39 research outputs found

    Obstacle detection technique using multi sensor integration for small unmanned aerial vehicle

    Get PDF
    Achieving a robust obstacle detection system for small UAV is very challenging. Due to size and weight constraints, very limited detection sensors can be equipped in the system. Prior works focused on a single sensing device which is either camera or range sensors based. However, these sensors have their own advantages and disadvantages in detecting the appearance of the obstacles. In this paper, combination of both sensors based is proposed for a small UAV obstacle detection system. A small Lidar sensor is used as the initial detector and queue for image capturing by the camera. Next, SURF algorithm is applied to find the obstacle sizes estimation by searching the connecting feature points in the image frame. Finally, safe avoidance path for UAV is determined through the exterior feature points from the estimated width of the obstacle. The proposed method was evaluated by conducting experiments in real time with indoor environment. In the experiment conducted, we successfully detect and determine a safe avoidance path for the UAV on 6 different sizes and textures of the obstacles including textureless obstacle

    Development of Obstacle Detection System Based On the Integration of Different Based Sensor for Small-Sized UAV

    Get PDF
    Due to the physical size and weight limits of small unmanned aerial vehicles (UAVs), developing a reliable obstacle detection a system that can provide an effective and safe avoidance path is extremely difficult. Prior work has tended to use a vision-based sensor as the primary detecting sensor however, this has resulted in a high reliance on texture appearance and a lack of distance sensing capabilities. Furthermore, due to the inability to detect the free region, vision-based sensor detection systems have difficulty developing a trusted safe avoidance path.  However, most wide spectrum range sensors are bulky and expensive, making them unsuitable for small UAVs. This project aims to construct an obstacles detection system with the integration of various based sensors for a small UAV. The potential obstacles are identified by categorizing feature points identified in image frame. The suggested approach was tested in a real-world setting for both of the observed scenarios, which included various obstacles configurations. Two types of scenarios are experimented in this project consists of single frontal obstacles and presence of side obstacles alongside the frontal obstacles. On top of that, the position of the side obstacle is aligned to the frontal obstacle and then will be positioned in the increment of 20cm further from the frontal obstacle in order to analyse the outcome of the proposed algorithm. The proposed detection system had a possibility to be a trustworthy system even after utilising the depth perception technique, however this does not imply that the proposed system is faultless. The results show that the suggested algorithm system detects and distinguishes between the potential obstacles and free region for a single frontal obstacle perfectly. However, there were improvements that should be implemented with the proposed system's ability of detection for multiple obstacles

    Backstepping Control for a Tandem Rotor UAV Robot with Two 2-DOF Tiltable Coaxial Rotors

    Get PDF
    The study of a fully actuated multi-rotor UAV robot is very important in the field of infrastructure inspection because it needs a dexterous motion, such as hovering in a special fixed attitude, etc. This paper presents a backstepping control method for a simplified fully actuated model of a tandem-rotor UAV robot with two 2-DOF tiltable coaxial rotors. A MIMO vectorial backstepping approach is adopted here because the input distribution matrix is a square and nonsingular matrix. The two-stage control method based on the Lyapunov second method is presented to stabilize the position and attitude of the whole system. The static control allocation problem is also solved by using a Moore-Penrose pseudo-inverse. Finally, two simulations are demonstrated to verify the performance of the proposed control method, where one is a stabilizing problem in which all the desired position and attitude are to be constant, whereas the other is a trajectory tracking problem in which the desired positions are time-varying while the desired attitudes are to be constant

    A Fully Autonomous Search and Rescue System Using Quadrotor UAV

    Get PDF
    In order to deal with critical missions a growing interest has been shown to the UAVs design. Flying robots are now used fire protection, surveillance and search & rescue (SAR) operations. In this paper, a fully autonomous system for SAR operations using quadrotor UAV is designed. In order to scan the damaged area, speeds up the searching process and detect any possible survivals a new search strategy that combines the standard search strategies with the probability of detection is developed. Furthermore the autopilot is designed using an optimal backstepping controller and this enables the tracking of the reference path with high accuracy and maximizes the flying time. Finally a comparison between the applied strategies is made using a study case of survivals search operation. The obtained results confirmed the efficiency of the designed system

    Dynamic Landing of an Autonomous Quadrotor on a Moving Platform in Turbulent Wind Conditions

    Full text link
    Autonomous landing on a moving platform presents unique challenges for multirotor vehicles, including the need to accurately localize the platform, fast trajectory planning, and precise/robust control. Previous works studied this problem but most lack explicit consideration of the wind disturbance, which typically leads to slow descents onto the platform. This work presents a fully autonomous vision-based system that addresses these limitations by tightly coupling the localization, planning, and control, thereby enabling fast and accurate landing on a moving platform. The platform's position, orientation, and velocity are estimated by an extended Kalman filter using simulated GPS measurements when the quadrotor-platform distance is large, and by a visual fiducial system when the platform is nearby. The landing trajectory is computed online using receding horizon control and is followed by a boundary layer sliding controller that provides tracking performance guarantees in the presence of unknown, but bounded, disturbances. To improve the performance, the characteristics of the turbulent conditions are accounted for in the controller. The landing trajectory is fast, direct, and does not require hovering over the platform, as is typical of most state-of-the-art approaches. Simulations and hardware experiments are presented to validate the robustness of the approach.Comment: 7 pages, 8 figures, ICRA2020 accepted pape

    Combining LoRaWAN and a New 3D Motion Model for Remote UAV Tracking

    Full text link
    Over the last few years, the many uses of Unmanned Aerial Vehicles (UAVs) have captured the interest of both the scientific and the industrial communities. A typical scenario consists in the use of UAVs for surveillance or target-search missions over a wide geographical area. In this case, it is fundamental for the command center to accurately estimate and track the trajectories of the UAVs by exploiting their periodic state reports. In this work, we design an ad hoc tracking system that exploits the Long Range Wide Area Network (LoRaWAN) standard for communication and an extended version of the Constant Turn Rate and Acceleration (CTRA) motion model to predict drone movements in a 3D environment. Simulation results on a publicly available dataset show that our system can reliably estimate the position and trajectory of a UAV, significantly outperforming baseline tracking approaches.Comment: 6 pages, 6 figures, in review for IEEE WISARN 2020 (INFOCOM WORKSHOP) 2020 : IEEE WiSARN 2020 (INFOCOM WORKSHOP) 2020: 13th International Workshop on Wireless Sensor, Robot and UAV Network

    Sudden Obstacle Appearance Detection by Analyzing Flow Field Vector for Small-Sized UAV

    Get PDF
    Achieving a reliable obstacle detection and avoidance system that can provide an effective safe avoidance path for small unmanned aerial vehicle (UAV) is very challenging due to its physical size and weight constraints. Prior works tend to employ the vision based-sensor as the main detection sensor but resulting to high dependency on texture appearance while not having a distance sensing capabilities. The previous system only focused on the detection of the static frontal obstacle without observing the environment which may have moving obstacles. On the other hand, most of the wide spectrum range sensors are heavy and expensive hence not suitable for small UAV. In this work, integration of different based sensors was proposed for a small UAV in detecting unpredictable obstacle appearance situation. The detection of the obstacle is accomplished by analysing the flow field vectors in the image frames sequence. The proposed system was evaluated by conducting the experiments in a real environment which consisted of different configuration of the obstacles. The results from the experiment show that the success rate for detecting unpredictable obstacle appearance is high which is 70% and above. Even though some of the introduced obstacles are considered to have poor texture appearances on their surface, the proposed obstacle detection system was still able to detect the correct appearance movement of the obstacles by detecting the edges

    Autonomous Search and Rescue with Modeling and Simulation and Metrics

    Get PDF
    Unmanned Aerial Vehicles (UAVs) provide rapid exploration capabilities in search and rescue missions while accepting more risks than human operations. One limitation in that current UAVs are heavily manpower intensive and such manpower demands limit abilities to expand UAV use. In operation, manpower demands in UAVs range from determining tasks, selecting waypoints, manually controlling platforms and sensors, and tasks in between. Often, even a high level of autonomy is possible with human generated objectives and then autonomous resource allocation, routing, and planning. However, manually generating tasks and scenarios is still manpower intensive. To reduce manpower demands and move towards more autonomous operations, the authors develop an adaptive planning system that takes high level goals from a human operator and translates them into situationally relevant tasking. For expository simulation, the authors further describe constructing a scenario around the 2018 Hawaii Puna lava natural disaster
    corecore