1,023 research outputs found

    Signal processing methodologies for an acoustic fetal heart rate monitor

    Get PDF
    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use

    Techniques of FECG signal analysis: detection and processing for fetal monitoring

    Get PDF
    Fetal heart rate monitoring is a technique for obtaining important information about the condition of a fetus during pregnancy and labor, by detecting the FECG signal generated by the heart of the fetus. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies is becoming a very important requirement in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature. A comparative study has been carried out to show the performance of various methods. This paper opens up a passage to biomedical researchers, physicians and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system by providing valuable information to help them in developing more dominant, flexible and resourceful application

    Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Get PDF
    Fetal electrocardiogram (FECG) signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system

    Motion Artifact Processing Techniques for Physiological Signals

    Get PDF
    The combination of reducing birth rate and increasing life expectancy continues to drive the demographic shift toward an ageing population and this is placing an ever-increasing burden on our healthcare systems. The urgent need to address this so called healthcare \time bomb" has led to a rapid growth in research into ubiquitous, pervasive and distributed healthcare technologies where recent advances in signal acquisition, data storage and communication are helping such systems become a reality. However, similar to recordings performed in the hospital environment, artifacts continue to be a major issue for these systems. The magnitude and frequency of artifacts can vary signicantly depending on the recording environment with one of the major contributions due to the motion of the subject or the recording transducer. As such, this thesis addresses the challenges of the removal of this motion artifact removal from various physiological signals. The preliminary investigations focus on artifact identication and the tagging of physiological signals streams with measures of signal quality. A new method for quantifying signal quality is developed based on the use of inexpensive accelerometers which facilitates the appropriate use of artifact processing methods as needed. These artifact processing methods are thoroughly examined as part of a comprehensive review of the most commonly applicable methods. This review forms the basis for the comparative studies subsequently presented. Then, a simple but novel experimental methodology for the comparison of artifact processing techniques is proposed, designed and tested for algorithm evaluation. The method is demonstrated to be highly eective for the type of artifact challenges common in a connected health setting, particularly those concerned with brain activity monitoring. This research primarily focuses on applying the techniques to functional near infrared spectroscopy (fNIRS) and electroencephalography (EEG) data due to their high susceptibility to contamination by subject motion related artifact. Using the novel experimental methodology, complemented with simulated data, a comprehensive comparison of a range of artifact processing methods is conducted, allowing the identication of the set of the best performing methods. A novel artifact removal technique is also developed, namely ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA), which provides the best results when applied on fNIRS data under particular conditions. Four of the best performing techniques were then tested on real ambulatory EEG data contaminated with movement artifacts comparable to those observed during in-home monitoring. It was determined that when analysing EEG data, the Wiener lter is consistently the best performing artifact removal technique. However, when employing the fNIRS data, the best technique depends on a number of factors including: 1) the availability of a reference signal and 2) whether or not the form of the artifact is known. It is envisaged that the use of physiological signal monitoring for patient healthcare will grow signicantly over the next number of decades and it is hoped that this thesis will aid in the progression and development of artifact removal techniques capable of supporting this growth

    A Comparative Study Of Different Types Of Mother Wavelets For Heartbeat Biometric Verification System

    Get PDF
    Recently, advanced biometric technology is turning to the use of electrocardiograms (ECG) signal as new modality for verification system. The ECG signal contains sufficient information to verify an individual as it is unique to everyone. One of the feasible methods to extract the salient information from ECG signal for verification is by using wavelet transform. However, there is a challenge in implementing it as different types and orders of mother wavelet used will yield different verification performance. Therefore, in this study, a comparative study is done so as to investigate the optimum type and order of mother wavelet that represents the best feature for the verification system. Three different types of mother wavelets i.e. Symlet, Daubechies and Coiflet with order ranging from one to five have been studied in this research. The extracted features are then trained by using SVM classifier to generate a model to verify the features. The performance of the ECG biometric verification system is evaluated with the Receiver Operating Characteristic (ROC) plot and Equal Error Rate (EER). Experimental result showed that the developed system achieves the best performance when the 3rd order Coiflet is used as feature with an EER score of 10.755% is achieved

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT

    Signal Processing Methods for Heart Rate Detection Using the Seismocardiogram

    Get PDF
    Cardiac diseases are one of the major causes of death. Heart monitoring/diagnostic techniques have been developed over decades to address this concern. Monitoring a vital sign such as heart rate is a powerful technique for heart abnormalities detection (e.g., arrhythmia). The novelty of this work is that offers new heart rate detection methods which are both robust and adaptive compared to existing heart rate detec- tion methods. Utilized data sets in this research have been provided from two sources of PhysioNet and a research group. In this work, utilized methods for heart rate detection include Signal Energy Thresholding (SET), Empirical Mode Decomposition (EMD) and Empirical Wavelet Transform (EWT). To the best of the author’s knowledge, this work is the first to use EMD and EWT for heart rate detection from Seismocardiogram (SCG) signal. Obtained result from applying SET to ECG signal is selected as our ground truth. Then, all three methods are used for heart rate detection from the SCG signal. The average error of SET method, EWT and EMD respectively 13.9 ms, 13.8 ms and 16 ms. Based on the obtained results, EMD and EWT are promising techniques for heart rate detection and interpretation from the SCG signal. Another contribution of this work is arrhythmia detection using EWT. EWT provides us with the instantaneous frequency changes of the corresponding modes to ECG signal. Based on the estimated power spectral density of each mode, power spectral density of arrhythmia affected ECG is higher (≥ 50dB) compared to the power spectral density of a normal ECG (≤ 20dB). This provides the potential for arrhythmia detection using EWT
    corecore