experiment 1 

(high-frequency feature: the power of the CST filtered in the beta feature bandwidth). Beta 

power was calculated in the same way as in the target-tracking task. Information on both the 

force and the beta feature amplitudes were fed-back visually to the subjects by two plots in 

different colours that were drawn along a time axis as each trial was run. One trial consisted 

of two phases where the subject was asked to keep the force constant at 10% MVC level while 

the beta feature amplitude should be either increased (beta up-modulation) or decreased 
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(beta down-modulation). The order of the beta up- and down-modulation phases was 

randomized on a trial-by-trial basis. Both phases were separated by 20s rest intervals during 

which subjects were asked to relax. Ten seconds before the modulation started, subjects were 

instructed to gradually start exerting the required force of 10% of the MVC. In total, this task 

was repeated over three trials while subjects were instructed to rest for 60s between trials to 

avoid muscle fatigue. 

2.2.7 Analysis 

Experiment 1.1 – Target-tracking Task 

All subjects participated in this experiment. If a subject failed to navigate the cursor 

towards the target-of-interest and to hold it inside for the 875ms period, the nearest miss 

position was estimated. A nearest miss is the average cursor position during the 875ms 

interval during which the cursor has the shortest distance to the centre of the selected target-

of-interest.  

In addition, unintended hits were used as an approach to quantify the probability of cursors 

hitting non-selected targets before the end of both successful and unsuccessful trials. An 

unintended hit described the case when the cursor was held inside a non-selected target for 

at least 875ms. As these did not terminate the trial, unintended hits of the same target could 

happen multiple times as long as the subject reentered the non-selected target recurrently.

 TI and TII have the longest centre-to-centre distance inside the cursor space as they 

required the activation of one feature while suppressing the other. A chance analysis was 

performed to quantify the probability that the cursor was navigated and held inside either TI 

or TII without hitting the other target before, i.e. the probability of hitting the target-of-

interest TI without a preceding hit of TII, and vice versa. All hits that happened without 
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preceding unintended hits of the other target area were marked as True, while no hits or 

preceding unintended hits as False. The chance level was estimated by repeating this analysis 

on the data gained during the force-tracking task (see section 2.2.7) where no feedback on 

the cursor movement was given. 

Experiment 1.2 – Force-tracking Task 

All subjects participated in this experiment. The recorded EMG during the force 

tracking task was decomposed and filtered in low- and high-frequency feature bandwidths, 

as described above, to simulate cursor movement. The analysis of hits and unintended hits 

was repeated for the cursor movement based on the neural activity recorded during the 

force-tracking task, whereas the target-of-interest corresponded to the associated force 

trajectory. Moreover, the chance analysis, as described above (see section 2.2.7), was 

repeated. Particularly, these results of the force-tracking task were used to estimate the 

chance level. 

Experiment 2 – Beta Modulation Task 

The mean beta feature amplitude during both beta up- and down-modulation was 

normalized with the mean beta feature amplitude during the control condition (10% MVC 

visually-guided force feedback only). Other functional parameters recorded during the 

modulation phases were also normalized with the respective value gained during the control 

condition including the mean force, mean rectified EMG, mean low-frequency feature 

amplitude (standardized and maximum-normed power of the CST filtered between 1-6Hz), 

coefficient of variation (CoV) of the force, CoV of the rectified EMG, and CoV of the beta 

feature amplitude. Moreover, this analysis included parameters as the number of active 
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motor neuron as well as their discharge rates. A motor neuron was classified as active when 

its discharge rate during the modulation phases (20s time window, 10% MVC force level) was 

between 4-30 spikes-per-second.  

Motor neurons that turned inactive during one of the beta modulation phases were excluded 

from the analysis. Thus, the beta feature amplitude was recalculated posterior without 

considering these motor neurons. The power spectral density (PSD) of the CST was estimated 

using Welch’s method (Hanning window, window length: 4s, 50% overlap). One subject was 

excluded from the analysis as it failed to keep behavioural indicators as force and rectified 

EMG power at the corresponding amplitudes while modulating beta activity. 

2.2.8 Statistics 

Statistical analysis was performed to examine the dependency between two or more 

variables. Results were reported as mean ± standard deviation. To compare two variables 

during different conditions, a two-sided pairwise t-test was performed. The normality was 

tested by using a Shapiro-Wilk test. If the normality assumption was violated, a two-sided 

Wilcoxon signed rank test was performed instead. However, if the difference between the 

two variables was not symmetrically distributed, a sign test was used. If more than two 

variables were the objective, a repeated measures ANOVA was used. If the normality 

assumptions were not met, Friedman test was performed instead. Post hoc tests were 

Bonferroni corrected. The threshold for the statistical significance was set to p<0.05. 
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2.3 Results 

2.3.1 Online decomposition and single motor neuron control 

In total, 95 motor neurons, 11.9±2.3 motor neurons on average per subject, were 

detected. Prior to the start of the experiments, subjects were given time to become familiar 

with single motor neuron control by providing them with visual feedback on the motor 

neuron spiking activity (see 2.2.6). 

2.3.2 Experiment 1: Target Tracking & Force 

In experiment 1 we assessed whether low- and high-frequency components of the 

neural signal that projects to a motor neuron pool and ultimately determine muscle activation 

can be used to control the movements of a cursor in a 2-D space. 

 

Figure 2-3: Cursor trajectory of one subject during the target-tracking task (experiment 1). Interpolated cursor 
trajectories during all trials of the target-tracking experiment of one representative subject, all targets, and their 
centres (black cross). Trial I, II, and III represent the first, second, and third appearance of each target, 
respectively. The colour intensity of the cursor trajectory increases over time. 

The cursor trajectory of one subject during all trials is visualized in Figure 2-3. 

According to the criteria defining a target hit explained in the methods section (see section 

2.2.6), 92.6% of all trials were successful (96.3% for TI, 81.5% for TII, and 100% for TIII). 

Moreover, all subjects managed to hit all three targets at least once. Figure 2-4A illustrates 

the cursor movement during the successful trials. When zooming into Figure 2-4A (left), a 
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trend of each of the cursor movements towards the corresponding target was observed. The 

average position during the hold period before a hit as well as the nearest misses (the closest 

cursor position towards the target centre within an 875ms time interval) during unsuccessful 

trials are shown in Figure 2-4B. In line with the observations in the cursor movements, the 

cursor end positions are distributed within the corresponding targets. Only three cursor end 

positions of TIII shared a subspace with endpoints of target TII. Therefore, both the cursor 

movement and the end-point trajectories indicated that all subjects were able to navigate 

within this 2-D manifold to reach the presented targets. This indicates an effective 

augmentation of human motor output from one dimensional natural control of the pool of 

motor neurons to a two-dimensional control that includes a second dimension from neural 

features not directly translated into natural movement.  

Despite the spreading of coordinates almost over the entire space, the previous analysis did 

not reveal whether subjects preferred certain subspaces or directions within the manifold in 

which they moved the cursor primarily. To study if favoured directions were seen in the 

movements of the cursor made by the subjects, we computed the two principal components 

(PCs) of all cursor coordinates in the 2-D space for each subject (Figure 2-4C). On average the 

first PC explained 64.72±6.59% and the second one 35.28±6.59% of the total variability of the 

cursor coordinate arrangement, which indicates that the first dimension (under natural 

control) was favoured by the subjects but that the second dimension (spectrally separated 

from force generation) was also strongly represented. 

Taken together, the above findings point to the fact that subjects managed to explore 

major parts of the feature space while separately controlling the two features used for 

navigation in the 2-D plane. 
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Figure 2-4: Cursor movement during the target-tracking task (experiment 1). A: Cursor movement during all 
successful trials for all three targets, and all three targets and their centers (black cross). Each dot represents one 
cursor position. Left inset shows zoomed-in cursor space that was shown to the subjects for each target and the 
respective cursor movement. B: Average position during hit and nearest miss intervals (875 ms) for each trial and 
all targets, overlaid by all three targets and their centers (black cross). C: The first two principal components and 
their explained variability of all demeaned cursor coordinates averaged across all subjects. Black bars indicate 
the standard deviation. Each circle represents one subject (n=9). Mean position of the first and second principal 
component (black line) and their standard deviation (blue and orange shaded areas, respectively) in relation to 
the high- and low-frequency feature axes. 

The mean forces exerted during the hit and nearest miss periods across all subjects 

were 8.89±5.59% of the MVC, 13.01±2.70% MVC, and 11.72±4.02% MVC, for TI, TII, and TIII, 

respectively (see Supplement 2-1A). The mean CoV of the force during hits and nearest misses 

across all subjects were 15.91±4.68%, 3.76±0.80%, and 6.94±1.23%, for TI, TII, and TIII, 
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respectively (see Supplement 2-1B). For both the magnitude and variability of the force during 

hits and nearest misses, an ANOVA revealed a significant difference between the three targets 

(mean force, Friedman’s test, Χ2(2)=6.89, p=0.032, n=9; CoV, Friedman’s test, Χ2(2)=9.56, 

p=0.008, n=9); however, post-hoc analysis did not reveal significant differences (p>0.05). The 

time-to-target across all subjects did not change during the task with an average time to reach 

the target-of-interest of 9.47±1.43s, 9.21±1.34s, and 9.72±1.46s in the first, second, and third 

trial, respectively (repeated measures ANOVA, F(2,16)=0.03, p=0.968, n=9; see Supplement 

2-1C), which suggests no improvement of performance on the small time scale of the 

experiment. The mean time across all trials to reach TI, TII, and TIII was significantly different 

with 11.79±0.82s, 12.89±1.97s, and 5.20±0.57s, respectively (repeated measures ANOVA, 

F(2,16)=11.77, p=0.001, n=9). A post-hoc test revealed that subjects were able to hit TIII 

significantly faster than TI (two-sided t-test Bonferroni corrected, t(8)=6.38, P=0.001, n=9) or 

TII (two-sided t-test Bonferroni corrected, t(8)=3.71, p=0.018, n=9). 

Since the results presented only informed about the cursor hitting the target-of-

interest in the given window of time, an additional analysis was performed to quantify the 

probability of cursors hitting non-selected targets before the end of each trial. Specifically, 

unintended hits were defined as the cases when the cursor was navigated and held inside a 

non-selected target for at least 875ms. Unintended hits of the same target could occur 

multiple times per trial if the subject re-entered the non-selected target area successively. On 

average unintended hits of TIII occurred multiple times per trial regardless of the current 

target-of-interest. This observation, as well as the time-to-target analysis, suggest that TIII, 

which required concurrent activation of both features, was the easiest target to reach for all 

subjects. TI and TII, which were associated with the increase of one feature while suppressing 

the other (thus maximally decorrelating the two features), required more effort. Figure 2-5 
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shows the relative amount of all hits and unintended hits across all targets and subjects. It 

has to be noted that the presence of unintended hits does not imply that the features could 

not be decorrelated but only that the subjects needed to extensively explore the 2-D space 

before hitting the selected target, especially before reaching the targets TI and TII. Notably, 

37.04% of all attempts hitting either TI or TII were successful without any unintended hits.  

 

Figure 2-5: Target hits during target- and force tracking task. Relative occurrence of target hits (green) and 
unintended hits (preceding hit of a non-selected target prior to the hit of the target-of-interest; grey), i.e. the 
absolute number of (false) hits divided by the total number of trials per target-of-interest (ToI). Results are shown 
across all subjects for targets TI (left), TII (middle), and TIII (right) for the target-tracking task (TT). Corresponding 
results of the force-tracking task (F) (control condition; see text) are shown by the lighter colors. 

In order to assess the importance of providing feedback on both spectral features 

enabling subjects to perform the target-tracking task, a control condition, i.e. the force-

tracking task (see section 2.2.6), was included. In a post-processing step, the cursor 

movement was simulated using the underlying neural activity recorded during the force-

tracking task. Figure 2-5 compares the percentage of target hits in the initial target-tracking 

task and the subsequent control force-tracking task. Using the activity of motor neurons 

during the force-tracking task, TI, TII, and TIII were hit in 7.41%, 18.52% and 22.22% of all 
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trials, which indicates that without feedback the subjects did not naturally explore the two-

dimensional space.   

TI and TII are the two targets that have the most distinct placement inside the feature space. 

However, Figure 2-5 shows that regardless of which of those two targets was presented as 

the target-of-interest to the subject, in certain trials, unintended hits of the other target 

occurred. Therefore, the chance level of hitting TI and TII was estimated, which is the cutoff 

probability that one of these targets was intentionally hit without navigating the cursor in the 

other non-selected target. All hits that happened without preceding unintended hits of the 

other target area were marked as True, while no hits or preceding unintended hits as False 

(see Figure 2-6). The results during the force task were used as an estimation of the chance 

level. From this analysis, across all trials, subjects managed to move and keep the cursor as 

instructed insight the target area of TI and TII by exceeding the chance level (see Figure 2-6) 

 

Figure 2-6: Chance level analysis for target- and force-tracking task. Chance level analysis of a hit in target TI 
or TII in the target-tracking task (left) and force-tracking task (right). ‘True’ implies that the target-of-interest, 
i.e. either TI or TII, was hit without a preceding hit of the other target whereas ‘False’ includes all cases where 
the target-of-interest was missed, or the other target was hit before the trial finished. 

2.3.3 Experiment 2: Beta modulation during steady contractions 

Experiment 1 showed that common 1-6Hz and beta frequency features in the motor 

neuron pool can be partially uncorrelated with biofeedback. However, these results were 
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obtained by using variable force contractions (i.e., force was not constrained; see 

supplementary material). As subjects received no visual feedback on force, these 

uncontrolled dynamics in the motor output might have influenced the activation of the beta 

frequency feature. Therefore, we designed experiment 2 to assess whether the beta 

component present in the tibialis anterior during sustained contractions could be modulated 

while the contraction force was kept constant (i.e., isolated changes in the beta component 

present in the motor neuron pool; see section 2.2.6).  

The beta activity, force and global EMG for a single trial are shown in Figure 2-7A. The phases 

during which the subject needed to modulate muscle beta activity are marked in red and blue 

for beta up- and down-modulation, respectively. Importantly, the subject was able to 

modulate the beta activity in the muscle as instructed while force and global EMG were kept 

unchanged (see Figure 2-7B). The mean beta feature amplitude across all subjects, normalized 

against the amplitude in the control condition, decreased significantly from 1.47±0.40 to 

1.09±0.20 during beta up-modulation to beta down-modulation (two-sided paired sample t-

test, t(7)=3.44, p=0.011, n=8). Hence, the task led to a substantial increase of almost 50% in 

the mean beta feature amplitude during up-modulation compared to the control condition, 

without any changes in force. On the contrary, in the down-modulation phases, no significant 

changes of beta activity were observed (repeated measures ANOVA, F(2,14)=11.13, p=0.001, 

n=8; post-hoc comparison between beta down-modulation and control set: two-sided t-test 

Bonferroni corrected, t(7)=1.46, p=0.561, n=8; post-hoc comparison between beta up-

modulation and control set: two-sided t-test Bonferroni corrected, t(7)=3.47, p=0.031, n=8). 
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Figure 2-7: Overview of beta modulation during steady contractions. A: Beta feature amplitude, force and 
rectified EMG trajectories for a single trial and subject in the beta modulation task (experiment 2). Red indicates 
the beta up-modulation interval whereas blue the beta down-modulation one. B: Normalised beta feature 
amplitude for both modulation conditions. Black bars indicate the standard error of the mean, grey points the 
mean value for each subject (n=8), while the grey line combines data points of the same subject. C: Mean power 
spectral density of motor neuron CST during beta up- and down-modulation for a single representative subject. 
Grey box indicates the beta feature bandwidth. D: Ratio of beta up-modulation power to beta down-modulation 
power inside the beta feature bandwidth (light grey) and outside the beta band (up to 100Hz; dark grey) for PSD 
across all subjects (n=8), shown by their median and quartiles. *p<0.05. 

Control measurements of various variables apart from the beta activity, i.e. force, 

global EMG power, and the number of decoded motor neurons (firing rate above 4 and below 

30 pulses-per-second [pps]), did not suggest any other significant changes apart from the one 

in beta activity. Only the motor neuron discharge rate changed (although minimally) from 

11.78±2.70 pps to 11.38±2.65 pps for up- and down-modulation, respectively, with borderline 

significance (two-sided paired sample t-test on the normalized discharge rate [1.17±0.11 and 

1.13±0.13], t(7)=2.37, p=0.050, n=8). Further details are given in the supplementary materials 
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(see Supplement 2-2). Although the number of active motor neurons was reduced in certain 

blocks, the relationship between beta feature amplitudes during up- and down-modulation 

remained unaffected when recalculated with the shrunk set of motor neurons (two-sided t-

test of normalized beta up- and down-modulation with reduced set of motor neurons 

[1.46±0.74 and 1.06±0.44], t(7)=3.03, p=0.019, n=8; see section 2.2.7). 

The modulation of the beta content in the decomposed motor neuron pools resulted in 

changes in the spectral properties of the CST. Figure 2-7C exemplifies this effect by illustrating 

the mean PSD of the CST for a representative subject during beta up- and down-modulation. 

The grey box indicates the beta feature bandwidth estimated before the target-tracking 

experiment. The power spectrum was raised in the feature bandwidth while the subject 

increased the overall beta feature activity. Figure 2-7D compares the ratios of the mean PSD 

during beta up- to beta down-modulation intervals inside the feature bandwidth relative to 

the spectral content outside of the beta band (up to 100Hz). A rise in activity inside the feature 

bandwidth (1.31±0.32) occurred during increased beta activity while an absence of this effect 

was observed outside the beta range (1.01±0.05; two-sided paired sample t-test, t(7)=3.00, 

p=0.020, n=8). 

 

2.4 Discussion 

Concomitant control of supernumerary and natural limbs requires using independent 

command signals. Ultimately, human augmentation through artificial devices should ideally 

rely on the control of biological signals that have no direct involvement in the natural motor 

repertoire (Makin et al. 2017). Here we characterized in real-time the spiking activity of pools 
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of motor neurons projecting to a single muscle to test if the activity in the beta band (13-

30Hz) shared by the neurons could be volitionally controlled independently from voluntary 

muscle contractions. With the two sets of experiments run here we show for the first time 

that beta activity in the motor neuron pool of a muscle can be partially uncorrelated from the 

effective drive to the muscles at low frequencies that causes force production, and that this 

could potentially be used to expand the degrees-of-freedom of a muscle for human-machine 

interface applications.  

We designed a feedback paradigm which used as inputs the spiking activity of tens of 

motor neurons projecting to a single muscle and decomposed in real-time from HDsEMG. The 

designed paradigm allowed us to provide feedback to the subjects about both the contents 

of the decomposed motor neurons within the beta range and in the low (1-6Hz) frequency 

band. Importantly, these two spectral components have been suggested to have different 

links to movements: while low-frequency components have been shown to be highly 

correlated with voluntary muscle contractions, beta oscillations have been associated with 

cortical projections to the muscles without a clear or direct role in motor function (Baker 

2007). Results showed that most subjects controlled a cursor in a 2-D space to hit specific 

targets above chance levels by partially decorrelating the low- and beta-band components in 

the motor neuron pool. The distribution of the end point trajectories suggested that subjects 

were able to volitionally place and hold the cursor in the designated target areas. Despite TIII 

having intersection areas with TI and TII, the end points were separated across targets (only 

three end points of TIII also belonged to the cluster of TII; see Figure 2-4). The target hit and 

time-to-target analyses revealed that the simultaneous up-modulation of both features (i.e., 

increasing the power of the motor neuron activity within the low and beta frequency bands) 

was successfully achieved in most cases. On the contrary, subjects took longer to reach 
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towards target areas when the selective promotion of one feature only was required, i.e. the 

decorrelation of the two features. In particular, subjects showed a limited ability to move the 

cursor inside the target area that required concurrent suppression of the beta activity while 

promoting the low-frequency feature. To eventually navigate the cursor towards the target 

area, the force analysis presented in Supplement 2-1 revealed that subjects had used less-

steady contractions for the targets that required pronounced beta activity. Thus, subjects 

used this compensatory movements as a strategy to overcome the limitations of suppressing 

beta activity during constant contractions. This attenuation of activity inside the beta band 

during the performance of variations in movement is in agreement with previous studies (see 

Kilavik, et al., 2013 for a review (Kilavik et al. 2013)). Furthermore, when we then asked 

subjects to perform a constant force output, they failed to suppress beta activity.  

The frequency components inside the beta range of the motor neuron pool are cancelled-out 

completely in the force output due to the low-pass filter characteristics of the muscle (Farina 

& Negro 2015). In fact, their functional role in movement generation is not fully understood 

(Baker 2007; Engel & Fries 2010; Jenkinson & Brown 2011; Little et al. 2019). While in other 

cortical structures, e.g. the primary visual cortex, different frequency bands comprise well-

described decoupled functionalities (Belitski et al. 2008; Kayser & König 2004), such clear 

assignments are yet to be defined for motor cortical structures. Motor cortical activity within 

the beta range has been suggested to act as a regulator to maintain the current state of the 

force output (Engel & Fries 2010), a probability estimator rather than a motor control signal 

per se (Jenkinson & Brown 2011), or a state-informing signal enabling sensorimotor 

integration (Baker 2007). Our results indicate that beta activity may not be fully linked to 

motor function: in our experiments, subjects were able to modulate beta activity while 

keeping the force output unchanged. Furthermore, the accuracy of force control did not 
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decrease when subjects voluntarily promoted beta activity. Recent studies have indicated 

that beta oscillations may not be directly linked with motor function but rather with a form 

of state definition when updates in the motor system are needed (Little et al. 2019; Shin et 

al. 2017). While it still remains unclear how coherent corticomuscular beta is originated in the 

latter case (Thompson et al. 2019), our findings are aligned with this type of processing: beta 

modulations do not directly affect motor function and thus beta activity can be promoted 

probably by increasing the occurrence of beta events.  

During both experiments run in this study, subjects were required to gain, at least partially, 

control over a biological signal (beta activity in motor neurons) that is outside the dynamics 

of the neuromuscular system (Farina et al. 2014d). To train subjects to modulate the beta 

activity in the common neural commands to the muscle, we used an operant conditioning 

framework. Subjects received a reward or punishment (through visual feedback), for 

example, when they were able or failed to navigate the cursor into the correct target during 

experiment 1. Previous brain-computer interface studies have shown that such frameworks 

can enable subjects to gain control over spectral features extracted from cortical signals 

during periods of no motor activity (Bashford et al. 2018; Wolpaw & McFarland 2004). Further 

experiments are needed to investigate the relevance of using visual feedback and the 

influence of the type of feedback given to subjects to allow volitional modulation of common 

beta activity in motor neurons. 

Recent studies have shown that motor cortical oscillations can be used to control 

supernumerary degrees-of-freedom while maintaining motor activity by using highly invasive 

brain implants (Bashford et al. 2018) or by triggering predefined motions of a robotic arm 

during motor imagination tasks (Penaloza & Nishio 2018). In our study, however, we proposed 

a novel communication channel, which is accessible non-invasively via a wearable neural 
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interface that could allow healthy individuals to expand the boundaries of human motor 

control. We showed that most subjects were able to explore a large section of the 2-D space, 

and to place and hold the cursor inside certain targets during the target-tracking task. Yet, 

despite the existence of a favoured direction in which subjects moved the cursor, the PCA 

revealed that a continuous cursor movement along two orthogonal axes inside the 2-D space 

was possible. This demonstrates the potential of controlling supernumerary degrees-of-

freedom non-invasively by partially decorrelating spectral features present in the motor 

neuron pool and decoded with wearable (non-invasive) peripheral interfaces.  

The novel neural interface, including a real-time decomposition algorithm (Barsakcioglu 

et al. 2021; Barsakcioglu & Farina 2018), enabled us to study the activity of a single motor 

neuron pool in isolation. Hence, all physiological observations gained throughout the 

experiment are truly generated by the observed muscle and its motor neuron pool. In 

addition, we restricted the leg into position to allow dorsiflexion of the ankle only and 

instructed subjects to keep a stable body position throughout the experiments. Although, we 

did not track the movement of other body parts, e.g. hip, knee and trunk, and the activity in 

the related motor neuron pools which may affect the behaviour of the single pool we have 

observed, the force and global EMG profiles provided no evidence for co-contracted 

antagonist muscles during the beta modulation task. Thus, the analysis presented here most 

likely revealed a command signal inside the neural input to the motor neuron pool examined 

that is not translated into movement of the corresponding muscle but, to some extent, can 

be modulated in isolation.  

The decomposition algorithm employed in this study uses a separation matrix to deconvolute 

EMG to the underlying neural activity in real-time. The initialization of this separation matrix 

is performed on a set of EMG data recorded prior to the experiment (see section 2.2.4) and is 
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not altered for the duration of the experiment (Barsakcioglu et al. 2021). However, the quality 

of the EMG signal may worsen over time, for example, due to the accumulation of sweat 

between the skin and the electrode (Ribeiro et al. 2019). Such negative influences on the 

electrode-skin contact may result in misclassification of neural spiking activity. This issue can 

be overcome by adaptive decomposition (as in (Chen et al. 2020)), but in this study we have 

not implemented adaptive strategies to assure that the same motor neurons were sampled 

during the experiments for each subject. For this reason, we have chosen to limit the number 

of trials per experiment to ensure subjects having enough time to explore the augmented 

control strategies as well as to reach a high quality in neural spike detection throughout the 

experimental session. 

The method proposed here based on extracting high-frequency components from 

motor neuron activity inherently relies on the recorded muscle being active (Barsakcioglu et 

al. 2021), as it depends on the characterization of motor neuron action potentials. 

Nevertheless, the results of experiment 2 indicate that natural force control was not critically 

altered while subjects gained partially control over the high-frequency feature. Furthermore, 

the independent modulation of high-frequency components present in the motor neuron 

pool was tested in isometric conditions only. Future research aims to probe the feasibility of 

using beta activity to drive supernumerary degrees-of-freedom should include additional 

investigations during dynamic muscle contractions. Moreover, the aspect of learning should 

be addressed by focusing on the temporal evolution of beta control. The current results, 

however, present the first evidence of a potential resource for controlling additional degrees-

of-freedom without the need of an invasive signal acquisition. 
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In conclusion, we demonstrated the ability to decorrelate high-frequency (inside the 

beta range) from low-frequency components of the neural code in the motor neuron pool by 

using a wearable neural interface. We showed that subjects were able to modulate activity 

within the beta band while maintaining a steady force output. Further investigations on 

whether the observed behaviour of beta rhythms in the periphery are also present at the 

cortical level might generate a better understanding of the underpinning phenomena. 

Nevertheless, these results provide first evidence for the potential of beta activity in non-

invasive human augmentation applications to create the basis for a control channel parallel 

to natural movements. 

 

2.5 Supplementary Material 

 

Supplement 2-1: A: Mean force per subject during the hit and nearest miss time interval (875 ms) shown with its 
median and quartiles for all three targets. B: Mean coefficient of variation of force per subject during hit and 
nearest miss interval (875 ms) shown with its median and quartiles for all three targets. C: Mean time to reach 
each target in each trial across all subjects. Vertical bars indicate the standard error of the mean. 
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Supplement 2-2: Various functional parameters (find the explanation below) normed by the control condition for 
beta up- and down-modulation phases averaged across all subjects. Black bars indicate the standard error of the 
mean, grey points the mean value for each subject, while the grey line combines data points of the same subject 
Force: force amplitude; EMG: rectified EMG; CoV Force: CoV of force amplitude; CoV EMG: CoV of rectified EMG; 
Number of active motor neuron: number of motor neuron with a discharge rate between 4-30 spikes-per-second; 
DR: discharge rate; CoV Beta: CoV of beta feature amplitude; Low-Freq Feature: low-frequency feature (CST 
filtered in 1-6 Hz) amplitude. * p < 0.05. 
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CCHAPTER 3 THE ORIGIN AND NATURE OF 

BETA IN THE MOTOR NEURON POOL1 

 

Beta oscillations (13-30Hz) are ubiquitous in the human motor nervous system. In 

Chapter 2, I have shown that beta components present in a motor neuron pool can be 

modulated volitionally without significantly altering the force output of the innervated 

muscle. Thus, these oscillations may provide a resource for extending human motor function. 

Yet, their origin and role in movement generation are unclear. Traditionally, beta activity has 

been treated as a stationary signal. However, recent studies observed that cortical beta 

occurs in ‘bursting events’, which are transmitted to muscles. This short-lived nature of beta 

events makes it possible to study the relationship between beta activity found in the muscles 

and cortical beta. Here, we assessed if muscle beta activity mainly results from cortical 

projections. We ran two experiments in healthy humans of both sexes (N=15 and N=13, 

 
1 This chapter was published as “Reading and Modulating Cortical β Bursts from Motor Unit Spiking Activity” in 
Journal of Neuroscience (2022) with the co-authors Deren Y. Barsakcioglu2, Alessandro Del Vecchio3, Jaime 
Ibañez2,5,6,* and Dario Farina2,*; see (Bräcklein et al. 2022b).  
Data acquisition of Experiment I was performed by Alessandro Del Vecchio and Jaime Ibañez. 
The abstract was slightly altered to ensure logical flow of the thesis. 
2 Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, 
Imperial College London, London W12 0BZ, United Kingdom 
3 Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-
Nuremberg, Erlangen 91052, Germany 
4 Biomedical Signal Interpretation and Computational Simulation (BSICoS), Instituto de Investigación Sanitaria 
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respectively) to characterize beta activity at the cortical and motor unit (MU) levels during 

isometric contractions of the tibialis anterior muscle. We found that beta rhythms observed 

at the cortical and MU levels are indeed in bursts. These bursts appeared to be time-locked 

and had comparable average durations (40-80ms) and rates (~3-4 bursts/second). To further 

confirm that cortical and MU beta have the same source, we used a novel operant 

conditioning framework to allow subjects to volitionally modulate MU beta. We showed that 

volitional modulation of beta activity at the MU level was possible with minimal subject 

learning and was paralleled by similar changes in cortical beta activity. These results support 

the hypothesis that MU beta mainly results from cortical projections. Moreover, they 

demonstrate the possibility of decoding cortical beta activity from MU recordings, potentially 

translating it to future neural interfaces that use peripheral information to identify and 

modulate activity in the central nervous system. 

 

3.1 Introduction 

Neural oscillations of brain activity in the beta range (13-30Hz) are ubiquitous in the 

motor nervous system (Kilavik et al. 2013). Alongside their pervasive appearance in the brain, 

beta oscillations with cortical origin are transmitted linearly and at fast and stable speeds to 

tonically active muscles (Ibáñez et al. 2021; Witham et al. 2011). Beta activity can indeed 

represent an important portion of the neural inputs received by spinal motor neurons and 

their innervated muscle fibres, i.e. MUs (Dideriksen et al. 2018; Farina et al. 2014d; Grosse et 

al. 2002). However, the prominence of beta activity at the MU level contrasts with the fact 

that, so far, it has been difficult to find a direct link between these oscillations and motor 

function (Baker 2007; Davis et al. 2012; Engel & Fries 2010; Jenkinson & Brown 2011; Little et 
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al. 2019). One aspect of beta inputs to MU that makes them hard to study is not knowing 

which main sources are contributing to these inputs. Are the characteristics of beta activity in 

MUs similar to the non-stationary features of beta oscillations at the cortical level? Is the 

motor cortex the main structure projecting common beta inputs to muscles? Or are there 

other relevant sources elsewhere in the central nervous system?  

An interesting recent observation is that cortical beta activity is not a continuous signal, but 

it appears in short-lived bursts (Bonaiuto et al. 2021; Feingold et al. 2015; Little et al. 2019; 

Pfurtscheller et al. 2005; Shin et al. 2017). Such temporal non-stationary characteristics of 

beta activity require new approaches, based on joint time and frequency analysis, to study 

these oscillations (Jones 2016; Tal et al. 2020; van Ede et al. 2018) and their possible links to 

motor function (Bonaiuto et al. 2021; Little et al. 2019; Shin et al. 2017; Wessel 2020). The 

tracking of the non-stationary, burst-like behavior of cortical beta allows for directly following 

its propagation to the peripheral nervous system by identifying its main characteristics, such 

as burst duration and frequency, at the cortical and peripheral level. The analysis of the 

transmission of beta from the central to the peripheral nervous system would provide new 

insights into the role of beta oscillations on motor control. Moreover, understanding beta 

transmission would enable the development of neural interfaces to monitor and extract 

cortical activity non-invasively from the periphery to supplement and overcome current 

limitations of traditional brain monitoring interfaces. 

Here we ran two experiments to characterize beta oscillations present at the level of 

MUs in the tibialis anterior muscle and their association with cortical beta rhythms in the 

context of mild isometric contractions. In the first experiment, we asked subjects to hold a 

constant force level while concurrently recording cortical activity via electroencephalography 

(EEG) and muscle activity via high-density electromyography (EMG). The EMG was 
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decomposed into the underlying MU activity associated with force generation. Then, in the 

second experiment, we used a decomposition algorithm to extract MU activity from the EMG 

in real-time (Barsakcioglu et al. 2021) and a novel neural feedback paradigm to operantly 

conditioning beta in the MUs (Bräcklein et al. 2021). By doing this, we were able to assess 

how the relationship between cortical and peripheral beta rhythms is influenced by volitional 

modulation of MU beta power. Overall, our results demonstrate that beta activity in the MUs 

is short-lived, mainly driven by cortical bursts, and can be volitionally modulated, imposing 

parallel modulation at the cortical level. 

 

3.2 Materials and methods 

3.2.1 Subjects 

In this study, 28 healthy subjects (3 females, all subjects between 24 and 35 years old) 

participated, of whom 15 (2 females) in Experiment 1 and 13 (1 female) in Experiment 2. All 

subjects were naïve to the experimental paradigms. None of the subjects reported any history 

of sever neuronal or lower limb injuries. Experiment 1 was approved by the University College 

London Ethics Committee (Ethics Application 10037/001) and Experiment 2 by the ethics 

committee at Imperial College London (reference number: 18IC4685). 

3.2.2 Data acquisition 

High-density surface EMG (HDsEMG) from the tibialis anterior muscle of the dominant 

leg (self-reported) was acquired via a 64-electrode grid (5 columns and 13 rows; gold-coated; 

1 mm diameter; 8 mm interelectrode distance; OT Bioelettronica, Torino, Italy). The electrode 

grid was placed over the muscle belly aligned to the muscle’s fiber direction. In addition, 
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single-channel EMG of the medial and lateral head of the gastrocnemius muscle was recorded 

via wet electrodes (Ambu Ltd, St Ives, United Kingdom) placed above the muscle belly 

throughout Experiment 2. The EMG signals were monopolar recorded, amplified via a 

Quattrocento Amplifier system (OT Bioelettronica, Torino, Italy), sampled at 2048Hz, A/D 

converted to 16 bits, and digitally band-pass filtered (10-500Hz). Subjects were seated 

throughout the experiments while the foot of the dominant leg was locked into position to 

allow dorsiflexion of the ankle only. The force due to ankle dorsiflexion was recorded via a 

CCT TF-022 force transducer, amplified (OT Bioelettronica, Torino, Italy), and low-pass filtered 

at 33Hz. The communication between the amplifier and the computer was conducted via data 

packages of 256 samples (one buffer corresponds to a signal length of 125ms). All incoming 

EMG signals were band-pass filtered between 20-500 Hz using a 4th order Butterworth filter.

 Furthermore, EEG signals were acquired from 31 positions according to the 

International 10-20 system via active Ag/AgCl electrodes (actiCAP, Brain Products GmbH, 

Munich, Germany). FCz was used as a reference. The signal was amplified (BrainVision 

actiCHamp Plus, Brain Products GmbH, Munich, Germany) and sampled at 1000 Hz. The EEG 

was offline band-pass filtered between 0.5 and 45 Hz (4th order Butterworth filter). A surface 

Laplacian filter covering the central part of the brain by taking the neighboring positions of Cz 

into account was applied (Kayser & Tenke 2015). Both EMG and EEG signals were offline 

resampled at 512 Hz and synchronized with a common digital trigger signal.  

For one subject, no EMG of the lateral nor medial head of the gastrocnemius muscle was 

recorded due to a material failure. 

3.2.3 Experimental paradigm 

The experimental paradigm for both experiments is visualized in Figure 3-1A. 
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Figure 3-1: Schematic overview of the experimental paradigms used in both experiments. A: Experimental flow-
chart for Experiment 1 and 2. Both experiments start with estimating the maximum voluntary contraction level 
(MVC). In Experiment 1, subjects are asked to repeat two blocks of ramp-and-hold force task at 10% MVC 
separated by a rest period. Experiment 2 continues with two initialization steps in which the online decomposition 
(“Initialization online decomposition”) and the neurofeedback parameters (“Initialization phase”) are initialized. 
In “Familiarization phase” subjects are exposed to the neurofeedback paradigm used during the “Neurofeedback 
task”. A single block of the “Neurofeedback task” consisted of three trails: beta down, beta up, and control. The 
trials were presented in randomized order and separated by a rest period. A minimum of six and a maximum of 
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nine blocks were presented to each subject separated by a rest period while only the last three blocks were used 
for the analysis. B: Schematic overview of Experiment 2. HDsEMG of the tibialis anterior muscle was decomposed 
into the underlying neural activity while, concurrently, the force due to ankle dorsiflexion and the EEG were 
recorded. Subjects were asked to navigate a cursor inside a target rectangle by performing ankle dorsiflexion at 
10% ± .5% MVC. Color of the cursor changed based on the beta power in the MU pool. Subjects were asked to 
keep the cursor inside the force target and change the cursor color to either blue (down-modulation of the beta 
activity) or red (up-modulation of the beta activity). In a control condition, no feedback on the beta feature was 
provided and, instead, the cursor turned white when placed inside the target. 

Pre-experimental processing 

Before the start of the experiments, subjects were asked to perform a single maximum 

dorsiflexion of the ankle to estimate the maximum voluntary contraction level (MVC). The 

obtained MVC was set as a reference for the following experiment to ensure that stable forces 

were produced by the tibialis anterior muscle. 

In addition to force feedback, Experiment 2 also informed the subjects about the 

amount of beta activity in the MU innervating the tibialis anterior muscle. For this, an online 

decomposition algorithm was used to decode MU activity in real-time (Barsakcioglu et al. 

2021). In order to estimate the separation matrix used to decode MU activity from the 

HDsEMG recordings, subjects were instructed to perform an additional ramp and hold task. 

This involved a 4s period of linear increase in the contraction level departing from a relaxed 

position and reaching a contraction level of 10% of the MVC (ramp phase) and steady 

contraction at 10% of the MVC level held for 40s (hold phase). The decomposed MU discharge 

behavior was visually inspected following established guidelines (Del Vecchio et al. 2020) 

while subjects were instructed to gradually increase the force due to dorsiflexion tup to 10% 

MVC to recruit MUs. 
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Experiment 1 – force task 

Experiment 1 aimed to assess the characteristics of cortical and MU beta activity 

during constant isometric contraction at a mild force level. This experiment consisted of two 

blocks. In each block, subjects were provided with visually guided feedback on the exerted 

force and asked to follow a ramp and hold trajectory for 40s at 10% MVC presented on a 

screen while EEG was recorded concurrently. Between blocks, subjects were instructed to 

rest to avoid muscle fatigue. 

Experiment 2 – beta modulation 

In Experiment 2, the relationship between cortical and MU beta was assessed while 

subjects were allowed control over MU beta. For this, subjects were instructed to move a 

cursor inside a target rectangle by exerting a force due to ankle dorsiflexion at 10% MVC. 

While holding the cursor inside the rectangle, i.e. exerting a constant force at 10% MVC, 

subjects were asked to change the color of the cursor to match a presented target by 

modulating the MU beta power at ~20Hz. Similar to Experiment 1, EEG was recorded 

throughout Experiment 2.  

Experiment 2 consisted of three parts: i) an initialization phase to determine all parameters 

necessary for real-time neurofeedback on the MU beta activity, ii) familiarization phase to 

allow subjects to get familiar with the experimental neurofeedback environment and task, 

and iii) the neurofeedback task in which subjects were exposed to real-time feedback on the 

exerted force and MU beta activity. 
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Initialization phase 

The initialization phase mimicked the paradigm previously performed in (Bräcklein et 

al. 2021). Subjects were asked to exert a force at 10% MVC for 40s guided visually by a force 

trajectory. During this period, the underlying MU activity was used to identify the most 

prominent peak inside the beta band of the intramuscular coherence (IMC). The IMC was used 

in this case as it allowed us to estimate the common input to the MU pool at a given frequency 

(Castronovo et al. 2015; Dideriksen et al. 2018). The power inside a 5Hz band of the 

cumulative MU spike train (CST) centered around the IMC peak in the beta band was 

extracted online using a 3rd-order Butterworth filter. The mean of this beta feature in the 

initial training block was used for normalization during the neurofeedback part in Experiment 

2. The logarithm of this normalized beta feature was then fitted to a Gaussian distribution to 

provide feedback on the beta activity using a color code. Specifically, a blue-to-white-to-red 

colormap was mapped to the logarithmical beta feature ranging from two standard deviations 

below the mean (blue) to two standard deviations above the mean (red), while the mean was 

coded via the color white (see Figure 3-1B). If the beta feature value was outside the range of 

the colormap, i.e. more than two standard deviations off the mean, the displayed color was 

set to the closest extrema (either blue or red). 

Familiarization phase 

The familiarization phase provided subjects with the same feedback environment as 

they experienced later in the neurofeedback task. Subjects were instructed to move a cursor 

up into a target rectangle by modulating the force exerted during dorsiflexion of the ankle. 

This target rectangle was centered at 10% MVC with a lower and upper bound at 9.5% and 

10.5% MVC, respectively. The cursor's color changed accordingly to the underlying beta 
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feature and its corresponding value in the blue-white-red colourmap. If the cursor was 

outside the target rectangle, its color was changed to black. Hence, subjects only received 

feedback on the underlying beta feature when the cursor was inside the target. By doing this, 

subjects were encouraged to exert stable forces. Cursor position and color were updated 

every 125ms. The beta feature amplitude was averaged across the amplitudes observed in 

the seven most recent 125ms buffers analyzed as previously performed by (Bräcklein et al. 

2021). Subjects had approximately 10min to get themselves familiar with this neurofeedback 

environment.  

Neurofeedback task 

The neurofeedback task was divided into multiple blocks. Subjects were asked to 

perform a minimum of three and a maximum of six blocks of training before three last 

consecutive blocks were used for further analysis. Each block consisted of three trials. Each 

trial started with subjects contracting their tibialis anterior muscle to produce ankle 

dorsiflexion forces that moved the cursor inside the target rectangle at 10% of the MVC. Once 

the cursor was within the target rectangle, the force produced had to be kept constant for 

30s while beta activity had to be modulated. Specifically, subjects were asked to either keep 

the cursor blue for as long as possible (beta down-modulation condition), or red (up-

modulation condition). In a third condition, no feedback on the underlying beta activity was 

given (the cursor stayed white when held inside the target; see Figure 3-1B). The color target 

indicating the modulation condition of each trial, was provided verbally by the experimental 

instructor and as visual clues by the color of the cursor edge. Hence, the cursor edge was blue 

when subjects were asked to keep the cursor blue (down-modulating MU beta), red (up-

modulating beta), or black if no neurofeedback on MU beta was provided. Per block, each 
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modulation condition was presented once in a randomized order. Between each trial, subjects 

rested for at least 1 min to minimize muscle fatigue. 

3.2.4 Analysis 

Spectral analysis 

The time-frequency representation of the CST and the surface Laplacian EEG was 

obtained using the continuous wavelet transform implemented via the cwt function in 

MATLAB (Version 2018b, MathWorks Inc., MA, USA). The corticomuscular coherence (CMC) 

was estimated using magnitude-squared wavelet coherence implemented via the MATLAB 

function wcoherence. A similar approach was chosen to estimate the temporal evolution 

of the IMC via a custom MATLAB script built upon the wcoherence function. To estimate 

the IMC, the MU pool was split into two randomly selected sub-pools of equal size. The 

magnitude-squared wavelet coherence between the CSTs of both MU sub-pools was 

calculated. This step was repeated over 100 iterations, always choosing a different 

configuration of MU sub-pools. The IMC was obtained by averaging the coherence estimates 

obtained during the 100 iterations.  

The beta bursting activity present in the CST and EEG signals was extracted using a band-pass 

filter (13-30Hz, 4th-order Butterworth). The envelopes of the band-pass-filtered signals were 

used to determine when beta bursts occurred. The threshold above which the envelope was 

classified as a bursting event was empirically determined similar to the methods used in (Little 

et al. 2019; Shin et al. 2017). For Experiment 1, the envelopes from EEG and CST in each block 

were split into 1s windows. In each window, the power of the signal and the percentage of 

signal above the threshold was determined. The correlation between all concatenated 

windows was calculated using the Pearson correlation coefficient and averaged across blocks. 
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Hereby, the threshold was increased from 0 to 6 times the median in .25 steps. The threshold 

that resulted in the maximum correlation between power and percentage of signal above 

threshold was used to identify beta events. This procedure was repeated for Experiment 2 on 

block-level for the non-beta power feedback trials. The results are visualized in Figure 3-2. For 

Experiment 1, the empirically determined threshold was 2.50 and 2.75 times the median for 

CST and EEG, respectively. For Experiment 2, it was 2.25 and 2.75 times the median for CST 

and EEG. Consecutive periods where the envelopes were above the threshold were marked 

as ON periods (beta bursting events), similarly as previously performed in (Echeverria-Altuna 

et al. 2021). Hence, the length of ON periods was used to estimate the duration of beta 

events. The beta event power was calculated as sum of all ON events divided by the recording 

time. The remaining periods, i.e. when the envelope was below the threshold, were identified 

as OFF periods. The time points of ON and OFF events were set to the center of the respective 

periods. To analyze neural activity around ON and OFF periods, the wavelet transposed 

spectra of CST and EEG, the wavelet CMC and IMC were averaged in 500ms windows centered 

at the times of ON and OFF events. Furthermore, the percental mismatch between ON and 

OFF events was calculated as: ((ON - OFF) / OFF) * 100. 
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Figure 3-2: Beta burst threshold estimation. Correlation between beta band power and number of samples 
above threshold for Experiment 1 (top) and Experiment 2 (bottom) for the MU (left) and EEG (right) data. Grey 
lines indicate single blocks while solid black line indicate mean across blocks. For Experiment 2, only the control 
condition was used. Dashed black lines indicate maximum correlation value and corresponding threshold. 

Experiment 1 – force task 

The HDsEMG recorded during 40s of isometric ankle dorsiflexion at 10% MVC was 

offline decomposed into the underlying MU activity using the algorithm proposed in (Negro 

et al. 2016a). The decomposition results were manually inspected as detailed in (Del Vecchio 

et al. 2020). To control if the identified bursts in the EEG and the MU pool result from 

underlying amplitude modulations or in contrast from isolated bursting events, the lagged 

coherence method was employed (Fransen et al. 2015) using the NeuroDSP Python toolbox 

(Cole et al. 2019). This spectral measure examines coherence between the signal and a 

delayed version of the same signal at each frequency. If the lagged coherence is large, it 

provides evidence that the observed bursting events occur periodically and thus may be due 

to an underlying modulation. However, when the examined signal occurs in de-coupled 
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events, detached from any ongoing modulations, the lagged coherence is smaller. The power 

spectral density was calculated using Welch’s method (2s window, 50% overlap) and 

normalized between 1 and 40Hz. 

Experiment 2 – beta modulation 

The online decomposed MU activity was post-hoc cleaned from artefacts. Action 

potentials that were fired with an instantaneous discharge rate above 30 pulses-per-second 

(pps) were neglected. Only the 30s-time interval during which subjects were instructed to 

modulate the beta activity while keeping the force constant were analyzed. In addition, the 

beta activity and discharge rate were recalculated by neglecting MUs that had an average 

discharge rate below 5pps or above 30pps or a discharge rate coefficient of variation (CoV) 

above 0.5 in any of the recorded blocks. The resulting cleaned pools of MUs were used in the 

subsequent analysis, also for example, to recalculate the beta feature and wavelet 

transformed CST activity, CMC, and IMC.  

Functional values obtained during up- and down-modulation of MU beta activity, such as the 

mean force, beta amplitude, average rectified EMG, i.e. global EMG, bipolar EMG, and the 

corresponding CoVs to all values mentioned before, and the mean MU discharge rates were 

normalized by the averaged values obtained during the control condition (when no 

neurofeedback on the MU beta activity was provided). The wavelet transformed CST and EEG, 

CMC, and IMC were interpolated to transform the logarithmical frequency scale into a linear 

one for further analysis to ensure an equally weighted representation of all frequencies. The 

results were averaged inside the entire beta band (13-30Hz) and within in 500ms window 

centered around the ON-triggered averaged. The values obtained during neurofeedback were 

normalized by the corresponding values obtained during the control condition. 
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3.2.5 Statistics 

Statistical analysis was performed via SPSS (IBM, Armonk, NY, USA) and custom 

MATLAB routines. Results were reported as mean ± standard deviation. Significant clusters of 

beta activity in the difference in the time-frequency representation of beta ON and OFF 

events were determined using the cluster-level analysis proposed by (Maris & Oostenveld 

2007). In brief, this approach assessed clusters of adjacent samples in both frequency and 

time dimensions under a single permutation distribution (we used 10 000 permutations and 

an univariant clustering threshold of .05). This approach allows to bypass multi-comparison 

issues present in multi-dimensional data. The characteristics of beta bursting events in the 

MUs and the EEG were compared by using two-sided paired t-tests. The effect of volitional 

beta modulation on multiple motor behavioral properties of the innervated leg were tested 

by a repeated measures MANOVA. Hereby, the independent variables were the different 

modulation conditions, i.e. beta down- and up-modulation. Dependent variables were the 

mean force, mean rectified EMGs of agonist and antagonist muscles, the CoV of these values 

and the mean discharge rates of the decomposed MUs across subjects. Differences in the 

mean beta feature amplitude were assessed by two-sided paired t-tests. To assess whether 

the temporal evolution of the modulated beta feature correlated with muscle activation, the 

correlation coefficient between the exerted force, the rectified EMG of the agonist muscle or 

the discharge rate of the identified MU pool, and the beta feature were estimated using the 

Pearson correlation coefficient. To do this, force, rectified EMG and discharge rate were post-

processed in a similar fashion as the beta feature, i.e. corresponding values were averaged 

per each recording buffer.  
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The difference in beta event features at the cortical and MU level was assessed using 

linear mixed models. Linear mixed models were also used to evaluate the effect of volitional 

beta modulation at MU level on the beta bursting characteristics and spectral values, such as 

wavelet-transformed CST and EEG, CMC, and IMC, on single blocks, in which the difference 

between beta down- and up-modulation was the dependent variable and the subject-wise 

grouping a random effect. Values during up- and down-modulation were normalized using 

data from the non-feedback condition as described in 3.2.3. The partial eta-squared (ηp2) was 

used to assess the effect size of the changes between beta modulations. Values greater than 

0.14 indicate that a “large” effect can be observed in the particular comparison (Cohen 1988). 

The threshold for statistical significance was set to p < .05. 

 

3.3 Results 

3.3.1 Experiment 1 – force task 

In total, 22.73 ± 7.95 MUs per block were identified in Experiment 1. Figure 3-3 

visualizes the time-frequency spectra inside the beta band of cortical (EEG signals) and muscle 

(the CST generated with the decomposed MUs) signals during a period of isometric ankle 

dorsiflexion at 10% MVC. Both spectra indicated that beta activity at the cortical and muscle 

levels occurred in short intervals, i.e. bursts of activity, while subjects held constant forces. 

The zoomed-in plot (Figure 3-3, bottom) suggested that some bursts observed in the muscle 

overlapped with bursts observed in the EEG. 
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Figure 3-3: Beta power present in the EEG and MU pool shown in a representative subject. TOP: Force due to 
dorsiflexion of the ankle, interpolated time-frequency spectrum inside the beta band for surface Laplacian EEG 
and CST via continuous wavelet transform. BOTTOM: Zoom-into force, interpolated time-frequency-spectra of 
surface Laplacian EEG and CST, and beta band power (blue) and maxima envelope (red) extracted from the band-
pass filtered CST. The Black dashed line indicates the threshold used to identify beta bursts (ON, grey shaded 
areas) and valleys in between bursts (OFF). 

While the observed beta burst might occur as infrequent uncoupled bursting events, 

they could also result from an underlying amplitude-modulated oscillation. Hence, we 

conducted a control analysis to assess whether beta bursts in MUs and EEG result from a 

sustained amplitude modulation. In this case, the phase inside the beta band should predict 

the phase in upcoming cycles. In contrast, if these bursts do not originate from an underlying 

sustained modulation, the current phase inside beta should correlate less with future cycles 

(Fransen et al. 2015). Figure 3-4 illustrates that although both cortical and MU show 
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prominent beta activity in their spectra, the lagged coherence decreases inside this range 

compared to other spectral components. Further, this effect seems prolonged across multiple 

cycles. This indicates that in both EEG and MU activity, beta bursting events seem to be 

isolated, thus not resulting from underlying modulation. 

 

Figure 3-4: Lagged coherence analysis for EEG (left) and MU activity (right). Top: Mean power spectral density 
normalized between 1 and 40Hz across all blocks. Shaded areas indicate standard error of the mean. Middle: 
Mean lagged coherence at three cycles across all blocks. Shaded areas indicate standard error of the mean. 
Bottom: Mean lagged coherence for cycles 3 to 7 across blocks. 

To understand activity around the short-lived beta bursts found in the EEG and CST 

signals, the wavelet-transformed data were averaged at the center of ON and OFF periods 

found in the EEG across blocks. Figure 3-5 visualizes these triggered averages for the wavelet-

transformed EEG, CST, the CST-EEG coherence (CMC), the intramuscular coherence (IMC), 
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and the force profile at respective time intervals. While the exerted force did not significantly 

change between ON and OFF periods (no significant clusters, always p > .05), beta activity 

present in the EEG was significantly pronounced during ON relative to OFF periods in a cluster 

at the center of EEG beta events (p = .024). Also, beta activity in the CST was pronounced 

during ON periods compared to OFF, despite the time points of ON and OFF being determined 

by the EEG activity (p = .042). It is worth noting that the maximum difference between ON 

and OFF in the EEG was around time lag 0 (-.49ms), while the maximum difference in the CST 

was delayed by 24.41ms. Furthermore, a significantly pronounced bursting activity in the CMC 

was observed (p = .001). Similarly, the results suggested that the IMC was also of transient 

behavior inside the beta band (IMC, p = .026). 

 

Figure 3-5: Neural activity during beta bursting events present in the EEG. ON and OFF periods were aligned 
and averaged across blocks. From top row to bottom: force (shading indicates 95% percentile), interpolated 
wavelet-transformed EEG, wavelet-transformed-MU activity, CMC, and IMC, at the center time points of ON 



Chapter 3 - THE ORIGIN AND NATURE OF BETA IN THE MOTOR NEURON POOL 

93 
 

periods (left), OFF periods (center), and percental mismatch (right). Black boundaries indicate significant clusters 
(p < .05). 

The previous results indicated that beta activity observed in cortical and muscle 

recordings occurred in bursts. Moreover, the significant beta activity in the CST identified 

during EEG beta bursting events suggested that beta bursts in the MU overlapped with those 

present at the cortical level. This confirms previous observations made using surface EMG 

signals (Echeverria-Altuna et al. 2021). In addition, we observed that the common input inside 

the beta range to the MU pool was of bursting behavior and appeared to be time-locked to 

cortical beta bursts. To further assess how beta bursts observed in the MU pool matched with 

the beta bursts in the EEG we compared the rate and duration of the beta bursts extracted 

from the CST and EEG (Figure 3-6). Beta events observed at the MU level appeared at a rate 

of 3.56 ± .41 events per second while beta events in EEG at a slightly but significantly lower 

rate of 3.23 ± .30 (p = .003, ηp2 = .469). There was no significant difference detected between 

the average duration of the beta bursts observed on the MU level (55.61 ± 11.27ms) and the 

bursts in the EEG (53.10 ± 9.23; p = .398, ηp2 = .052). 

 

Figure 3-6: Relationship between beta bursts observed at the cortical and muscle levels. The rate at which beta 
events occurred (left) and their mean duration (right) are shown for cortical (EEG) and peripheral (CST) signals 
across blocks by their median and quantiles. Values for individual blocks are marked in grey and connected 
observation sides of beta events (i.e. CST and EEG). **p < .01 
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3.3.2 Experiment 2 – beta modulation 

Results from Experiment 1 showed that beta activity occurs in bursts both at the 

cortical and muscle levels. Moreover, the bursts observed at both levels are similar in features 

such as duration and rate of events and appear to be temporarily aligned with a small offset. 

These results therefore support the notion that beta activity in the EEG and CST have a shared 

underlying source. If this is the case, it is expected that modulation of beta activity at the MU 

level should correspond to a similar modulation of cortical beta observed in the EEG. To test 

this, Experiment 2 used a novel neural interface based on real-time decomposition of MU 

activity from the interference EMG. 

 

Figure 3-7: Functional values during beta power modulation. A: Mean force and beta feature amplitude 
(normalized by mean amplitude during non-feedback condition) during down- and up-modulation conditions 
(blue and red, respectively) shown by their median and quantiles all subjects. Grey points indicate the mean value 
per subject, while grey lines combine data of the same subject. * p < .05. B: Temporal correlation between the 
beta power feature and the force, global EMG of the tibialis anterior and the mean discharge rate (DR) shown 
across subjects with their median and quantiles. Black bar indicates significance level of correlation. 

In this online experiment 11.92 ± 2.48 MUs per subject were identified and tracked in 

real time. Subjects could significantly reduce the normalized mean beta amplitude during 

down-modulation to 0.91 ± 0.20, compared to up-modulation at 1.07 ± 0.26 (two-sided paired 

t-test, t(12) = -2.454, p = .030; see Figure 3-7A). In the context of volitional MU beta 

modulation, neither the mean exerted force nor other functional measures of the innervated 
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leg changed significantly (repeated measures MANOVA Wilks’ Lambda corrected, p = .424, 

ηp2 = .811). Furthermore, across all subjects, no temporal correlation between the beta 

feature and the force, rectified EMG of the tibialis anterior muscle, and discharge rate of MUs 

were detected (Figure 3-7B; all medians are below the significance level). Taken together, 

these results suggested that subjects were able to modulate the beta band activity present in 

a MU pool without critically altering the motor output. 

 

Figure 3-8: Normalized beta events features during modulation. Mean power, amplitude, duration and rates of 
beta events are shown across blocks. Corresponding values for beta down-modulation (blue), and up-modulation 
(red) are normalized by the control condition (no neurofeedback on beta activity). The top row shows values 
observed on the MU level (CST) and the bottom one for EEG level. Grey dots indicate values for single blocks. 
Grey lines combine values corresponding to the same block. *p < .05 

To study the impact that modulation of beta activity in the MU pool has on cortical 

beta activity, we compared the burst power and the three burst features that contribute to 

the power estimate, i.e. peak amplitudes of the beta bursts, the bursts durations, and the 

number of bursts, between beta down- and up-modulation conditions normalized by the 
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corresponding values obtained when no beta feedback was provided (Figure 3-8). The power 

of the beta bursts in both CST and EEG increased during up-modulation compared to down 

modulation from 0.89 ± .27 to 1.09 ± .37 (p = .003, ηp2 = .540) in the CST, and from 0.75 ± .25 

to .83 ± .26 (p = .013, ηp2 = .415) in the EEG. The amplitudes of beta bursts in the CST and in 

the EEG were significantly higher in the up-regulation condition than in the down-modulation 

condition (CST: from 0.96 ± .09 to 1.02 ± .12, p = .002, ηp2 = .581; EEG: from 0.94 ± .09 to 0.96 

± .09, p = .038, ηp2 = .311). The duration of the beta events did also change between conditions 

at the MU level from 0.93 ± .12 to 1.00 ± .11 during down- and up-modulation, respectively 

(p < .001, ηp2 = .652) but was not significant at the cortical level with longer durations of beta 

events during up-modulation (from .92 ± 0.10 to 0.96 ± 0.11, p = .079, ηp2 = .235). The rate of 

observed beta events at the MU level increased significantly from 0.98 ± .15 to 1.05 ± .18 (p 

= .023, ηp2 = .363). On average, the rate of beta events did also increase at the cortical from 

.85 ± .14 to 0.89 ± .14, but this effect was marginally not significant (p = .058, ηp2 = .268). 

The appearance of beta bursts in the EEG and MU activity changed during volitional 

beta feature modulation. Figure 3-9 shows the impact of volitional beta modulation on the 

MU and EEG beta activity during beta ON events. The spectral power in the beta band during 

ON events increased significantly in the CST from .99 ± .20 to 1.09 ± .23 (p = .019, ηp2 = .378) 

and in the EEG from .90 ± .11 to .94 ± .11 (p = .026, ηp2 = .351) during down- and up-

modulation conditions, respectively. Similarly, the IMC increased significantly during up-

modulation from 0.97 ± .06 to 0.98 ± .05 (p = .034, ηp2 = .321) suggesting a stronger common 

input in the beta band during the up-regulation condition. Interestingly, the CMC did not 

change significantly from 1.00 ± .06 to 1.00 ± .06 between conditions (p = .994, ηp2 = .000), 

which implies that while the common input to the MU inside the beta range increased during 

beta up-modulation relative to down-modulation, the spectral connectivity between cortical 
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beta and MU beta remained unaffected. These results indicated that cortical beta power 

mirrored the changes in the MU. Finally, it should be noted that the same overall effects were 

observed when using beta bursting events in the CST to define the timing of ON periods (see 

Figure 3-9). 

 

Figure 3-9: Impact of volitional beta feature modulation on spectral measures. From left to right: beta band 
power extracted from the MU activity and EEG, beta-band coherence in the CMC and IMC across subjects during 
beta feature down- (blue) and up-modulation (red). Mean values were extracted from a 500ms window centered 
around the ON periods identified in the EEG (top) and MU activity (CST, bottom) and were normalized by the 
corresponding values obtained during the control condition (no beta neurofeedback). Grey dots indicate values 
for single block, while grey lines combine values corresponding to the same block. *p < .05 

 

3.4 Discussion 

We studied the correspondence of cortical beta activity with beta oscillations found in 

the output of spinal motor neurons. To do this, we assessed how cortical and peripheral beta 

bursting events relate to each other during muscle contractions. We then used a MU-driven 
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neurofeedback approach to modulate the beta inputs to muscles to test if cortical beta 

activity followed the modulation of peripheral beta activity. Our results demonstrate, for the 

first time, that beta activity present in a MU pool appears in isolated bursts that closely 

correspond to the beta activity observed at the cortical level. In addition, when modulated at 

the periphery, cortical beta showed the same modulation pattern. We conclude that beta 

activity in the periphery is mainly determined by cortical projections. 

The common beta activity present in the MU population strongly corresponded to the 

cortical beta projections. We showed that beta activity present in a MU pool is short-lived 

and shares the characteristics of the cortical beta rhythms, i.e. rate and duration of beta 

events. Moreover, the common input to the MU pool inside the beta range and the resulting 

MU beta activity were time-locked and followed cortical beta rhythms by tens of milliseconds. 

Although determining the transmission delay by only analyzing the beta power is not robust 

against noise that may mask the underlying shape of beta bursts, our observation is in strong 

agreement with previous investigations using the averaged CMC (Ibáñez et al. 2021; Mima et 

al. 2000). When we asked subjects to perform volitional modulations of the beta activity 

present in the MUs via a novel neurofeedback paradigm (Bräcklein et al. 2021), changes in 

the cortical beta power were shown to be coherent with those induced in the periphery. 

These findings suggest a strong and stable correspondence between peripheral and cortical 

beta oscillations during steady force contractions.  

Although the effective beta activity at the MU level could potentially result from other neural 

centers (Thompson et al. 2019), as it was suggested to be the case for MU activity in the alpha 

range (8-12Hz) during tremor (Christakos et al. 2006), it seems that these non-cortical 

contributions may be minimized or suppressed in the context of cortical inputs during 

isometric contractions. If their contribution would have superseded the presence of cortical 
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projections at the MU level, the resulting beta activity in the periphery would be expected to 

differ from beta patterns observed at the cortical level. Moreover, the common input to the 

MUs inside the beta band was increased during volitional up-modulation of the MU beta 

power while the connectivity between cortical and peripheral sites remained unaffected 

(Figure 3-9). Hence, the coherence between the cortical regions and the MU pool inside the 

beta band (CMC) did not change, but the strength of the common input received by the MU 

pool (IMC) did. This provides additional evidence for MU beta signals mainly emerging from 

the cortical sites: if successful beta modulation resulted from additional modulation of non-

cortical sources, the CMC would have been affected by the volitional beta feature modulation 

(Negro & Farina 2011a). 

The dominance of cortical beta inputs to muscles contrasts with the observed lack of 

direct influence on the produced force. No significant relationship between the force output 

of the tibialis anterior muscle and the presence of beta rhythms in the innervating MU pool 

was detected. Still, despite the absence of any evidence for a direct link between beta bursts 

and the motor output, beta oscillations at the MU level could determine a non-linear effect 

on the neural drive to the innervated muscle and therefore on the force output (Watanabe & 

Kohn 2015). Our results show, however, that these beta events at the MU level are 

infrequent, i.e. approximately four events per second (Figure 3-6). While a stationary beta 

that changes amplitude continuously, as simulated in (Watanabe & Kohn 2015), may 

influence force control, a bursting beta is very unlikely to do so since the corrections in force 

would be far too slow to improve steadiness. Alternatively, the motor system could utilize the 

observed beta events as a sonar signal integrating sensory information from the muscle 

(Baker et al. 2006), yet this hypothesis requires further experimental validation. During 

Experiment 2, when subjects were instructed to modulate MU beta power, and cortical beta 
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changed coherently, the exerted force remained unchanged. This provides further evidence 

that apart from the timing of beta bursting events, also the modulation of the beta event 

amplitude does lie inside a motor null-space relative to force production. Hence, the strong 

link between cortical and spinal neurons via beta activity observed in this study did not seem 

to have any direct influence on motor output. 

When subjects were exposed to neurofeedback on the MU beta activity, beta 

modulations at the cortical and MU levels were mainly driven by altering the amplitude. Also 

rate and duration of beta events increased during beta-up modulation, however, this effect 

was only significant at MU level. It yet remains unknown what underlying mechanism led to 

a volitional increase in beta power via increase in the amplitude of beta bursts. One possible 

explanation would be that subjects were able to recruit larger cortical networks involved in 

the projection of beta activity to the muscle. It was previously shown that the duration of 

beta bursts was not affected by the performed motor task in normal conditions (Echeverria-

Altuna et al. 2021). Here, we observed, although not always significant, slightly longer periods 

of beta events during beta up-modulation compared to down-modulation of MU beta. 

Subjects did not receive feedback on the instantaneous amplitude of beta events, nor about 

their duration or rate. Instead, the feedback provided on the beta feature amplitude during 

Experiment 2 was smoothed with a moving average and aimed to motivate subjects to 

modulate the beta activity across the entire duration of the trial, i.e. suppressing or promoting 

beta activity as long and as often as possible. Further experiments with different 

neurofeedback approaches (e.g., using the instantaneous behavior of beta events) are 

necessary to investigate whether subjects could learn to modulate other characteristics of 

beta activity in the brain and the muscles. This would be highly useful to advance our 

understanding of the possible roles of beta oscillations in movement. 
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Finally, the strong presence of cortical projections at the MU level opens up new means 

of studying cortical beta: peripheral neural interfaces, such as presented in (Barsakcioglu et 

al. 2021), would allow an indirect yet reliable window into cortical activity and may contribute 

to an advanced understanding of the functional role of beta oscillations in the human motor 

nervous system by complementing traditional interfaces, such as based on EEG or 

magnetoencephalography. We showed that by closing the loop with a peripheral neural 

interface based on MU activity, subjects could volitionally modulate the power of cortical beta 

bursts. This could provide new possibilities to exploit cortical beta, for example, as a control 

signal for virtual or robotic effectors (Dominijanni et al. 2021; Eden et al. 2022). 

In conclusion, we have shown for the first time that the final neural drive to muscles 

contains bursting beta activity. Moreover, these beta bursts in the MU behavior shared the 

appearance and were time-locked to those observed on the cortical level. Volitional 

modulation of MU beta activity was accompanied by coherent changes in cortical beta 

manifesting the strong correspondence between cortical and MU beta. The observed bursting 

activity inside the beta band appeared in infrequent events at low rate and thus may, at most, 

influence force generation as a disturbing factor rather than supporting accurate force 

control. Cortical beta oscillations seem to be the main contribution to MU beta activity and 

the strong correspondence between cortical and peripheral beta suggests the potential use 

of peripheral neural interfaces to track and modulate cortical activity. 
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CCHAPTER 4 FLEXIBLE CONTROL 

OF MOTOR UNIT PAIRS1 

 

Recent developments in neural interfaces enable the real-time and non-invasive 

tracking of motor neuron spiking activity. Such novel interfaces could provide a promising 

basis for human motor augmentation by extracting potentially high-dimensional control 

signals directly from the human nervous system. However, it is unclear how flexibly humans 

can control the activity of individual motor neurons to effectively increase the number of 

degrees-of-freedom available to coordinate multiple effectors simultaneously. Here, we 

provided human subjects (N=7) with real-time feedback on the discharge patterns of pairs of 

motor units (MUs) innervating a single muscle (tibialis anterior) and encouraged them to 

independently control the MUs by tracking targets in a 2D space. Subjects learned control 

 
1 This chapter was published as “The control and training of single motor units in isometric tasks are constrained 
by a common input signal” in eLife (2022) with the co-authors Deren Y. Barsakcioglu2, Jaime Ibañez2,3,4, Jonathan 
Eden2, Etienne Burdet2, Carsten Mehring5,6, and Dario Farina2; see (Bräcklein et al. 2022a) 
The work presented in sections 4.2.6 and 4.3.2 mainly represents work conducted by Deren Y. Barsakcioglu but 
is still included in this thesis to support the remaining findings. The introduction was slightly altered to ensure a 
logical flow of the thesis. Furthermore, this chapter follows the IMRD layout (Introduction-Methods-Results-
Discussion) like Chapter 2 and 3, opposing to the corresponding article which was published in the IRDM format. 
Hence, minor changes were performed to the Results and Methods section to ensure a logical flow. 
 
2 Neuromechanics and Rehabilitation Technology Group, Department of Bioengineering, Faculty of Engineering, 
Imperial College London, London SW7 2AZ, United Kingdom 
3 Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 
London WC1N 3BG, United Kingdom 
4 BSICoS, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain 
5 Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, 79104, Germany  
6 Faculty of Biology, University of Freiburg, Freiburg im Breisgau, 79104, Germany 
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strategies to achieve the target-tracking task for various combinations of MUs. These 

strategies rarely corresponded to a volitional control of independent input signals to 

individual MUs during the onset of neural activity. Conversely, MU activation was consistent 

with a common input to the MU pair, while individual activation of the MUs in the pair was 

predominantly achieved by alterations in de-recruitment order that could be explained with 

history-dependent changes in motor neuron excitability. These results suggest that flexible 

MU recruitment based on independent synaptic inputs to single MUs is unlikely, although de-

recruitment might reflect varying inputs or modulations in the neuron's intrinsic excitability. 

 

4.1 Introduction 

In the preceding chapters, I analysed the nature and origin of high-frequency 

components present in populations of motor neurons and their potential use as a resource 

for human motor augmentation. As introduced in Chapter 1, section 1.4, flexible control of 

individual motor neurons could also be a viable approach to coordinating natural and sDoF. 

While the CNS seems to orchestrate motor neuron behaviour on a low-dimensional manifold 

by recruiting smaller motor neurons before larger ones, i.e. size principle, previous works 

have tried to challenge the perspective of single MUs only being activated in a pre-determined 

fashion (Basmajian 1963; Formento et al. 2021)1. A recent study even provided evidence that, 

indeed there may exist a neural substrate that allows selective cortical control of MUs via 

descending pathways (Marshall et al. 2021). However, it is unclear whether humans can learn 

to leverage such a potential neural structure for selectively activating MUs by converting the 

 
1 although, limitations due to the use of multifunctional muscles apply as discussed in section 1.4.2 
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common neural input received by a MU pool to independent inputs to individual MUs and 

thus changing the original MU recruitment. 

This study examined whether humans could control pairs of MUs with different recruitment 

threshold innervating the same muscle flexibly. Further, it addressed how this potential ability 

depends on the similarity of the MU pairs in size or, equivalently, in the recruitment threshold. 

For this purpose, we used a neural interface that provided subjects with biofeedback on the 

activity of individual MUs (Barsakcioglu et al. 2021). Subjects were encouraged to navigate a 

cursor inside a 2D space into different targets as quickly as possible by selectively recruiting 

different MUs using feedback received on both MU activity and resulting cursor movement. 

This allowed us to assess if subjects could selectively change the net excitatory inputs 

individual MUs or if, instead, they had to rely on control strategies based on a common input 

to the MU pair. After several days of training, all subjects were able to perform the target-

tracking task. However, the control strategies used that allowed individual MU activation did 

not leverage potential selective inputs to single MUs. Instead, subjects strongly favoured 

control strategies based on a common input signal combined with changes in intrinsic motor 

neuron excitability due to history-dependent physiological properties of the activated MUs.  

 

4.2 Materials and methods 

4.2.1 Subjects 

Seven healthy subjects (two females and five males, age: 27.86 ± 4.06 years [mean ± 

standard deviation]) were recruited for the study of whom three are authors of this article. 

Four subjects were naïve to the experimental paradigm, while the remaining three were 



Chapter 4 - FLEXIBLE CONTROL OF MOTOR UNIT PAIRS 

105 
 

recently exposed to single MU feedback. Experiments were carried out over 14 days in blocks 

of four to five consecutive days with never more than two days of break between blocks. Each 

experimental session lasted approximately two hours. One subject withdrew from the 

experiment after only ten sessions due to time constraints. The study was approved by the 

ethics committee at Imperial College London (reference number: 18IC4685). 

4.2.2 Data acquisition 

High-density surface EMG (HDsEMG) was acquired from the tibialis anterior muscle of 

the dominant leg via a 64-electrode grid (5 columns and 13 rows; gold-coated; 1 mm 

diameter; 8 mm interelectrode distance; OT Bioelettronica, Torino, Italy). The adhesive 

electrode grid was placed over the muscle belly aligned to the fibre direction. In addition, 

EMG from the fibularis longus and the lateral and medial head of the gastrocnemius muscles 

were recorded throughout the experiment via pairs of wet gel electrodes (20 mm 

interelectrode distance; Ambu Ltd, St Ives, United Kingdom) placed over the muscle belly. All 

EMG signals were monopolar recorded, amplified via a Quattrocento Amplifier system (OT 

Bioelettronica, Torino, Italy), sampled at 2048Hz, A/D converted to 16 bits, and digitally band-

pass filtered (10-500Hz). The foot of the dominant leg was locked into position to allow 

dorsiflexion of the ankle only. The force due to ankle dorsiflexion (single degree-of-freedom) 

was recorded via a CCT TF-022 force transducer, amplified (OT Bioelettronica, Torino, Italy), 

and low-pass filtered at 33Hz. The communication between the amplifier and the computer 

was conducted via buffers, i.e. data packages of 256 samples corresponding to a signal length 

of 125ms. All incoming EMG signals were band-pass filtered between 20-500 Hz using a 4th 

order Butterworth filter. Bipolar derivations were extracted from the filtered EMG signals 

obtained from the fibularis longus, and medial and lateral head of the gastrocnemius. 
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4.2.3 Experimental paradigm 

Pre-experimental calibration 

Subjects were instructed to perform maximum isometric dorsiflexion of the ankle to 

estimate the maximum voluntary contraction level (MVC). The obtained MVC was then set as 

a reference value for the subsequent experimental session. In a sub-MVC task, subjects were 

instructed to follow a 4s ramp trajectory (2.5% MVC per second) followed by a constant phase 

at 10% MVC of 40s. In both tasks, visual feedback of the force produced by isometric tibialis 

anterior contractions was provided. Based on the EMG of the tibialis anterior recorded during 

this sub-MVC task, the separation matrix used by an online decomposition algorithm was 

generated to extract MU discharge behaviour in real-time (see Barsakcioglu et al., 2021 for 

further explanation). The decomposition results were visually inspected while subjects were 

instructed to recruit MUs one after another based on the visual feedback provided.  

Force feedback task 

After initialising the real-time decomposition algorithm, subjects were instructed to 

follow ramp trajectories consisting of a 10s incline (1% MVC per second) followed by a 10s 

plateau at 10% MVC and a 10s ramp decline (-1% MVC per second) guided by visual feedback 

of the force. This ramp trajectory was repeated five times with 5s rest period in between 

ramps. Only the first ramp was used for further analysis since repeated activation of MUs 

within a short time may influence the recruitment order (Gorassini et al. 2002). If a subject 

failed to follow the ramp during the initial ramp (which happened in 20.2% of all cases), the 

consecutive ramp was chosen as the basis for further processing and analysis. Based on the 

recorded force and underlying MU activity during the incline phases, the recruitment order 

of the decomposed MUs was estimated as suggested in (Del Vecchio et al. 2020). The onset 
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of MU recruitment was defined as the time when a MU started to discharge action potentials 

at 5 pulses-per-second (pps) or above. The averaged force values, extracted from a 100ms 

window centred around this onset of MU activity during the initial ramp, was used to establish 

the MU recruitment order by ranking MUs based on their corresponding force values in 

ascending order. The plateau phases of the ramps were used to estimate the average 

discharge rate of each MU during 10% MVC. These values were later used during the target 

task to normalise the discharge rates. The decline phase was used to determine the force 

values associated with MU de-recruitment. The time point of MU de-recruitment was defined 

by the last action potential discharged before a MU turned "silent" for at least 1.5s. Similar to 

the calculation of the force level needed for MU recruitment, the force level at MU de-

recruitment was estimated by the average force value extracted from a 100ms window at the 

offset of MU activity across the initial ramp.  

MU selection 

Subjects were provided with visual feedback on the ranked MU activity. In an 

exploration phase (approximately 10 minutes), subjects were instructed to recruit MU one-

by-one by gradually increasing the contraction level of the tibialis anterior until all identified 

MUs were discharging action potentials. The entire pool was divided into two sub-pools 

comprising the first and last recruited half of MUs, respectively. One pair of MUs with a similar 

recruitment threshold from each sub-pool was randomly selected. Hereby, MU pairs were 

excluded from the selection if subjects could not recruit these two MUs one by one even after 

the initial exploration phase. The MU recruited first in each pair was labelled as MU1, while 

the MU recruited last as MU2. The selected MUs and their decoded spiking activity are 

exemplarily shown in Supplement 4-1. 
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Target task 

In the main experiment, subjects navigated a cursor in a 2D space by modulating the 

discharge rate of MU1 and MU2. The normalised discharge rate of these two MUs was used 

to span the manifold with units ranging from 0 to 1 along both axes. This target space included 

three targets of equal size (radius of 10% of the normalised discharge rate) placed along the 

axes (TI [1 normalised discharge rate MU1; 0 normalised discharge rate MU2], TIII [0; 1]) and 

the diagonal (TII [1; 1]). In addition, each target was framed by an angle space comprised of a 

triangle with one corner in the coordinate origin [0; 0] and two sides to be tangent at the 

circumcircle of the corresponding target. Towards the coordinate origin, the angle area was 

cropped by a circle centred at the origin with a radius of 40% of the normalised discharge 

rate. In order to navigate the cursor inside this angle space, subjects would need to generate 

the same discharge relationship between MU1 and MU2 as for reaching towards the target 

area but without necessarily matching the exact discharge rate determined during 10% MVC. 

For example, to place and hold the cursor inside the angle space of TI, subjects would need 

to keep MU1 active while MU2 was inactive. However, the discharge rate of MU1 could be 

different from its discharge rate at 10% MVC required to place the cursor on the centre of TI. 

This means the cursor could be placed at (.7; 0), resulting in an angle hit but not a target hit.

 The discharge behaviour of MU1 and MU2 was decomposed from the acquired 

HDsEMG in real-time. The obtained discharge rates were averaged over the preceding eight 

buffers (corresponding to 1s) and normalised by the average discharge rate at 10% MVC of 

the respective MUs (see4.2.3). The cursor movement was updated every buffer 

(corresponding to 125ms) and smoothed over six buffers (corresponding to 750ms) using a 

moving average. In total, the moving average on the discharge rates and the cursor position 
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resulted in a weighted average on the discharge behaviour of MU1 and MU2 over an effective 

window of 1625ms. However, the visual feedback was updated every 125ms. Because of the 

update rate, as soon as the discharge behaviour of the selected MU changed, subjects were 

aware of the change due to the visual display of MU discharges and the resulting cursor 

movement. In an initial familiarisation phase, subjects could freely move inside the target 

space and explore different control strategies. During this period, the gain along each axis was 

set manually to enable subjects to reach the target areas without overexerting themselves to 

prevent symptoms of muscle fatigue. On average, across all subjects, the gain was increased 

to 1.15 ± .01 for MU1 and 1.16 ± .01 for MU2, respectively.  

After familiarisation with the target environment, subjects were asked to rest at the 

coordinate origin. Once the target-of-interest appeared, indicated in blue, a trial started, and 

subjects were instructed to navigate the cursor as quickly and as directly as possible into the 

target area. If the cursor was kept inside the target-of-interest for at least seven consecutive 

buffers (corresponds to 875ms; one buffer size longer than the moving average), subjects 

were granted a target hit, and the trial ended. The trial was also terminated if subjects failed 

in navigating and holding the cursor inside the target area within 20s. If the subjects kept the 

cursor inside the angle area of the target-of-interest for seven consecutive buffers before the 

trial was terminated, the subjects were granted an angle hit. Therefore, in a single trial, 

subjects could achieve both an angle and target hit. A target hit was indicated via colour 

change of the target-of-interest to green, an angle hit to yellow, and a failure (no target nor 

angle hit within 20s) to black. Once the trial ended either after 20s or a target hit, the subject 

was instructed to navigate the cursor back into the coordinate origin and rest there for at 

least 2s. The entire trial cycle is illustrated in Figure 4-1. In total, every target was presented 

ten times in randomised order. Moreover, this target task was repeated three times for three 
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different conditions. In Condition I, MU1 and MU2 were coming from the lower threshold pair 

while, in Condition II, they were taken from the higher threshold pair. In Condition III, MU1 

was the lower threshold unit from the low-threshold pair and MU2 the higher threshold MU 

from the high-threshold pair. After the target task was completed, subjects repeated the force 

task.  

During the familiarisation phase and the experiment, subjects received both feedback on the 

cursor movement and the underlying discharge behaviour of the selected MU pair updated 

for every buffer of incoming data, i.e. 125ms. Figure 4-1 visualises a simplified version of the 

biofeedback environment presented to the subjects. 

 

Figure 4-1: Schematic overview of the target task. HDsEMG of tibialis anterior was acquired and decomposed 
from the underlying neural activity in real-time. Concurrently, the force due to dorsiflexion of the ankle (red 
arrow) and bipolar EMG of FL, GL, and GM were recorded. The identified MU pool was ranked accordingly to the 
recruitment order. Two pairs of MUs with a similar recruitment threshold were selected from the initial (blue) 
and the latter recruited half (red). During the target task, subjects were instructed to navigate a cursor inside a 
2D space by modulating the normalised discharge rate (DR) of MU1 and MU2. The selection of MU1 and MU2 
was determined by three different conditions. In Condition I, MU1 and MU2 were coming from the low 
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recruitment threshold pair (blue), in Condition II from the high recruitment threshold pair (red), while in Condition 
III, the lowest threshold MU of the low threshold pair was pooled with the highest threshold MU of the high 
threshold pair. During the target task, subjects were asked to stay inside the origin until the target-of-interest 
(blue) appeared (randomly selected). By navigating the cursor inside the angle area around the target-of-interest, 
subjects were granted an angle hit (yellow). The trial was terminated when either the subject managed to place 
and hold the cursor inside the target area (target hit, green) or more than 20s had passed since the target-of-
interest appeared. In each condition, 30 targets were shown, i.e. each target ten times. 

 

4.2.4 Analysis 

Force task 

The EMG of the tibialis anterior, fibularis longus, and medial and lateral head of the 

gastrocnemius acquired during both force tasks before and after the target task were rectified 

and low-pass filtered at 10Hz with a 4th-order Butterworth filter. Similar to the estimation of 

the force level at the on- and offset of MU activity, the average global EMG values to MU de-

/recruitment of all muscles were calculated. The average value inside a 100ms window 

centred around the time point of recruitment and de-recruitment for each MU and muscle 

was calculated across all ramps. This was separately repeated for all values acquired before 

and after the target task. Three subjects did not repeat the force task after the target task and 

only followed a single ramp at the beginning of the experiment. Moreover, no de-recruitment 

threshold was determined for those subjects. 

Target task 

If subjects failed to navigate and hold the cursor for 875ms inside the target-of-

interest within the 20s-time window, the nearest miss was calculated. The nearest miss was 

defined as the average cursor position over 875ms with the shortest Euclidean distance 

towards the centre of the target-of-interest. In addition, as previously described in (Bräcklein 
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et al. 2021), unintended hits were used as a metric to assess the effectiveness of subjects 

directly hitting the target-of-interest without unintentionally hitting unselected targets 

before. Therefore, an unintended hit was classified as the case when subjects navigated and 

held the cursor inside an unselected target for at least 875ms. Unintended hits of the same 

target could occur multiple times within a single trial if the cursor re-entered the unselected 

target on several occasions before the trial was terminated. Similarly, unintended angle hits 

were counted when the cursor was navigated into unselected angle areas, respectively.  

TI and TIII required the sole activation of either MU1 or MU2. To assess subjects' performance 

in navigating the cursor towards these two targets even when neither the target nor the angle 

area was reached but for example, the discharge rate of the target MU was greater than the 

one of the other, a new performance metric was introduced that compensates shortcomings 

of traditional metrics, e.g. time-to-target and distance to target. This performance metric was 

defined as: 

 = ( ) +   ( )  , Eq. 4-1 

where ( ) is the Euclidean distance between the centres of the cursor and target-of-interest 

and ( ) the angle between the cursor and the target-of-interest at the buffer .  is the 

total number of buffers recorded in one trial. For TI and TIII,  was set as the Euclidean 

distance between the centres of TI and TIII, and  to 90°. For TII, the target along the 

diagonal,  was set to the distance between the centre of TII and the origin, and  to 

45°. When the cursor was held in the origin, i.e. no activation of either MU1 or MU2, ( ) 

was set to . By summing across all recorded buffers, this metric incorporates the time-

to-target and favours those trials in which the cursor was kept close to the target-of-interest 

even when neither the angle nor the target area was hit. To scale the performance values 
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between 0 and 1, the obtained result was normalised with the worst and best performance 

values estimated per target. The best performance value for each target across subjects was 

obtained by simulating cursor movement based on artificially generated MU discharge 

patterns that match the required activation of MU1 and MU2 to hit the respective target. For 

example, the best performance for TI was estimated based on discharge behaviour for MU1 

that matched a normalised discharge rate equal to 1 and MU2 equals 0. The performance 

value during the idealised cursor movement until the target hit was used as the corresponding 

best performance value. For the worst performance value, the performance was calculated as 

if the cursor was kept in the origin for the entire 20s.  

The described metrics were calculated across all conditions and subjects. Three subjects 

started with Condition III only from day 10 onwards.  

4.2.5 Questionnaire 

After every condition, subjects were provided with a questionnaire. Subjects were 

asked to indicate the level of control they had over MU1 when reaching towards TI, over MU2 

when going towards TIII, and both MUs when reaching towards TII. Moreover, whether 

subjects felt they were using a specific strategy when going to the selected target-of-interest 

and how cognitively demanding it was to control the MUs together and independently was 

assessed. When applicable, they were asked to explain their strategy. Three subjects did not 

fill out the questionnaire. 
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4.2.6 Validation of online EMG decomposition during recruitment/de-

recruitment 

A new validation study was performed on 3 subjects (1 female and 2 male, age 32, 24, 

25 years) to compare the on and offset activity of MUs detected via surface and intramuscular 

EMG recordings. For this purpose, surface EMG signals were recorded in the same way as in 

the main experimental task by a 64-channel high-density grid placed over the tibialis anterior 

muscle and aligned to the fibre direction of the dominant leg. In addition to the non-invasive 

grid, two fine-wire electrodes were inserted with an insertion angle of 45⁰ to a depth of a few 

mm below fascia, 10-mm proximal with respect to the top of the electrode grid. The foot was 

locked into position to allow for the ankle dorsiflexion only, as for the main experimental 

session. All signals were acquired synchronously with a Quattrocento Amplifier system (OT 

Bioelettronica, Torino, Italy), sampled at 10240 Hz, A/D converted to 16 bits, and digitally 

band-pass filtered (10-4400Hz). 

For the validation test, the participants were provided with visual feedback of the 

ankle dorsiflexion force and were presented with six target force profiles. All force profiles 

consisted of a ramp-up trajectory, a 20s constant force phase at 10% MVC, and a ramp-down 

trajectory. The ramp-up and ramp-down phases had a slope of 0.5%MVC/s, 1%MVC/s, 

2%MVC/s, 2.5%MVC/s, 5%MVC/s, and 10%MVC/s. Each target was repeated twice. In this 

way, the contractions included recruitment and de-recruitment for a broad range of 

contractions speeds.  

The HDsEMG signals were real-time decomposed during the contractions in the same 

way as done in the main experimental session. The intramuscular EMG signals concurrently 

recorded were analysed offline and decomposed with the EMGLab software (setting a high-
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pass filtering at 1000 Hz) (McGill et al. 2005). The surface EMG online decomposition was 

compared to the intramuscular EMG decomposition by the rate of agreement, i.e. the 

percentage of discharges identified by both methods within a maximum time difference of 

1ms. For this purpose, there was the need to identify the motor units that were commonly 

identified by intramuscular and surface EMG decomposition. The identification of the pairs of 

common motor units was performed with a procedure fully independent on the rate of 

agreement (which was the metrics to be validated). For this purpose, the spike train of each 

motor unit identified by intramuscular EMG decomposition was used for spike-triggered 

averaging the multi-channel surface EMG. This provided the estimate of the action potential 

waveform shape as detected by the surface EMG grid for the motor units identified by 

intramuscular EMG decomposition. The spike trains of the motor units identified by the 

surface EMG decomposition were then used for spike-triggered averaging the surface EMG 

and therefore to obtain the action potential waveform shapes at the skin surface for the 

motor units identified by surface EMG decomposition. The matching for identifying common 

units between the two decomposition processes was then performed by comparing the 

shapes of the action potentials at the skin surface obtained from the averaging processes 

based on the spike trains identified by intramuscular and surface EMG decomposition. The 

comparison was based on the correlation coefficient between action potential waveform 

shapes, with a threshold of 0.9 set to accept two motor units as commonly detected. 

4.2.7 Statistics 

Statistical analysis was conducted using SPSS (IBM, Armonk, NY, USA) and Matlab 

(Version 2018b, The Mathworks, Inc., Natick, MA, USA) for the linear mixed model analysis. 

The threshold for statistical significance was set to p < .05. Results were reported as mean ± 
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standard deviation. To avoid accumulation of Type I errors, non-parametric tests were used 

to assess the relationship between variables (Rochon et al. 2012). To compare recruitment 

and de-recruitment thresholds, a linear mixed model with the difference between 

recruitment and de-recruitment threshold as dependent variable, a fixed effect intercept and 

a participant specific random intercept was applied using restricted maximum likelihood 

estimation. Significance of the fixed effect was assessed by an F-test using Satterthwhaite’s 

approximation for the degrees-of-freedom. For analysing the improvement in target and 

angle hit rate, performance across and for each target, as well as the relationship between 

the performance of reaching each target and the difference in recruitment and de-

recruitment thresholds between MU2 and MU1, two-sided Wilcoxon signed-rank tests were 

used. Comparison of mean characteristic forces during indirect hits of TIII and the mean 

correlation between performance and successive trials were conducted via Friedman test. A 

two-sided Wilcoxon signed-rank test was used for post-hoc analysis. The correlation between 

recruitment and de-recruitment thresholds as well as the within-MU-pair difference in 

recruitment and de-recruitment thresholds, was assessed using the Spearman correlation 

coefficient. 

 

4.3 Results 

4.3.1 Target task 

During the main experimental sessions, on average, 11.04 ± 3.34 MUs were reliably 

decomposed (online surface EMG decomposition) per subject (N = 7). An identified MU pool 

from a subject sorted based on recruitment order is shown in Figure 4-2A. As indicated by the 
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green and red marks, the order in which MUs are de-recruited often differed from the 

recruitment order. For example, once recruited, a MU could keep discharging action 

potentials even when the exerted force level was below the initial recruitment threshold. For 

the target task (see4.2.3), two pairs of MUs with a small difference in recruitment threshold 

were selected out of the entire pool. Each pair was selected either from the first or from the 

last recruited half of the MU pool. Figure 4-2B visualises the recruitment thresholds of these 

selected MUs. Within pairs, MU1 was recruited before MU2 and the lower threshold pair 

(blue) was recruited before the higher threshold one (red). Recruitment and de-recruitment 

threshold of the selected MUs showed a strong relationship across days and subjects 

(Spearman correlation coefficient, R = .53, p < .001; see Figure 4-2C). On average, the de-

recruitment threshold was -1.11 ± 2.44 % MVC smaller than the recruitment one, and in 66.7% 

a selected MU was de-recruited at a force level below its initial recruitment threshold. The 

overall observed effect, however, was weak (see 4.2.7, p = .111). 
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Figure 4-2: MU recruitment and de-recruitment. A: The identified MU pool ranked on the recruitment order of 
one representative subject is shown with the underlying force profile (grey). Time points of recruitment (green) 
and de-recruitment (red) for each MU are marked. B: Recruitment level for MU1 and MU2 of the lower (blue) 
and higher threshold pair (red) across all subjects and days are shown with their median and quartiles. C: 
Recruitment and de-recruitment threshold for the selected MUs across all days showed a significant relationship 
(p < .001). Dashed line indicates the diagonal. The three subjects for whom no de-recruitment thresholds were 
determined were neglected in this correlation analysis. 

During the target task, subjects were asked to navigate a cursor inside a 2D space by 

modulating the discharge rate of MU1 and MU2. Three different targets inside the 2D plane 

were used to encourage subjects to activate both MUs independently despite their different 

position within the recruitment order. For example, to reach TIII, subjects must keep the 

higher threshold unit MU2 active while keeping the lower threshold unit MU1 off. Figure 4-3A 

shows, as an example, the average cursor position during target hits and nearest misses for 

each target-of-interest across conditions towards the beginning and end of training for a 

single subject. At the beginning of the task, the subject failed in the majority of trials to place 
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and hold the cursor inside the target-of-interest. With training, the ability to place the cursor 

inside the designated target area improved. As shown in Figure 4-3A, TII was hit in all 30 trials, 

and in only four trials, the subject could not hit TI. Moreover, the nearest misses for TIII in the 

twelfth training session were closer to the target centre than on day 1. This improvement in 

hitting targets and angles over several training days was observed across all subjects (see 

Figure 4-3B). The target hit rate improved from the first to the last day of training from 41.19 

± 17.76% to 67.04 ± 18.17% (two-sided Wilcoxon signed-rank test, p = .028). A similar trend 

was observed for the angle hits with an improvement from 64.37 ± 13.15% to 81.11 ± 9.84% 

(two-sided Wilcoxon signed rank test, p = .016). According to the distanced-based 

performance metric (defined in 0), the performance per subject across targets and conditions 

improved from the first to the last day of training from .56 ± .09 to .69 ± .10 (two-sided 

Wilcoxon signed rank test, p = .016). Despite this clear improvement in performance across 

days, the ability to move the cursor towards the target-of-interest enhanced differently across 

targets (see Figure 4-3C). The performance in hitting TI did not significantly improve from the 

first day of training to the last day (from .67 ± .18 to .68 ± .11; two-sided Wilcoxon singed rank 

test, p = .938). Similarly, no significant improvement was observed for TII (from .69 ± .11 to 

.80 ± .13; two-sided Wilcoxon signed rank test, p = .109). However, a significant improvement 

in performance was detected when subjects were asked to move towards TIII (from .33 ± .12 

to .59 ± .17; two-sided Wilcoxon signed rank test, p = .016). Furthermore, across conditions 

and days, we only found minor within-session learning (mean correlation between 

performance and consecutive trials across days and condition for TI: .037 ± .078, TII: .066 ± 

.094, TIII: .043 ± .074, see Supplement 4-2C) with no significant difference across targets 

(Friedman, p = .103). 
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Taken together, target and angle hits, as well as the performance metric, indicate that 

subjects improved in navigating the cursor towards the target-of-interest across days. 

However, the main improvement was observed for reaching TIII, which started from poor 

initial performance. Moreover, subjects experienced a steep learning curve at the beginning 

of the experiment, while the learning rate seemed to decrease towards the end. For this 

reason, further analysis only focuses on the last five days of training to avoid additionally 

induced variability by greater learning rates at the beginning of training.  

 

Figure 4-3: Cursor movement and performance during target task. A: Average cursor position during target hits 
(circle) and nearest misses (diamond) across conditions are shown for the first and twelfth day of experiments 
for TI (orange), TII (green), and TIII (yellow) of one subject. B: Target (black) and angle hit rate (blue) across 
subjects, conditions and targets-of-interest are shown with their medians (solid line) and 25% and 75% quartiles 
(shaded areas) across days. C: Performance values across subjects and conditions for TI (orange), TII (green), and 
TIII (yellow) are shown with their medians (solid line) and 25% and 75% quartiles (shaded areas) across days. D 
& E: Performance values corresponding to the difference in recruitment threshold (D) and de-recruitment 
threshold (E) between MU2 and MU1 are shown across subjects and conditions for the last five days of training. 
The median (solid line) and 25% and 75% quartiles (shaded area) for TI (orange), TII (green), and TIII (yellow) are 
illustrated in steps of 1% MVC. 

The performance of reaching each target did not solely depend on the target's position 

but also on the difference in recruitment and de-recruitment threshold within the selected 

MU pair, i.e. the force difference between the onset and offset of activity between MU2 and 
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MU1 measured during the initial force task. Figure 4-3D and E illustrate the performance over 

the within-pair difference in recruitment and de-recruitment threshold, respectively, for each 

target-of-interest. Performance per subject in reaching TI significantly increased from 

selected MU pairs with a small difference in recruitment threshold (0-1% MVC) to those with 

a high difference (3-10% MVC) from .61 ± .16 to .90 ± .05 (two-sided Wilcoxon signed rank 

test, p = .016). To reach TI, only MU1 must be active. Therefore, this result indicates that 

subjects performed better in keeping only MU1 active while not activating MU2 when the 

difference in their recruitment threshold was high. This may be due to less accuracy needed 

in the force generated when the recruitment threshold difference is large. For example, if 

MU1 gets recruited at 2% MVC while MU2 at 5% MVC, the subject could potentially exert any 

force between 2 and 5% MVC to keep only MU1 active without MU2 to ultimately hit TI. A 

more precise force level needs to be generated when this difference is smaller. For TII, no 

dependency in performance and the within-pair difference in recruitment threshold was 

detected (from .79 ± .07 to .72 ± .08, two-sided Wilcoxon signed rank test, p = .578). On the 

contrary, the performance in reaching TIII decreased significantly for larger differences in 

recruitment threshold within the selected MU pair from .66 ± .09 to .55 ± .04 (two-sided 

Wilcoxon signed rank test, p = .016). This indicates that subjects experienced difficulties in 

keeping MU2 active while MU1 was inactive in order to reach TIII when their difference in 

recruitment threshold was relatively large (3 – 10% MVC). The difference in recruitment 

threshold between MU1 and MU2 correlated with the difference in de-recruitment threshold 

(Spearman correlation coefficient, R = .46, p = .001; see Supplement 4-2A). Thus, similar 

implications on the relationship between performance in reaching the targets and the 

difference in de-recruitment threshold between MU1 and MU2 can be drawn (see Figure 

4-3E). Subjects became better in reaching TI for a positive difference in de-recruitment 
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thresholds (i.e. MU2 is de-recruited before MU1; .76 ± .05) than for negative ones (i.e. MU2 

is de-recruited after MU1; .44 ± .11; all four subjects for whom the de-recruitment threshold 

was recorded increased in their performance from negative to positive). When subjects had 

difficulties in activating MU1 without activating MU2 to reach TI (for example, when the 

recruitment threshold of both MUs is similar, see above), they usually tried to switch off MU2 

while keeping MU1 active to reach again towards TI. However, if MU2 was de-recruited after 

MU1, the subjects needed to move back to the coordinate origin to switch off MU2 before 

they could start a new attempt in reaching towards TI. This required additional time, resulting 

in lower performance. However, when MU2 was de-recruited before MU1, the subjects only 

needed to switch off MU2 (while MU1 remained active) before reaching TI again. For TII, no 

dependency between difference in de-recruitment threshold and performance was observed 

(from .83 ± .05 to .83 ± .04; the performance never varied more than .02 from a negative to a 

positive difference in de-recruitment threshold per subject). When asked to reach TIII, 

subjects decreased in performance from .57 ± .04 to .40 ± .02 for negative and positive 

differences in the de-recruitment threshold, respectively. The better performance for 

negative differences in de-recruitment thresholds may be explained by a possible strategy to 

reach TIII by leveraging the lower de-recruitment threshold of MU2 compared to MU1. 

Because of this, subjects could activate both MUs first before lowering the force level to 

switch off MU1 while MU2 remained active due to its lower de-recruitment threshold. This 

would result in cursor movement towards TIII.  

During the last five days of training, the majority subjects reported that they felt having 

control over MU2 when reaching towards TIII (14% of cases subjects indicated having no 

control over MU2; see Supplement 4-2D). Moreover, they declared the usage of a clear 

strategy to establish such control, which varied in cognitive demand across subjects and days. 
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In 95% of all cases, this control strategy was described as a rapid increase in force due to 

dorsiflexion of the ankle followed by a slow release until the cursor moves towards the 

vertical axis. 

 

Figure 4-4: Cursor trajectories of one subject during the target task. Cursor movement towards TI (orange, top), 
TII (green, centre), and TIII (yellow, bottom) in each trial for Condition I on the 14th day of one representative 
subject is shown. Trial 1 to trial 10 indicate the first to the tenth appearance of each target-of-interest. The grey 
intensity of the cursor trajectories increases over time within the trial. 

All subjects improved their performance during training. To better understand which 

strategies have emerged, ultimately enabling subjects to recruit and de-recruit single MUs, 

we analysed the cursor trajectories during the task. The cursor movement for one subject 

during the last day of training (Condition I) for all 30 trials is visualised in Figure 4-4. While the 

subject was able to hit all targets before the trials ended, the cursor trajectories did not always 

mimic the straight path, to the target centre. When asked to move towards TI, the subject 

moved the cursor along the horizontal axis. In trials 1, 2, 3, 5, 9, and 10, the subject could not 

hit TI in the first attempt but returned to the origin to then move towards the target centre 

directly. For TII, in all cases, the subject moved directly along the diagonal towards the target-
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of-interest. For TIII, however, instead of moving directly towards the target centre, the subject 

moved the cursor towards TII first and then towards the vertical axis to finally hit TIII. This 

observation is in line with the descriptions provided by the questionnaire (see Figure 4-3E), 

i.e. increase in force to activate both MUs, followed by a decrease in the force until MU1 

switches off, and ultimately adjusting the force level to move along the vertical axis towards 

the target centre.  

By analysing the unintended target and angle hits (see Figure 4-5A), the probability 

that the cursor was moved towards unselected targets while trying to hit the target-of-

interest was quantified.  

While only a few unintended hits occurred across targets and conditions, unintended angle 

hits of TII happened multiple times when subjects tried to reach for TIII. In fact, across all 

conditions, almost all subjects conducted most of their unintended hits when aiming for TIII 

(with unintended hits in TII). Only one subjects had a higher rate of unintended hits when 

aiming for TII (with unintended hits in TI) in Condition I. Therefore, the strategy to reach TIII, 

i.e. moving towards TII first, as illustrated in Figure 4-4 and interpreted by the questionnaire 

answers, can be observed across subjects. Moreover, the few unintended hits when reaching 

towards TI and TII suggest that subjects established control strategies that allowed for a direct 

movement towards the target-of-interest. These clear control strategies, as well as the 

difference in learning rate across targets, suggest that subjects were able to activate MU1 

alone (to reach TI), MU1 and MU2 together (to reach TII) but could not volitionally activate 

MU2 before MU1 (TIII). In fact, during the last five days of training, 76%, 78%, and 94% of all 

successful attempts, i.e. at least an angle hit, of going towards TI were achieved without 

activating MU2 once during the trial while it was only 7%, 2%, and 1% for TIII (MU2 only 

without MU1) in Condition I, II, and III, respectively. Such rare and occasional deviation from 



Chapter 4 - FLEXIBLE CONTROL OF MOTOR UNIT PAIRS 

125 
 

the normal recruitment of two MUs was already observed in one of the first studies employing 

single MU biofeedback (Henneman & Mendell 1981). The percentage of these direct 

movements towards TI and TIII with respect to the difference in recruitment threshold within 

the selected pair and subjects is shown in Figure 4-5B. While direct movements towards TI 

increased with a larger difference in recruitment threshold, direct movements towards TIII 

were very rare and only possible with MUs recruited at very similar force levels, i.e. with small 

differences in recruitment thresholds that led to variable recruitment orders given sudden 

excitatory inputs at the beginning of the trials. Also, all subjects moved directly towards TI in 

more than 70% of all successful attempts. Although, only three subjects navigated the cursor 

directly towards TIII in more than 5% of all successful attempts (see Figure 4-5C). 

Furthermore, 8.33% of these direct movements towards TIII occurred after TI-instructed 

trials. In the remaining 91.67% of the trials, direct movements towards TIII occurred after TII- 

or TIII-instructed trials, which required the activation of MU2 to reach the target. In contrast, 

direct movements towards TI occurred in 25.93% after TIII-instructed trials or even as the first 

trial in the session. 
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Figure 4-5: Movement towards targets-of-interest. A: Relative hit rate of intended and unintended hits (grey) 
of targets and angles are shown for the targets-of-interest TI, TII, and TIII during the last five days of training 
across subjects for Condition I (top), Condition II (centre) and Condition III (bottom). Please note that hit rates 
above 100% can be reached for unintended hits when subjects re-entered the target before the trial ended. Colour 
intensity corresponds to the hit rate. Relative occurrence of direct movement towards TI (orange), i.e. only 
activating MU1 without MU2, and TIII (yellow), i.e. only activating MU2 without MU1, during successful attempts 
(at least angle hits), are shown with respect to the difference in recruitment threshold between MU2 and MU1 
(B) and across subjects (C). 

In these rare cases in which direct movements towards TIII ended, at least, in an angle 

hit, the level of force and global EMG of tibialis anterior, fibularis longus, and medial and 

lateral head of the gastrocnemius at the time point of recruitment of MU2 was compared 

with the corresponding values obtained at normal recruitment of MU2 during the initial force 

ramps. During direct movement towards TIII, MU2 was recruited on average at a 48.43 ± 

22.46% lower force level than during ramp recruitment. Also, the global EMG values at 

recruitment of MU2 were, on average, slightly lower during direct movements towards TIII 

(tibialis anterior: -15.91 ± 9.67%; fibularis longus:  -18.75± 23.27%; gastrocnemius lateral: -

9.99 ± 31.53%; gastrocnemius medial: -0.02 ± 27.31%). However, in the vast majority of 
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cases, target hits of TIII were not achieved by direct movements towards the target centre. 

Instead, subjects used a three-stage approach to place the cursor inside TIII, as observed in 

Figure 4-4 (for example, TIII, trial 7). First, subjects navigated the cursor along the diagonal 

towards TII (stage one) before in the second stage moving towards the vertical axis. In the 

third stage, subjects manoeuvred the cursor along the vertical axis inside TIII. The discharge 

rate of MU1 and MU2 and the exerted force during indirect movement towards TIII are shown 

for a representative subject in Figure 4-6A (more single-trial examples for TIII-instructed trials 

are shown in Supplement 4-3). During the first stage, the subject increased the force to 

orderly recruit MU1 and MU2. Once both MUs were active, the subject decreased the force 

level in stage two to a minimum so that MU1 stopped firing while keeping MU2 active. In the 

third stage, the force was slightly increased to match the necessary discharge rate of MU2 to 

reach TIII without re-activating MU1. To assess whether such force modulation during indirect 

hits of TIII could be observed across subjects and conditions, characteristic forces (due to 

ankle dorsiflexion) for each stage were compared in Figure 4-6B. The characteristic force 

during stage one was the mean force in a 100ms window around the maximum force when 

both MUs were active, i.e. discharge rate greater than 5pps. In stage two, the characteristic 

force was estimated by averaging the force inside a 100ms window at the minimum force 

level after switching off MU1 while MU2 continued firing action potentials. In stage three, the 

characteristic force was set as the mean force during the hold period preceding a target hit 

of TIII. Across conditions, all subjects used significantly different force levels during each stage 

(Friedman, p < .001, two-sided Wilcoxon signed rank test Bonferroni corrected, always p < 

.05). During stage one, the exerted force level was the greatest while being reduced to a 

minimum in stage two, before being slightly increased again in stage three. Furthermore, for 

the four subjects for whom the de-recruitment threshold was determined, 24.31% of all 
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indirect target hits of TIII were achieved while MU2 was de-recruited before MU1 during the 

initial force ramps. This indicates that this three-stage approach also worked for pairs of MUs 

for which the de-recruitment threshold was not reversed to the recruitment one (see 

Supplement 4-3C and D). 

 

Figure 4-6: Three-stage approach to hit TIII. A: Force due to ankle dorsiflexion (green) and the discharge 
behaviour of the selected MU pair during a successful attempt of hitting TIII (yellow) for a representative subject. 
The subject used a three-stage approach to achieve the target task: stage 1: increasing the force to orderly recruit 
both MUs; stage 2: reducing the force until MU1 stops firing while the cursor is placed along the vertical axis; 
stage 3: slightly increasing the force again to manoeuvre the cursor inside TIII. Grey circles mark the characteristic 
force values of each stage. Stage 1: maximum force while both MUs are active; stage 2: minimum force after 
MU1 stopped firing; stage 3: force during hit of TIII. The corresponding cursor movement for each stage is shown 
on the top. Grey intensity increases with stages. B: Characteristic forces (due to ankle dorsiflexion) are shown 
with their median and quartiles at each stage of control for all subjects across all conditions during all TIII hits in 
the last five days of training. Each dot represents a subject, and corresponding values are connected via the lines. 
Black bars indicate a significant difference with p < .05. 

The force, global tibialis anterior, fibularis longus, and medial and lateral head of the 

gastrocnemius EMG values in 100ms window centred around the onset of MU activity were 

compared before and after the experiment to investigate potential changes in the 

recruitment order due to single MU modulation. A subtle decrease in force (-.18 ± 2.33% MVC, 

neither did the de-recruitment force change critically: -.16 ± 2.28% MVC) and global tibialis 

anterior EMG (-2.35 ± 22.62%) were identified. However, the global EMG from the lower leg 

muscles not used for the MU decomposition increased slightly (fibularis longus: 5.45 ± 
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28.58%; gastrocnemius lateral: 14.12 ± 37.53%; gastrocnemius medial: 18.41 ± 26.51%). 

These changes indicate that the overall recruitment order did not change critically due to the 

imposed single MU modulation. The increase in activity in the lower leg muscles not directly 

involved in ankle dorsiflexion relative to the agonist muscle might be explained by induced 

fatigue towards the end of the experiment (Patikas et al. 2002). 

4.3.2 Validation of online EMG decomposition during recruitment/de-

recruitment 

Surface EMG decomposition with methods similar to those used in this study has been 

previously extensively validated, including by comparison with intramuscular EMG 

decomposition (Barsakcioglu et al. 2021). However, this study involved recruitment and de-

recruitment of MUs and the accuracy in detecting the recruitment and de-recruitment times 

was of crucial importance for interpreting the results. Therefore, a validation study was 

performed in which the onset and offset of MU activity detected from the surface EMG was 

compared with the corresponding MU activity detected from concurrent intramuscular 

recordings (see 4.2.6). Figure 4-7 shows an example of such a comparison. In this example, 

one MU was commonly detected by the (online) surface and intramuscular EMG 

decomposition. The rate of agreement over the full interval of activity of the MU in this 

representative case was >94%, which is similar to previous validation results obtained in 

stable-force conditions (Barsakcioglu et al. 2021). From Figure 4-7, it can be noted that there 

were no errors in the first discharges at recruitment and in the last discharges at de-

recruitment, therefore onset and offset of this MU activity were detected highly accurately. 

In this example, the rate of agreement was also computed separately for the different phases 

of the contraction (ramp-up, constant force, ramp-down). The ramp-up phase of this MU 
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activity lasted between 12.1 s to 15.0 s of the contraction time and in this phase the rate of 

agreement was 91.7%. The constant-force phase of the contraction for this MU lasted from 

15.0 s to 35.0 s, during which the rate of agreement was 94.3%, and the ramp-down phase 

lasted between 35.0 s to 43.2 s with an estimated accuracy (rate of agreement) of 96.1%.

Figure 4-7 An example two-source validation of surface and intramuscular recorded EMG signals during 
recruitment/de-recruitment. A: The visual cue provided to the user during the trial (orange solid line), the force 
feedback on the ankle dorsiflexion (black solid line), the first and last occurrence of MU firing (teal and green 
dashed lines respectively) and two subpanels showing the first and last five MU discharges identified for 
intramuscular and surface decomposed signals (brown and magenta subpanels). B: The decomposed MU spike 
train from surface EMG (blue) and intramuscular EMG (red), as well as decomposition mismatches identified 
(black circles). C: The experimental setup for concurrent intramuscular and surface EMG recordings. 

The analysis of the other contractions recorded for validation led to results similar as 

those presented representatively in Figure 4-2. As in previous validation studies using 



Chapter 4 - FLEXIBLE CONTROL OF MOTOR UNIT PAIRS 

131 
 

intramuscular EMG as reference, the number of MUs commonly detected by the surface and 

intramuscular EMG was very small (range 0-1 per contraction). This is due to the different 

detection volume of the two recording methods, as previously discussed (Barsakcioglu et al. 

2021), and is in agreement with previous validation studies done at constant force. Out of the 

36 contractions during which validation signals were recorded (3 subjects, 6 slopes, 2 trials 

per slope), common MUs were detected in only 16 contractions. In all cases in which common 

MUs were detected the rate of agreement was >90% and the errors in decomposition were 

equally distributed in all phases of the contractions (on average, 93.2±1.3%, 92.6±1.5%, and 

95.5±2.0% for the three phases of the contraction, respectively), without any preferential 

distribution around the intervals of recruitment and de-recruitment. Notably, we never 

observed an error in the first discharge (onset) or the last discharge (offset), meaning that the 

recruitment and de-recruitment times were detected by the online decomposition with an 

accuracy of 1ms (margin used in the time alignment between discharge times detected by the 

surface and intramuscular decomposition).  

From the validation tests, we concluded that the online surface EMG decomposition in 

variable force contractions with recruitment and de-recruitment achieved similar 

performance as the decomposition in static contractions. 

 

4.4 Discussion 

Volitional and flexible control of single MUs could revolutionise neural-interface 

applications. Here we used real-time biofeedback on single MU activity to encourage subjects 

to learn independent control of pairs of MUs. Our results showed that subjects could gain 

control over four MUs from a single muscle. The control strategies that emerged, allowing for 



Chapter 4 - FLEXIBLE CONTROL OF MOTOR UNIT PAIRS 

132 
 

selective MU control, were limited by the presence of a common input to the MU pool. 

Therefore, subjects did not exploit potential neural structures with selective inputs to 

individual MUs. 

In this study, the identified MU pools were ranked based on their recruitment order. 

We have shown that the de-recruitment threshold does not always match the recruitment 

one. While small deviations between recruitment and de-recruitment threshold may be 

explained by a slight increase in co-contraction during the declining force ramp (De Luca & 

Mambrito 1987), larger mismatches might be due to intrinsic neuro-modulatory and 

inhibitory mechanisms. The latter are triggered following the activation of a MU, which can 

disrupt the simple dependency of recruitment order from neuron size and input received 

(Heckman & Enoka 2012). One potential mechanism contributing to this neuromodulation in 

motor neurons are persistent inward currents (PICs) (Binder et al. 2020). PICs, i.e. descending 

neuromodulation from the brainstem to the spinal cord, can alter the excitability of motor 

neurons which may lead to a self-sustained firing of action potentials and thus to de-

recruitment at a force level lower than the recruitment threshold, i.e. recruitment de-

recruitment hysteresis (Binder et al. 2020). In this study, we examined the behaviour of pairs 

of MUs at very low forces, i.e. less than 10% MVC. These low-threshold MUs active at such 

force levels may be more prone to the effect of sustained PICs (Heckman et al. 2008b), which 

might explain the hysteresis between recruitment and de-recruitment threshold observed for 

most MUs examined in this experiment.  

An inhibitory input is needed to extinguish the impact of PICs on the MU discharge behaviour 

(Heckman et al. 2005). Such an inhibitory signal leads to the reversal of MU activity to the 

initial state, once a MU stops firing for a prolonged amount of time. This explains why MU 

recruitment was not critically altered even after extensive single MU control during this 
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experiment. The very rare cases in which an activation of the higher threshold MU before the 

lower threshold one occurred may be explained by an incomplete extinction of the PIC effect 

since in the vast majority of these cases (>90%) the preceding trial required an activation of 

MU2. 

PICs act diffuse across the entire MU pool (Johnson & Heckman 2014). Therefore, the 

excitability of MU1 and MU2 should be affected similarly by this neuromodulatory 

mechanism. However, it may be possible that the broad influence of PICs is focalised by local 

inhibition, which allows suppression of the PIC effect on selective MU pools and sub-pools 

(Heckman et al. 2008a). Inhibitory signals to motor neurons can be facilitated via various 

mechanisms, including descending pathways, spinal circuitries or pre-synaptic inhibition 

(Heckman et al. 2009). One intensively studied form of inhibition directly influencing PICs is 

reciprocal inhibition (Heckman et al. 2008a; Hultborn et al. 2004; Johnson & Heckman 2014), 

triggered by changes in the length of antagonist muscles, which can occur, for example, by 

moderately altering joint angles (Hyngstrom et al. 2007). Further, descending inputs may 

additionally tune interneurons mediating reciprocal inhibition and thus also influence PICs 

and the excitability of single motor neurons (Jankowska 1992). Synaptic inhibition received 

by motor neurons follows the size-principle. Hence, smaller motor neurons tend to show a 

greater hyperpolarisation than larger ones for the same inhibitory input (Heckman & Binder 

1988; Henneman et al. 1965). Consequently, a higher threshold MU may continue firing after 

a smaller threshold MU already became silent. In our experiment, we did not measure PICs 

nor inhibitory inputs to MUs. Hence, we cannot pinpoint the exact mechanisms explored by 

subjects to generate the necessary activation patterns to move the cursor towards TIII. 

However, we consider that it is likely that a mixture of broadly distributed neuromodulatory 

mechanisms, such as PICs, and locally acting inhibition may have produced the variability in 
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MU activity that was observed in this study. Similar findings on the increasing variability in 

MU activation by incorporating neuromodulation and inhibition have been shown in a 

simulation study (Powers et al. 2012). 

During a progressive increase in force, recruitment depends only on the MU anatomy 

and the input received. If humans can learn to leverage potential structures in the CNS that 

allow selective inputs to MUs (Marshall et al. 2021), changes in the recruitment order during 

this initial phase should be expected. However, it is important to underline that a conclusion 

of flexible control based on changes in MU recruitment cannot be drawn for time intervals 

that follow an activation of the MU. In these cases, the de-recruitment of a MU at a force 

level different from the recruitment threshold could be incorrectly interpreted as an 

alteration of the recruitment order. Presumably, such changes result from the relative 

intrinsic excitability of the motor neurons which override the sole impact of the received 

synaptic input on the recruitment order. Therefore, a direct proof of altered MU recruitment 

as a consequence of independent input to different MUs needs to be provided during the 

initial activation phase, i.e. a MU with higher recruitment threshold activated before a MU 

with lower threshold without preceding activations. It is also worth mentioning that this proof 

should further include MUs with sufficiently different recruitment thresholds since synaptic 

noise may influence the relative recruitment order for MUs of very similar thresholds 

(Heckman & Enoka 2012). 

We did not get results supporting a general flexible control of MUs, i.e. volitional 

activation of higher threshold MUs before lower threshold ones at initial recruitment. 

However, flexible control of individual MUs could still be a framework explaining how subjects 

were able to reach the different targets in the 2D space. If this was the case then, since control 
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would be achieved only after MUs were recruited, this would imply that flexible control is 

state-dependent: it can only be achieved in the context of previously contracted muscle 

fibres. Such state-dependency restricts the possible neural strategies that could allow flexible 

control of MUs. One possible strategy consistent with such state-dependent control of 

individual MUs could be relying on an input signal to MUs not directly linked to motor function 

and non-homogeneously distributed among the MU pool. For example, cortical oscillations 

could meet these criteria if descending projections of this activity to large and small MUs in a 

pool differed (Bräcklein et al. 2021, 2022b; Ibáñez et al. 2021). A different alternative that 

may allow for flexible MU control after initial recruitment is volitional modulation of 

reciprocal inhibition (Thompson et al. 2013; Xiang et al. 2006) presumably via direct 

descending commands (Jankowska 1992; Nielsen et al. 1995). Such augmentation of synaptic 

inhibition could potentially lead to changes in the excitability of specific MUs. Such inputs to 

MUs could provide a certain degree of flexibility to control subgroups of MUs in a muscle 

volitionally. Future studies are needed to test this hypothesis. 

Throughout the 14 days of training, subjects were asked to modulate the discharge rate 

of MU pairs independently to navigate a cursor as quickly as possible into different targets 

inside a 2D space. The target and angle hit rates indicate that subjects could achieve control 

over these single MUs. Moreover, the angle hit analysis (see Figure 4-5A, for example) 

revealed that during the last five days of training, subjects were able to produce the necessary 

activation pattern in most trials despite different properties of the selected MUs. Although 

subjects repeated the target-tracking task with different sets of MUs every day, they 

consistently reported the use of the same control strategies across days. Hence, these 

findings suggest that subjects learned to establish universal control strategies that allowed 

for the achievement of the target task for various combinations of MUs. To reach TI or TII, 
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subjects used precise force control to exert either a low enough force that only the low 

threshold MU (MU1) turned active (TI) or a force above the recruitment threshold of both 

MU1 and MU2 (TII). To reach TII, subjects used strategies that corresponded to a physiological 

activation of the two MUs similar to the initial force ramp.  

As could be expected, subjects had difficulties in navigating the cursor towards TI when 

the difference in recruitment threshold between MU1 and MU2 was small (≤1% MVC; see 

Figure 4-3D). In these cases, subjects could not selectively activate MU1 while keeping MU2 

deactivated and still reach a discharge rate of MU1 high enough to place the cursor near the 

centre of TI. When the difference in recruitment threshold was larger (≥3% MVC), the 

discharge rate of MU1 reached the desired value before the onset of MU2. It seems the 

discharge rate of MU1 saturated (Fuglevand et al. 1993) due to its intrinsic properties, as 

recently discussed in (Fuglevand et al. 2015). Unlike for TI and TII, TIII required a more 

cumbersome approach. To reach TIII, subjects mainly mimicked the trajectory of TII first, i.e. 

activating both MUs, followed by the second stage of control in which the force level was 

reduced until the lower threshold MU turned off by leveraging the mismatch in the de-

recruitment thresholds. In order to then place and hold the cursor inside TIII, subjects 

gradually increased the force again without re-activating MU1. This second and third stage of 

control were possible in principle by maintaining a common ionotropic input to the MU pair 

combined with neuromodulatory input and synaptic inhibition, as described above, even 

when MU2 was initially de-recruited before MU1. If a direct activation of MU2 would have 

been possible as it was for MU1, subjects would have chosen to mimic a cursor trajectory 

along the direct path from the origin to the target centre, as observed for both TI and TII (see 

Figure 4-4). This almost never occurred in the hundreds of trials tested. Therefore, the sole 

activation of a higher threshold MU was only possible by exploiting the history-dependent 
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activation of MUs, i.e. exclusive firing of MU2 follows the combined activation of MU1 and 

MU2. The results suggest that this three-stage approach to achieve a hit in TIII as quickly as 

possible was feasible for the subjects while a more efficient strategy of directly activating 

MU2 without a preceding activation of MU1 was not. 

It has been previously shown that subjects can learn to control MUs independently 

when exposed to biofeedback on the discharge behaviour (Basmajian 1963; Formento et al. 

2021). In these previous investigations, the subjects were allowed for contractions along 

multiple directions. Such variations in force directions (Desmedt & Godaux 1981; ter Haar 

Romeny et al. 1984) but also other motor behavioural changes, including alternations in 

postures (Nardone et al. 1989), and contraction speed (Desmedt & Godaux 1977b), 

potentially have an impact on the recruitment order. Similar changes in a MU pool’s discharge 

activity imposed by such behavioural changes were recently suggested in non-human 

primates (Marshall et al. 2021). Therefore, individual MU control may be triggered by small 

compensatory movements rather than being the result of a dedicated and volitionally 

controllable individual synaptic inputs. Indeed, independent control of individual MUs would 

imply that a MU can be controlled independently of all other MUs. The fact that a pair of MUs 

can be controlled independently when varying the task does not imply that the two MUs are 

independently controlled in absolute terms. They are simply independently controlled with 

respect to each other. For example, in some tasks or in some conditions, they may be part of 

different groups of MUs receiving two different common inputs (Tanzarella et al. 2021).  

A recent study in humans provided evidence for the existence of MU pool synergies similar to 

the functional grouping of muscles involved in a single movement (Tanzarella et al. 2021). The 

CNS may send a common input to these MU pool synergies, which are not per se limited to 

innervating only a single muscle (Laine et al. 2015). In our experiment, we chose a simple case 
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of a MU pool constituting a functional group during ankle dorsiflexion, i.e. MUs innervating 

the TA. During more complex tasks, for example, movement along multiple directions, the 

CNS would send different common inputs to certain numbers of groups of MUs. While the 

synergistic organisation of MUs might be flexible across tasks, e.g. movement along multiple 

directions, it remains yet to be explored if the input to a single functional MU group can be 

changed volitionally from common to individual while the performed task is maintained. 

Hence, it is crucial that initial conditions during MU recruitment, such as posture, contraction 

speed, and force direction, are kept constant when flexible MU recruitment is investigated. 

MU activation based on changes in behaviour, or the performed motor task, does not indicate 

that subjects can volitionally trigger MU activity by a selective synaptic input as it is possible 

for their cortical counterparts. Furthermore, these constraints need to be considered in 

neural-machine interface applications relying on flexible MU control. Possible extracted 

control signals may depend on behavioural changes and not on a designated descending 

control command, and therefore, may not satisfy the intended application. Similar constraints 

effectively apply for augmentation when the aim is to extend the degrees-of-freedom that a 

human can volitional control, i.e. adding supernumerary degrees-of-freedom to the natural 

ones (Dominijanni et al. 2021; Eden et al. 2022). In such cases, if the control of a 

supernumerary degree-of-freedom is based on single MU activation, this activation must be 

uncoupled from motor behaviour to ensure coordination between natural and 

supernumerary effectors. This would correspond to breaking common input into multiple 

inputs. Nevertheless, even based on behavioural changes, single MU control can be a 

resource for specific neural-interface applications, for example, in the absence of any 

additional motor information or to augment a specific motor task (see (Eden et al. 2022) for 

augmentation by transfer). 
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Previous studies investigating flexible MU control focused on upper-limb muscles 

(Basmajian 1963; Formento et al. 2021; Marshall et al. 2021). Here, we extracted single MU 

activity from the tibialis anterior since this muscle has properties (e.g., muscle fibres 

arrangement, proximity to the skin, distribution of innervation zones, etc.) that facilitate a 

reliable decomposition of MU activity using surface recordings (Barsakcioglu et al. 2021; 

Bräcklein et al. 2021, 2022b; Del Vecchio et al. 2020; Dideriksen et al. 2018; Negro et al. 

2016b) and high corticomuscular coherence and the latency of the corticomuscular 

transmission suggests a number of monosynaptic connections with the motor cortex that 

could potentially be leveraged for direct independent MU control (Dideriksen et al. 2018; 

Ibáñez et al. 2021). Our results strongly suggest that subjects do not tend to find or opt for a 

control strategy that relies on flexible MU recruitment order under constraint isometric 

conditions. In contrast, the established control strategy seemed to be based on a common 

synaptic input to the MU pair combined with intrinsic changes of MU excitability due to 

neuromodulation and inhibition. Although the complexity of tasks in which humans use upper 

and lower limbs may differ, we are not aware of any evidence suggesting that the CNS 

employs fundamentally different strategies to orchestrate MU activity in a functional motor 

neuron pool differently across limbs. Future research on this topic may help to better 

understand if the CNS may allow for variability in upper-limb MU pools. 

Throughout the experiment, subjects were restricted by an ankle dynamometer and 

instructed to perform dorsiflexion of the ankle only. We measured force due to dorsiflexion 

but not, for example, rotational forces due to ankle supination. Modest rotations of the ankle 

can increase the effect of inhibition in specific MUs and thus might affect their excitability 

(Hyngstrom et al. 2007). Such effects were only observed for modest changes in joint angles 

(~20°) (Hyngstrom et al. 2007), which were not possible to perform when the dynamometer 
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restricted the foot. It may be that even very subtle rotations or slight movements of other 

body parts, such as the knee or hip, may have influenced the discharge activity of specific 

MUs (Jankowska 1992), potentially a helpful approach for achieving TIII-instructed trials. 

However, none of the subjects reported the use of compensatory movements as a control 

strategy. Furthermore, even if the subjects unknowingly performed very subtle compensatory 

movements in TIII-instructed trials, they would have discovered and chosen this strategy over 

directly utilizing potential descending pathways triggering independent MU control. 

To summarize, we have demonstrated the ability to control up to four MUs from a single 

muscle using real-time feedback on single MU discharge behaviour. Furthermore, we have 

shown by operant conditioning that subjects learn concrete control strategies to recruit and 

de-recruit several MUs volitionally. These strategies exploit orderly recruitment in agreement 

with the Henneman’s size principle and a common input to their motor neurons. Conversely, 

the observed strategies do not leverage potential pathways that may provide selective inputs 

to single MUs. It is concluded that converting common input to a (synergistic) pool of motor 

neurons into independent input to single MUs within the same task seems extremely 

challenging for the CNS. 
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4.5 Supplementary Material 

 
Supplement 4-1: HDsEMG from a single subject. A: HDsEMG at 10% MVC during the initial force task overlayed with the 
spike timing of the four selected MUs. Rectangles indicate a 10ms window centred at the time of a detected MU action 
potential. B: Spike triggered average of the four selected MUs over 10s at 10% MVC at the initial force task for four different 
locations i-iv. The locations are indicated on the schematic electrode layout on the right. Double differential signals are 
displayed for visualisation purposes. 
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Supplement 4-2: Additional metrics concerning the target-tracking task. A: Difference in recruitment threshold of the 
selected MU pair versus their difference in the de-recruitment threshold for the last five days of training (Spearman correlation 
coefficient R = 0.46, p = .001). Each dot represents a MU pair coloured based on the condition. B: Angle hit rate of all TIII 
instructed trials during the last five days of training versus the within-pair difference in the de-recruitment threshold. C: 
Estimation of within-session learning grouped by the three targets TI (orange), TII (green), and TIII (yellow). Learning was 
estimated by calculating the Spearman correlation coefficient between performance and consecutive trails per target and 
condition. Each dot represents the mean correlation coefficient for one subject averaged across conditions and all 14 days of 
training. A Friedman test revealed no difference between targets (p = .103). The positive median values indicate small learning 
within one session across subjects for each target. D: Subjective experience of controlling MU2 when reaching towards TIII 
based on the questionnaire response during the last five days of training across subjects and conditions are shown by their 
medians and quartiles. 
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Supplement 4-3: Various successful trials of hitting TIII for different subjects, conditions, and training days. The top figure 
in each segment shows the discharge activity of MU1 and MU2 (selected MU pair) and force due to dorsiflexion (green) during 
the initial force task. The bottom left figure shows the discharge activity of MU1 and MU2 and the force (green) during a 
single successful TIII instructed trial, while the bottom right figure shows the corresponding cursor movement towards TIII 
(yellow). The grey intensity of the cursor trajectories increases over time within the trial. A: Direct movement towards TIII 
besides the initial difference in recruitment threshold. B: Indirect movement towards TIII. C & D: Indirect movement towards 
TIII for a MU pair in which the higher threshold MU (MU2) was initially recruited after and de-recruited before the lower 
threshold one (MU1). DR: discharge rate.  
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CCHAPTER 5 CONCLUSION AND 

OUTLOOK 

 

5.1 Summary 
 

Human motor augmentation has travelled a long way from being just science fiction 

decades ago to an entire research field which only now outlines how much this technology 

could change the way we all live and interact with the world around us. One of the biggest 

challenges in this novel human-machine interaction paradigm is extracting a bodily control 

signal that allows seamless coordination of natural limbs and sDoF. In this dissertation, I 

analysed the potential use of motor neuron activity as a resource for filling this gap. 

In Chapter 2, I introduced a novel approach to extracting potential supernumerary 

control signals by using a non-invasive neural interface to facilitate spectral separation of the 

neural code of spinal motor neurons. I demonstrated that spectral components outside the 

bandwidth of musculoskeletal control, i.e. inside the beta range (13-30 Hz), can be partially 

uncoupled from the resulting force output. Even though the control over the novel beta 

featured remained weak, these high-frequency components could potentially lay in a null 

space of natural control of the human body. 

While the investigations in Chapter 2 contributed towards testing the potential of 

spectral separation of the neural code received by a muscle as a resource to achieve human 

motor augmentation, in Chapter 3, I focused on the overall nature and potential origin of 
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these beta oscillations present in motor neurons. I showed for the first time that high-

frequency components inside the beta range on the motor neuron level occur in short-lived 

transient events. These bursts present in populations of motor neurons seem to be time-

locked and share similar characteristics as these beta bursts observed at the cortical level. 

When I used the operant conditioning framework to volitionally modulate beta activity at the 

motor neuron level (developed and introduced in Chapter 2), I observed that cortical beta 

bursts changed in a similar direction as the conditioned bursts in the periphery. These results 

provide evidence for the cortical origin of beta bursts at the motor neuron level. 

In Chapter 4, I focused on single motor neuron activity as a resource for controlling 

sDoF. To investigate potential control mechanisms that selectively drive individual motor 

neurons, I provided subjects real-time feedback on discharge patterns of pairs of motor 

neurons innervating the same muscle. Over 14 days of training, all subjects learned control 

strategies that allowed partially flexible control for various combinations of motor neuron 

pairs. However, these control strategies leveraged aspects of motor neuron firing that were 

not based on flexible and independent control of single motor neurons. Instead, these results 

suggest that a strong common input signal constrains the control of multiple motor neurons. 

These results provide new insights into using neural interfaces for human-machine interaction 

by characterising the control of multiple motor neurons innervating a single muscle. 

 

5.2 Future perspectives 
 

The ultimate goal of motor augmentation is the extensions of human motor capacities 

in general purpose applications. In his dissertation, I explored motor neurons as resource for 
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such a novel human-machine interaction. For this, it is essential to understand how motor 

neurons and the extracted features for driving sDoF behave outside highly constrained lab 

environments. One crucial component needed for such a translation is a decomposition 

method that allows a robust and reliable tracking of motor neurons during everyday life 

conditions, including, for example, dynamic contractions (Oliveira & Negro 2021) and fatigue 

(Martinez-Valdes et al. 2020), and also to gain a better understanding on how movement is 

orchestrated during these scenarios (Hodson-Tole & Wakeling 2008). Moreover, especially 

when using single motor neurons, training of supernumerary control could potentially benefit 

if advanced decomposition methods would allow the tracking of the same motor neuron pool 

across sessions and days, for example, as was shown in previous investigations of motor 

neuron behaviour (Cescon & Gazzoni 2010; Cogliati et al. 2020; Martinez-Valdes et al. 2017). 

Moreover, when aiming to use motor neuron activity in a wide range of applications, 

decomposing from more convenient locations, such as the wrist (Guerra et al. 2022), may play 

a crucial role.   

An additional factor concerning the improvement of decomposition techniques from which 

motor neuron control for human motor augmentation could benefit is their sensitivity, i.e. 

the detection of more active motor neurons. Tracking larger motor neuron populations would 

allow the real-time analysis of higher frequency ranges1, such as the higher gamma band. 

Bashford and colleagues have shown that cortical gamma oscillations could provide a 

promising resource for augmenting motor function (Bashford et al. 2018). Such gamma 

oscillations are also present in the periphery of the motor system (Ulloa 2022). Hence, more 

sensitive decomposition techniques would allow us to study if gamma present in a motor 

 
1 currently undersampled when only <20 MU are identified 
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neuron pool shows similar promising behaviour for human augmentation as its cortical 

counterpart.  

Similarly, flexible individual motor neuron control could benefit from an increased number of 

tracked motor neurons. In Chapter 4, I have shown a relationship between a subject's 

performance in individual motor neuron control and the neuron’s recruitment and de-

recruitment threshold. A pool of many motor neurons would allow further investigation of 

this relationship and could increase the probability in finding an ideal pair, triplet, quartet for 

individual control. 

To translate the findings from this dissertation into a control paradigm that drives sDoF 

effectively, questions concerning optimal human-machine interaction need to be addressed 

(Karray et al. 2017; Te’eni et al. 2007), such as: How to map motor neuron activity into a 

control scheme to improve functionality and usability resulting in the effective use of human 

motor augmentation?  

This dissertation was mainly concerned with the functionality of using motor neurons as a 

resource for human motor augmentation; for example, do motor neurons provide the 

potential for an independent supernumerary control channel? On the other hand, usability 

describes how effectively this functionality can be leveraged (Karray et al. 2017). One 

important aspect of usability is the robustness and reliability of how one can extract a 

supernumerary control signal from motor neuron populations. In the case of beta oscillations, 

I observed that subjects could modulate the overall trend of the averaged beta amplitude. 

However, instantaneous control of beta remained weak. In Chapter 3, I found, unlike how 

beta oscillations were modelled in the control scheme of Chapter 2, beta activity occurs in 

infrequent bursting events explaining why instantaneous control of its averaged signal has 

proven difficult. To use such high-frequency bursting events outside the motor bandwidth for 
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augmentation, we need to identify features of these bursts that can be modulated reliably, 

for instance, burst duration, amplitude, peak frequency, and occurrence rate. Thus, further 

investigations on these high-frequency components could improve their usability in 

augmentation contexts. This may relate to understanding their role in movement generation, 

origins, how volitional modulation can shape their appearance, and which feature is best 

suited for neuromodulation (Ramot & Martin 2022).  

Furthermore, to effectively exploit the potential functionality of a supernumerary control 

channel, it is crucial to design a human-machine interaction that suits the underlying 

characteristics of the bodily control signal – here,  the characteristics of motor neuron activity. 

In the case of single motor neuron control, one possibility is to continuously map the 

discharge rate of individual neurons into a control signal, as done by Formento and colleagues 

(Formento et al. 2021). A different approach could be to explore interactions based on 

discrete events. In Chapter 4, I observed that humans could learn to keep larger motor 

neurons discharge action potentials while smaller ones stay silent, contrasting to their initial 

activation during orderly recruitment. Such groups of active and inactive motor neurons could 

be modelled in activation patterns, i.e. binary trains, in which each digit stands for a single 

motor neuron. If the discharge rate of a single neuron surpasses a pre-defined threshold, the 

motor neuron can be modelled as active (“1”) or otherwise as inactive (“0”). An activation 

pattern held for a specific time could trigger a control command in human-machine 

interaction. While such a mapping presumably reduces the impact synaptic noise has on 

control when directly mapping individual neurons' discharge rates into sDoF navigation, 

similar to using beta bursting events, it does not allow for an instantaneous interaction (i.e. it 

takes a certain amount of time to form such activation patterns). Yet, extracting events from 

bursting beta activity or using activation patterns of groups of motor neurons could result in 



Chapter 5 - CONCLUSION AND OUTLOOK 

149 
 

a robust way of utilizing motor neurons in augmentation interaction that does not necessarily 

require an immediate control signal. Thus, such events could be used to trigger pre-defined 

actions of artificial effectors or act as a virtual button click overt to natural limb movement in 

virtual and augmented realities. In addition, human motor augmentation facilitated by motor 

neuron activity is based on control signals that are mainly located inside a motor null space. 

Hence, these interactions can be private, i.e. the surrounding does not notice when the 

augmented signal is generated. This feature could promote the use of motor neuron based 

signals for discrete and non-instantaneous interactions. However, further research is 

necessary to understand what means of interaction best suits motor neuron-driven 

supernumerary control channels. 

 

5.3 Final comments 
 

Taken together all this work presented in my dissertation and the pursued research on 

motor neurons and their role in human motor augmentation throughout the last years, I 

would like to provide my view on the following question:  

Do motor neurons provide a resource towards augmentation by extension that can be 

accessed non-invasively? 

Fully flexible coordination of natural and sDoF requires a volitional and independent 

control scheme for artificial actuators also when natural limbs are at total rest. Therefore, 

when using motor neuron activity to provide such a control scheme, the operation of the sDoF 

should be possible even when the innervated muscle is fully rested. Extraction of single motor 

neuron activity relies on measuring muscle activity via EMG. Hence, in contrast to individual 
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control of neurons in the cortex (Patel et al. 2012), a potential supernumerary control signal 

based on motor neuron activity can only be extracted when the innervated muscle is 

contracted.  

In conclusion, under current considerations, do motor neurons provide the missing resource 

to achieve augmentation by extension? – I would say No. The underlying control structure 

orchestrating motor neurons appears too rigid to allow for a supernumerary control channel 

fulfilling all requirements of augmentation by extension, including flexible and concurrent 

activation of natural and sDoF. But, hence, is using motor neurons for enhancing motor 

capacities simply augmentation by transfer? – I would also say No. 

Augmentation by transfer would entirely block the muscle from which motor neuron 

activity is extracted when sDoF are orchestrated. In Chapter 2, I showed that the beta 

component could be modulated partially independent from the low-frequency components 

translated into the force. Furthermore, in Chapter 4, depending on the history of muscle 

activation, different combinations of motor neurons could discharge action potentials at the 

same force level. Based on this, there is a possibility that motor neurons could provide a 

superior supernumerary control than current augmentation by transfer approaches. They 

may provide the potential of a partially independent control channel that, in my opinion, 

could advance the application spectrum of current augmentation by transfer approaches. 

However, fully flexible coordination of both natural and sDoF seems to be a challenge too big 

for solely using spinal motor neurons. Nevertheless, if we ever accomplish augmentation by 

extension for general purpose applications remains to be demonstrated (Eden et al. 2022). 

Human motor augmentation research is just at its beginning and already provides an 

exciting glimpse of what capabilities lie in it. This dissertation solely dealt with finding an 
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adequate resource for controlling sDoF using motor neuron activity. Yet, the successful 

realization of novel human machine interaction within the human augmentation context 

depends on many more aspects outside of the scope of this book. Effective control is not just 

limited to control itself but also how the sDoF is integrated into the sensorimotor system. 

Future human motor augmentation research should therefore be accompanied by 

investigations that tie in with studies exploring how learning of sDoF control can be facilitated, 

how sDoF are embodied (Bashford & Mehring 2016; Giummarra et al. 2011) and how the CNS 

integrates additional artificial effectors (Di Pino et al. 2014; Kieliba et al. 2021; van den 

Heiligenberg et al. 2018), to just name a few. And yet, it remains crucial that further 

development of such potentially disrupting technology should be accompanied by ethical 

considerations and constant reflection of its usage (Blanke & Aspell 2009; Johnson 2014; 

Mirza et al. 2019). Opposing its comic book introduction in 1963, human motor augmentation 

could be a technology supporting everyone to advance our lives for the better. 
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In this appendix, I list the permission of all content that has either been published 

elsewhere before or was not generated by myself.  

In Chapter 1, Figure 1-1 was kindly provided by Dani Clode (Dani Clode 

Design/daniclode.com). Permission was granted via email on October 18th, 2021: 

“Hi Mario, 

Thanks for getting in touch, and thanks for your kind words. 

Yes, of course you can use the image with credits - please use Dani Clode 
Design/daniclode.com  

[…] 

Kind Regards, 

Dani 

--- 
Dani Clode, Designer & Senior Research Technician 

Plasticity Laboratory 
Institute of Cognitive Neuroscience 
University College London” 

 

Figure 1-2 was published in Farina, D., & Holobar, A. (2016). Characterization of Human 

Motor Units From Surface EMG Decomposition. Proceedings of the IEEE, 104, 353–373. The 

IEEE does not require individuals working on a thesis to obtain a formal reuse license. 

Figure 1-3 was published in Farina, D., & Negro, F. (2015). Common Synaptic Input to 

Motor Neurons, Motor Unit Synchronization, and Force Control. Exercise and Sport Sciences 

Reviews, 43, 23–33. License number: 5338830213864 
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Chapter 3 was published under the CC BY license (Creative Commons Attribution 4.0 

International License) in Bräcklein, M., Barsakcioglu, D. Y., Vecchio, A. Del, Ibáñez, J., & Farina, 
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of Neuroscience, 42(17), 3611–3621. 

Chapter 4 was published under the CC BY license (Creative Commons Attribution 4.0 

International License) in Bräcklein, M., Barsakcioglu, D. Y., Ibáñez, J., Eden, J., Burdet, E., 
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