121 research outputs found

    Control of Networked Robotic Systems

    Get PDF
    With the infrastructure of ubiquitous networks around the world, the study of robotic systems over communication networks has attracted widespread attention. This area is denominated as networked robotic systems. By exploiting the fruitful technological developments in networking and computing, networked robotic systems are endowed with potential and capabilities for several applications. Robots within a network are capable of connecting with control stations, human operators, sensors, and other robots via digital communication over possibly noisy channels/media. The issues of time delays in communication and data losses have emerged as a pivotal issue that have stymied practical deployment. The aim of this dissertation is to develop control algorithms and architectures for networked robotic systems that guarantee stability with improved overall performance in the presence of time delays in communication. The first topic addressed in this dissertation is controlled synchronization that is utilized for networked robotic systems to achieve collective behaviors. Exploiting passivity property of individual robotic systems, the proposed control schemes and interconnections are shown to ensure stability and convergence of synchronizing errors. The robustness of the control algorithms to constant and time-varying communication delays is also studied. In addition to time delays, the number of communication links, which prevents scalability of networked robotic systems, is another challenging issue. Thus, a synchronizing control with practically feasible constraints of network topology is developed. The problem of networked robotic systems interacting with human operators is then studied subsequently. This research investigates a teleoperation system with heterogeneous robots under asymmetric and unknown communication delays. Sub-task controllers are proposed for redundant slave robot to autonomously achieve additional tasks, such as singularity avoidance, joint angle limits, and collision avoidance. The developed control algorithms can enhance the efficiency of teleoperation systems, thereby ameliorating the performance degradation due to cognitive limitations of human operator and incomplete information about the environment. Compared to traditional robotic systems, control of robotic manipulators over networks has significant advantages; for example, increased flexibility and ease of maintenance. With the utilization of scattering variables, this research demonstrates that transmitting scattering variables over delayed communications can stabilize an otherwise unstable system. An architecture utilizing delayed position feedback in conjunction with scattering variables is developed for the case of time-varying communication delays. The proposed control architecture improves tracking performance and stabilizes robotic manipulators with input-output communication delays. The aforementioned control algorithms and architectures for networked robotic systems are validated via numerical examples and experiments

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty

    Steering control for haptic feedback and active safety functions

    Get PDF
    Steering feedback is an important element that defines driverโ€“vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator\u27s control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driverโ€“environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driverโ€“steering interaction is independent from the actual environment. Whereas, for the driverโ€“environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Throughout the thesis, both experimental and the theoretical findings are corroborated. This includes a real-time implementation of the torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Though the problem is somewhat mitigated by a robust H-infinity controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller

    ๊ตฌ์กฐ๋กœ๋ด‡์„ ์œ„ํ•œ ๊ฐ•๊ฑดํ•œ ๊ณ„์ธต์  ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•์ข…์šฐ.Over the last several years, robotics has experienced a striking development, and a new generation of robots has emerged that shows great promise in being able to accomplish complex tasks associated with human behavior. Nowadays the objectives of the robots are no longer restricted to the automaton in the industrial process but are changing into explorers for hazardous, harsh, uncooperative, and extreme environments. As these robots usually operate in dynamic and unstructured environments, they should be robust, adaptive, and reactive under various changing operation conditions. We propose online hierarchical optimization-based planning and control methodologies for a rescue robot to execute a given mission in such a highly unstructured environment. A large number of degrees of freedom is provided to robots in order to achieve diverse kinematic and dynamic tasks. However, accomplishing such multiple objectives renders on-line reactive motion planning and control problems more difficult to solve due to the incompatible tasks. To address this problem, we exploit a hierarchical structure to precisely resolve conflicts by creating a priority in which every task is achieved as much as possible according to the levels. In particular, we concentrate on the reasoning about the task regularization to ensure the convergence and robustness of a solution in the face of singularity. As robotic systems with real-time motion planners or controllers often execute unrehearsed missions, a desired task cannot always be driven to a singularity free configuration. We develop a generic solver for regularized hierarchical quadratic programming without resorting to any off-the-shelf QP solver to take advantage of the null-space projections for computational efficiency. Therefore, the underlying principles are thoroughly investigated. The robust optimal solution is obtained under both equality and inequality tasks or constraints while addressing all problems resulting from the regularization. Especially as a singular value decomposition centric approach is leveraged, all hierarchical solutions and Lagrange multipliers for properly handling the inequality constraints are analytically acquired in a recursive procedure. The proposed algorithm works fast enough to be used as a practical means of real-time control system, so that it can be used for online motion planning, motion control, and interaction force control in a single hierarchical optimization. Core system design concepts of the rescue robot are presented. The goals of the robot are to safely extract a patient and to dispose a dangerous object instead of humans. The upper body is designed humanoid in form with replaceable modularized dual arms. The lower body is featured with a hybrid tracked and legged mobile platform to simultaneously acquire versatile manipulability and all-terrain mobility. Thus, the robot can successfully execute a driving task, dangerous object manipulation, and casualty extraction missions by changing the pose and modularized equipments in an optimized manner. Throughout the dissertation, all proposed methods are validated through extensive numerical simulations and experimental tests. We highlight precisely how the rescue robot can execute a casualty extraction and a dangerous object disposal mission both in indoor and outdoor environments that none of the existing robots has performed.์ตœ๊ทผ์— ๋“ฑ์žฅํ•œ ์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ๋กœ๋ด‡์€ ๊ธฐ์กด์—๋Š” ์ธ๊ฐ„๋งŒ์ด ํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ๋ณต์žกํ•œ ์ผ์„ ๋กœ๋ด‡ ๋˜ํ•œ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํŠนํžˆ DARPA Robotics Challenge๋ฅผ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์‚ฌ์‹ค์„ ์ž˜ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ๋กœ๋ด‡๋“ค์€ ๊ณต์žฅ๊ณผ ๊ฐ™์€ ์ •ํ˜•ํ™”๋œ ํ™˜๊ฒฝ์—์„œ ์ž๋™ํ™”๋œ ์ผ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋˜ ์ž„๋ฌด์—์„œ ๋” ๋‚˜์•„๊ฐ€ ๊ทนํ•œ์˜ ํ™˜๊ฒฝ์—์„œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ์œ„ํ—˜ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์‚ฌ๋žŒ๋“ค์€ ์žฌ๋‚œํ™˜๊ฒฝ์—์„œ ์•ˆ์ „ํ•˜๊ณ  ์‹œ์˜ ์ ์ ˆํ•˜๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋Œ€์•ˆ ์ค‘์—์„œ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ๋Œ€์ฒ˜ ๋ฐฉ์•ˆ์œผ๋กœ ๋กœ๋ด‡์„ ์ƒ๊ฐํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ๋กœ๋ด‡์€ ๋™์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•ด์•ผํ•˜๊ณ , ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์กฐ๊ฑด์—์„œ ๋Šฅ๋™์ ์œผ๋กœ ๋ฐ˜์‘์„ ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ๋ด‡์ด ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๊ฐ•๊ฑดํ•˜๋ฉด์„œ๋„ ์ ์‘์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด ๋ฐฉ๋ฒ•๊ณผ ๊ตฌ์กฐ ๋กœ๋ด‡์˜ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ธ๊ฐ„์€ ๋งŽ์€ ์ž์œ ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ํ•˜๋‚˜์˜ ์ „์‹  ๋™์ž‘์„ ์ƒ์„ฑํ•  ๋•Œ ๋‹ค์–‘ํ•œ ๊ธฐ๊ตฌํ•™ ํ˜น์€ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ข…ํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•™์Šต์„ ํ†ตํ•ด ๊ฐ ๋™์ž‘ ์š”์†Œ๋“ค์„ ์ตœ์ ํ™”ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ƒํ™ฉ ์— ๋”ฐ๋ผ ๊ฐ ๋™์ž‘ ์š”์†Œ์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๊ฑฐ๋‚˜ ๋ถ„๋ฆฌํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ตœ์ ์˜ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ œ์–ดํ•œ๋‹ค. ์ฆ‰, ์ƒํ™ฉ์— ๋”ฐ๋ผ ์ค‘์š”ํ•œ ๋™์ž‘์š”์†Œ๋ฅผ ์šฐ์„ ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋Š” ๋ถ€๋ถ„ ํ˜น์€ ์ „์ฒด์ ์œผ๋กœ ํฌ๊ธฐํ•˜๊ธฐ๋„ ํ•˜๋ฉด์„œ ๋งค์šฐ ์œ ์—ฐํ•˜๊ฒŒ ์ „์ฒด ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ตœ์ ํ™” ํ•œ๋‹ค. ์ธ๊ฐ„๊ณผ ๊ฐ™์ด ๋‹ค์ž์œ ๋„๋ฅผ ๋ณด์œ ํ•œ ๋กœ๋ด‡ ๋˜ํ•œ ๊ธฐ๊ตฌํ•™๊ณผ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ๋‹ค์–‘ํ•œ ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ž‘์—…๊ณต๊ฐ„(task space) ํ˜น์€ ๊ด€์ ˆ๊ณต๊ฐ„(configuration space)์—์„œ ์ •์˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์šฐ์„ ์ˆœ์œ„์— ๋”ฐ๋ผ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ์ „์ฒด ๋™์ž‘์„ ์ƒ ์„ฑํ•˜๊ณ  ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์„œ๋กœ ์–‘๋ฆฝํ•˜๊ธฐ ์–ด๋ ค์šด ๋กœ๋ด‡์˜ ๋™์ž‘ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋™์ž‘๋“ค ์‚ฌ์ด์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ๊ณ„์ธต์„ ์ƒ์„ฑํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๋กœ๋ด‡์˜ ์ „์‹  ๋™์ž‘์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์˜ค๋žซ๋™์•ˆ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•˜๋ฉด ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋†’์€ ๋™์ž‘๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ์‹คํ–‰ํ•˜์ง€๋งŒ, ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋“ค๋„ ๊ฐ€๋Šฅํ•œ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ตœ์ ์˜ ํ•ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ด€์ ˆ์˜ ๊ตฌ๋™ ๋ฒ”์œ„์™€ ๊ฐ™์€ ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ๊นŒ์ง€ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง๊นŒ์ง€ ๋งŽ์€ ๋ถ€๋ถ„์ด ๋ฐ ํ˜€์ง„ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋“ฑ์‹๊ณผ ๋ถ€๋“ฑ์‹์œผ๋กœ ํ‘œํ˜„๋˜๋Š” ๊ตฌ์†์กฐ๊ฑด ํ˜น์€ ๋™์ž‘์š”์†Œ๋ฅผ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ๋™์‹œ์— ํฌํ•จ์‹œํ‚ค๊ณ , ํŠน์ด์ ์ด ์กด์žฌํ•˜๋”๋ผ๋„ ๊ฐ•๊ฑด์„ฑ๊ณผ ์ˆ˜๋ ด์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๊ด€์ ˆ๊ณต๊ฐ„์—์„œ์˜ ์ตœ์ ํ•ด๋ฅผ ํ™•๋ณดํ•˜๋Š”๋ฐ ์ง‘์ค‘ํ•œ๋‹ค. ์™œ๋‚˜ํ•˜๋ฉด ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋กœ๋ด‡์€ ์‚ฌ์ „์— ๊ณ„ํš๋œ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ์กฐ๊ฑด์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋™์ž‘์„ ๊ณ„ํšํ•˜๊ณ  ์ œ์–ดํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํŠน์ด์ ์ด ์—†๋Š” ์ž์„ธ๋กœ ๋กœ๋ด‡์„ ํ•ญ์ƒ ์ œ์–ดํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ ‡๊ฒŒ ํŠน์ด์ ์„ ํšŒํ”ผํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋กœ๋ด‡์„ ์ œ์–ดํ•˜๋Š” ๊ฒƒ์€ ๋กœ๋ด‡์˜ ์šด์šฉ์„ฑ์„ ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํŠน์ด์  ๊ทผ๋ฐฉ์—์„œ์˜ ํ•ด์˜ ๊ฐ•๊ฑด์„ฑ์ด ๋ณด์žฅ๋˜์ง€ ์•Š์œผ๋ฉด ๋กœ๋ด‡ ๊ด€์ ˆ์— ๊ณผ๋„ํ•œ ์†๋„ ํ˜น์€ ํ† ํฌ๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๋กœ๋ด‡์˜ ์ž„๋ฌด ์ˆ˜ํ–‰์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์†์ƒ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚˜์•„๊ฐ€ ๋กœ๋ด‡๊ณผ ํ•จ๊ป˜ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ์ƒํ•ด๋ฅผ ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์šฐ์„ ์ˆœ์œ„ ๊ธฐ๋ฐ˜์˜ ๊ณ„์ธต์  ์ตœ์ ํ™”์™€ ์ •๊ทœํ™” (regularization)๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” (RHQP: Regularized Hierarchical Quadratic Program) ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๋ถ€๋“ฑ์‹์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ์ •๊ทœํ™”๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์•ผ๊ธฐ๋˜๋Š” ๋งŽ์€ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  ํ•ด์˜ ์ตœ์ ์„ฑ๊ณผ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ ์™ธ๋ถ€์˜ ์ตœ์ ํ™” ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์ˆ˜์น˜์  ์ตœ์ ํ™” (numerical optimization) ์ด๋ก ๊ณผ ์šฐ์„ ์ˆœ์œ„์— ๊ธฐ๋ฐ˜์„ ๋‘๋Š” ์—ฌ์œ ์ž์œ ๋„ ๋กœ๋ด‡์˜ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ด์ฐจ ํ”„๋กœ๊ทธ๋žจ(quadratic programming)์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ์ด์™€ ๋™์‹œ์— ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ์ด๋ก ์  ๊ตฌ์กฐ๋ฅผ ์ฒ ์ €ํ•˜๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ ํŠน์ด๊ฐ’ ๋ถ„ํ•ด (singular value decomposition)๋ฅผ ํ†ตํ•ด ์ตœ์ ํ•ด์™€ ๋ถ€๋“ฑ์‹ ์กฐ๊ฑด์„ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ๋ผ๊ทธ๋ž‘์ง€ ์Šน์ˆ˜๋ฅผ ์žฌ๊ท€์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•ด์„์  ํ˜•ํƒœ๋กœ ๊ตฌํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๊ณ  ๋™์‹œ์— ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์„ ์˜ค๋ฅ˜ ์—†์ด ์ •ํ™•ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ํž˜์ œ์–ด๊นŒ์ง€ ํ™•์žฅํ•˜์—ฌ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์•ˆ์ „ํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณด์žฅํ•˜์—ฌ ๋กœ๋ด‡์ด ์ ์ ˆํ•œ ํž˜์œผ๋กœ ํ™˜๊ฒฝ๊ณผ ์ ‘์ด‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋กœ๋ด‡์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ์˜ ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ์ด๋™ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์ƒ์œผ๋กœ ๋กœ๋ด‡์„ ์„ค๊ณ„ํ•˜์—ฌ ๊ตฌ์กฐ ๋กœ๋ด‡์œผ๋กœ ํ•˜์—ฌ๊ธˆ ์ตœ์ข… ๋ชฉ์ ์œผ๋กœ ์„ค์ •๋œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ๋ถ€์ƒ์ž๋ฅผ ๊ตฌ์กฐํ•˜๊ณ  ์œ„ํ—˜๋ฌผ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ์ž„๋ฌด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๊ตฌ์กฐ ๋กœ๋ด‡์— ํ•„์š”ํ•œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด์™€ ์œ„ํ—˜๋ฌผ ์ฒ˜๋ฆฌ ์ž„๋ฌด์— ๋”ฐ๋ผ ๊ต์ฒด ๊ฐ€๋Šฅํ•œ ๋ชจ๋“ˆํ˜•์œผ๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์ž„๋ฌด์— ๋”ฐ๋ผ ์ตœ์ ํ™”๋œ ๋งค๋‹ˆํ“ฐ ๋ ˆ์ดํ„ฐ๋ฅผ ์žฅ์ฐฉํ•˜์—ฌ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ฒด๋Š” ํŠธ๋ž™๊ณผ ๊ด€์ ˆ์ด ๊ฒฐํ•ฉ๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ˜•ํƒœ๋ฅผ ์ทจํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ฃผํ–‰ ์ž„๋ฌด์™€ ์กฐ์ž‘์ž„๋ฌด์— ๋”ฐ๋ผ ํ˜•์ƒ์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜•์ƒ ๋ณ€๊ฒฝ๊ณผ ๋ชจ๋“ˆํ™”๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ํ†ตํ•ด์„œ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ํ—˜ํ•œ ์ง€ํ˜•์—์„œ ์ด๋™ํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผํ–‰ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๊ตฌ์กฐ๋กœ๋ด‡์˜ ์„ค๊ณ„์™€ ์‹ค์‹œ๊ฐ„ ๊ณ„์ธต์  ์ œ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„์ •ํ˜• ์‹ค๋‚ด์™ธ ํ™˜๊ฒฝ์—์„œ ๊ตฌ์กฐ๋กœ๋ด‡์ด ์ฃผํ–‰์ž„๋ฌด, ์œ„ํ—˜๋ฌผ ์กฐ์ž‘์ž„๋ฌด, ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜ ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ•ด์„๊ณผ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ž…์ฆํ•จ์œผ๋กœ์จ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์„ค๊ณ„์™€ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ์ œ์–ด ์ „๋žต์˜ ์œ ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivations 1 1.2 Related Works and Research Problems for Hierarchical Control 3 1.2.1 Classical Approaches 3 1.2.2 State-of-the-Art Strategies 4 1.2.3 Research Problems 7 1.3 Robust Rescue Robots 9 1.4 Research Goals 12 1.5 Contributions of ThisThesis 13 1.5.1 Robust Hierarchical Task-Priority Control 13 1.5.2 Design Concepts of Robust Rescue Robot 16 1.5.3 Hierarchical Motion and ForceControl 17 1.6 Dissertation Preview 18 2 Preliminaries for Task-Priority Control Framework 21 2.1 Introduction 21 2.2 Task-Priority Inverse Kinematics 23 2.3 Recursive Formulation of Null Space Projector 28 2.4 Conclusion 31 3 Robust Hierarchical Task-Priority Control 33 3.1 Introduction 33 3.1.1 Motivations 35 3.1.2 Objectives 36 3.2 Task Function Approach 37 3.3 Regularized Hierarchical Optimization with Equality Tasks 41 3.3.1 Regularized Hierarchical Optimization 41 3.3.2 Optimal Solution 45 3.3.3 Task Error and Hierarchical Matrix Decomposition 49 3.3.4 Illustrative Examples for Regularized Hierarchical Optimization 56 3.4 Regularized Hierarchical Optimization with Inequality Constraints 60 3.4.1 Lagrange Multipliers 61 3.4.2 Modified Active Set Method 66 3.4.3 Illustrative Examples of Modified Active Set Method 70 3.4.4 Examples for Hierarchical Optimization with Inequality Constraint 72 3.5 DLS-HQP Algorithm 79 3.6 Concluding Remarks 80 4 Rescue Robot Design and Experimental Results 83 4.1 Introduction 83 4.2 Rescue Robot Design 85 4.2.1 System Design 86 4.2.2 Variable Configuration Mobile Platform 92 4.2.3 Dual Arm Manipulators 95 4.2.4 Software Architecture 97 4.3 Performance Verification for Hierarchical Motion Control 99 4.3.1 Real-Time Motion Generation 99 4.3.2 Task Specifications 103 4.3.3 Singularity Robust Task Priority 106 4.3.4 Inequality Constraint Handling and Computation Time 111 4.4 Singularity Robustness and Inequality Handling for Rescue Mission 117 4.5 Field Tests 122 4.6 Concluding Remarks 126 5 Hierarchical Motion and Force Control 129 5.1 Introduction 129 5.2 Operational Space Control 132 5.3 Acceleration-Based Hierarchical Motion Control 134 5.4 Force Control 137 5.4.1 Force Control with Inner Position Loop 141 5.4.2 Force Control with Inner Velocity Loop 144 5.5 Motion and Force Control 145 5.6 Numerical Results for Acceleration-Based Motion and Force Control 148 5.6.1 Task Specifications 150 5.6.2 Force Control Performance 151 5.6.3 Singularity Robustness and Inequality Constraint Handling 155 5.7 Velocity Resolved Motion and Force Control 160 5.7.1 Velocity-Based Motion and Force Control 161 5.7.2 Experimental Results 163 5.8 Concluding Remarks 167 6 Conclusion 169 6.1 Summary 169 6.2 Concluding Remarks 173 A Appendix 175 A.1 Introduction to PID Control 175 A.2 Inverse Optimal Control 176 A.3 Experimental Results and Conclusion 181 Bibliography 183 Abstract 207๋ฐ•

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    Proceedings of the 8th Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    Get PDF
    The Proceedings contain the papers presented at the Eight Annual Precise Time and Tme Interval PTTI Applications and Planning Meeting. The edited record of the discussions following the papers and the panel discussions are also included. This meeting provided a forum for the exchange of information on precise time and frequency technology among members of the scientific community and persons with program applications. The 282 registered attendees came from various U.S. Government agencies, private industry, universities and a number of foreign countries were represented. In this meeting, papers were presented that emphasized: (1) definitions and international regulations of precise time sources and users, (2) the scientific foundations of Hydrogen Maser standards, the current developments in this field and the application experience, and (3) how to measure the stability performance properties of precise standards. As in the previous meetings, update and new papers were presented on system applications with past, present and future requirements identified
    • โ€ฆ
    corecore