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Abstract 
 

Unmanned Aerial Vehicles (UAVs) provide rapid 

exploration capabilities in search and rescue missions 

while accepting more risks than human operations.  

One limitation in that current UAVs are heavily 

manpower intensive and such manpower demands 

limit abilities to expand UAV use.  In operation, 

manpower demands in UAVs range from determining 

tasks, selecting waypoints, manually controlling 

platforms and sensors, and tasks in between. Often, 

even a high level of autonomy is possible with human 

generated objectives and then autonomous resource 

allocation, routing, and planning.  However, manually 

generating tasks and scenarios is still manpower 

intensive. To reduce manpower demands and move 

towards more autonomous operations, the authors 

develop an adaptive planning system that takes high 

level goals from a human operator and translates them 

into situationally relevant tasking. For expository 

simulation, the authors further describe constructing a 

scenario around the 2018 Hawaii Puna lava natural 

disaster. 

 

1. Introduction  

 
Unmanned aerial vehicles (UAVs) are seeing 

increasing use in location-based analysis, including 

search and rescue missions, due to their ability to 

physically cover more area than humans alone as well 

as their ability to operate in dangerous areas 

(Talamadupula, Schermerhorn, Benton, 

Kambhampati, & Scheutz, 2011). However, despite 

the operators being at a distance, manpower demands 

are pervasive in UAVs. While in layman’s terms they 

might be considered as “autonomous” due to them not 

being directly controlled by a human operator 

(Talamadupula, Schermerhorn, Benton, 

Kambhampati, & Scheutz, 2011), in actuality there are 

still many functions that require human direction.  

Planning is key to enabling autonomous systems 

whether they are biological or artificial intelligence 

(AI) agents (Russell & Norvig, 2009). In general, 

planning involves an interaction between a platform’s 

actuators and its desired goals. This largely includes 

generating a detailed description of actions to be taken 

to accomplish a set of goals (Bihl, Cox, & Machin, 

2019). In order to truly be autonomous, a system must 

further have the ability to monitor the execution of its 

plans, to re-plan when necessary, to determine 

appropriate goals, and to coordinate activities with 

other agents  (Bihl, Cox, & Machin, 2019). 

Sophisticated planners are available, but still 

require some degree of manual control, such as highly 

detailed pre-mission designated task list. Thus, 

although autonomous and automated operations of 

UAVs have been studied for decades, such operations 

are still manpower intensive and/or permit minimal 

replanning as situations change (Bihl, Cox, & Machin, 

2019). Of interest are autonomous planning 

approaches that 1) resolve conflicting information, 2) 

plan, and 3) learn (Floreano & Wood, 2015).  

Guiding this is understanding that true autonomy 

has three characteristics: 1) intelligent, informed, 

unforced choice, 2) an ability to handle uncertain and 

unexpected situations, and 3) a sense of self (Bihl, 

Cox, & Jenkins, 2018). These three features of 

autonomy are commonly identified across a wide set 

of diverse fields of study, including philosophy, 

psychology, law, government, robotics, cognitive 

science, and artificial intelligence (AI) (Bihl, Cox, & 

Jenkins, 2018).  

In biological systems, these characteristics 

developed over a long time to address the richness of 

the world. To build synthetic automatons with these 

capabilities at realistic time scales, complex modeling 

and simulation (M&S) is required. A good M&S 

evaluation shows that an agent can make good choices, 

act robustly in the face of environmental variations, 

and successfully operate as a distinct entity within a 

group of cooperating and/or competing agents. 

Additionally, replicability challenges are a known 

limitation in location analysis research (Murray, 

2021); however, repeatable and reproducible M&S 

scenarios and environments lend themselves to 

addressing replicability by providing a baseline 

mechanism.   

Before deployment, an autonomous agent must be 

rigorously tested and evaluated to understand its 
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decision spaces and to develop expectations of 

performance (Bihl & Talbert, 2020). Though there has 

been some discussion of explainable AI, the 

complexity of the decisions being made by an 

autonomous agent and the tempo of its mission might 

preclude understandable explanations in some 

situations. Thus, M&S for developing trained and 

trusted autonomous agents is of interest herein; this 

can be thought of in much the same way as service 

dogs that, though trained, tested, and trusted, are not 

query-able (Bihl & Talbert, 2020).  However, the 

research herein focuses on symbolic methods that 

might provide the data that are needed to construct 

explanations. Together, it is hoped that some 

combination of explanation and testing will be 

sufficient for certification. 

In this paper, we study dynamic and autonomous 

goal/task flexible operations of UAVs as 

environments are traversed and declarative data are 

gathered. Results from sensing operations are 

considered by a probabilistic decision agent to 

determine the course of action multiple UAVs should 

pursue. In the proposed Adaptive Planning 

methodology, all UAV actions are autonomously 

selected by a central controller, which is the primary 

UAV in the swarm.  Human operator input is not 

necessary beyond the initialization of the mission with 

the selection of the goal condition. 

 

2. Background 
 
2.1.  UAVs in Search and Rescue (SAR) 
 
 Traditional research on AI/ML for search and 
rescue involves sensor-centric approaches to finding 
objects of interest.  This includes schduling, planning, 
and tasking of sensors and their associated platforms 
(Hero & Cochran, 2011) (Musick & Malhotra, 1994).  
But this largely involves detecting an object and then 
cuing a human operator for next actions.  Herein, of 
interest are fully autonomous search and rescue 
operations whereby an autonomous UAV would 
detect, identify, and then prescribe an appropriate 
course of action.  Prior work, e.g. (Scherer, et al., 
2015), developed autonomous SAR whereby UAVs 
reacted to sensed data with onboard planning, control, 
and sensor data exploitation; however, the system in 
(Scherer, et al., 2015) was not responsive to 
autonomously generating tasks.  More recently, 
research has developed abilities for decentralized 
tasking of multiple assets in the presense of uncertainty 
(Liu, Seo, Yan, & Tsourdos, 2020); however, this work 
did not consider core abilities to self task and generate 
new tasks, which will be key to future AI operations. 

 
2.2.  Artificial Intelligence  

AI involves a complex interaction of algorithms, 

software, hardware, applications, and data.  Finding the 

correct algorithms in the proper combinations is not as 

easy as some early researchers expected.  Because of 

the generally reprogrammable nature of the underlying 

computer hardware, the space of possible algorithms is 

immense.  In response to this difficulty, AI research has 

focused largely on methods that are mathematical, 

statistical, and rule-based in nature, c.f. (Russell & 

Norvig, 2016) (Duda, Hart, & Stork, 2012), to quickly 

address narrow, but very useful applications.  AI can be 

grouped in a rough taxonomy by the nature of each 

innovation. Broadly, AI research is either application 

based, where a known algorithm is applied to an 

application, or theory based, where researchers 

develop, characterize, or expand algorithms to address 

classes of computational problems (Silver). Areas of 

theory based AI approaches include those that develop 

attributes largely viewed as necessary for intelligent 

behavior (Russell & Norvig, 2016) (Luger & 

Stubblefield, 2004) (Nilsson, 1998) (Poole, 

Mackworth, & Goebel, 1998) (Håkansson & Hartung, 

2020).  These areas include: reasoning, knowledge 

representation, planning, learning, human-computer 

interaction, and integration.  These areas include 

further overlap with other domains, i.e. human-

computer interaction overlaps with robotics and 

reasoning overlaps with neuroscience and cognitive 

architectures (Zacharias, 2019). 

 

2.3.  Automation vs Autonomy 
 

Related to true AI are autonomous capabilities. To 

understand what is meant by autonomy, we must 

understand the current state of the art for machine 

intelligence and how it relates to automation and 

autonomy. For this purpose, we will consider the 

following definitions, adapted from (Bihl & Talbert, 

2020): 
 

• Automation is where a system functions with little 

to no human involvement, but with well-defined 

tasks with predetermined outcomes.   

• Autonomy is where a system has intelligence-

based capabilities, allowing it to respond to 

unexpected and unanticipated situations.  
 

Central to these distinctions is that an autonomous 

system can select an appropriate task or goal to pursue, 

modify its thinking constructs, and appropriately 

assume roles (Bihl, Cox, & Jenkins, 2018).  Selecting 

the appropriate task or goal to pursue further implies 

reasoning, including planning capabilities that leverage 

models of the self and of the environment. 

 

2.4.  Planning 
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 Planning is a pervasive problem for robotics and for 

UAVs, it is also central to many autonomous 

capabitlities. Planning involves a hierarchy of terms 

and functions which range from the highest level of 

mission planning down-to the lowest level of 

determining forces to apply to specific vehicle 

actuators (Bihl, Cox, & Machin, 2019). The general 

conceptualization of planning as a protocol stack is 

presented in Figure 1.  Here, we present planning as a 

hierarchical relationship between an operator/user and 

the actuators. This encompasses the breadth of 

planning, e.g. in robotics planning describes control of 

motion (Ghandi & Masehian, 2015), whereas in 

artificial intelligence planning is more abstract and 

implies a set of tasks or actions (García-Martínez & 

Borrajo, 1997).  When a plan is executed, the proper 

sequencing of actions are expected to make the agent 

reach a goal, usually by improving some value function 

of the problem state.  At each increasing-level of the 

planning stack, a planner operates on an increasingly 

abstract notion of state to achieve an increasingly 

general objective. Overall, plans and planning can be 

thought of per the following definitions, from (Bihl, 

Cox, & Machin, 2019): 
 

• A plan is defined as a detailed description of 

actions to be taken by one or more entities to 

accomplish a set of goals. 

• Planning means to generate the plan. This 

generation is subject to a set of constraints that 

limit the plausible choices of actions. 
 

For the purposes of this research, planning is 

considered as occurring between the operator and the 

vehicle’s autopilot (Figure 1).  Of particular interest are 

mission and task planners that are given abstract goals.  

The planners must determine the tasks, schedule of 

tasks, and allocate resources to achieve these goals.  In 

operation, as conceptualized in Figure 1, a mission 

planner selects tasks, determines the schedule, and then 

employ tasks planners to complete the plan. 

At a high level, a mission is a set of tasks (Botelho 

& Alami, 1999). As described in (Bihl, Cox, & Machin, 

2019), each task can be viewed as a tree structure that 

decomposes the task into subsequently finer levels of 

detail. The leaves of the tree are basic actions that are 

directly executed by vehicles, sensors, and other assets. 

The required actions usually include driving the 

vehicle, so a path planner generates waypoint paths. 

Planning also involves some scheduling to ensure that 

tasks are coordinated and accomplished at the 

appropriate times. It also includes asset allocation to 

assign vehicles, weapons, sensors, and other resources 

to each task. Mission planning can become a 

complicated set of intertwined sub-planning efforts. 

Iteration is often required to resolve the 

interdependency of the various planning functions. 

 

 
Figure 1. The planning stack, from 

(Kingston, 2017). 

 

 When the events of the real world do not match the 

expectations of the planner, changes to the plan are 

often needed. The solutions to this problem is known 

as plan revision (Williams & Burdick, 2006) and 

replanning (Tate, 1990). Plan revision attempts to 

address a discrepancy with minimal modifications to 

the existing plan. Replanning involves major 

modifications and may even begin with a clean slate, 

including new objectives. Small discrepancies, e.g. 

unexpected obstacles, in expectations are handled by 

revision planning at the lower-levels. Large changes to 

the environment, such as a missing target, may require 

task changes. Very small unexpected events, such as a 

wind gust, might not need replanning at all if the 

autopilot is sufficiently robust. However, accumulated, 

small, unexpected events, such as frequent wind gusts, 

may impact resources, such as fuel, and therefore 

require task replanning.  

  

3. Adaptive Planning for Autonomy 

 
An autonomous artificial agent is expected to make 

proper choices within uncertain and unexpected 

situations in a flexible manner. It is important for the 

agent to select appropriate actions, to modify its 

thinking constructs, and to appropriately assume roles 

(Bihl, Cox, & Jenkins, 2018). For UAV applications, 

these high-level, cognitive functions are supported by 

asset allocation, scheduling, trajectory generation,  
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flight control, obstacle avoidance, and sensor data 

exploitation. While still considered as planning, such 

low-level functions have been automated for decades 

(Floreano & Wood, 2015). 

 
3.1. Decision Making Space 
 
 The developed autonomy component, Figure 2, 
prosecutes a mission by choosing situation-appropriate 
tasks in response to events. The key components of this 
system are a status monitor, a Hierarchical Task 
Planner (HTN) (Gorgievski & Aiello, 2014), a decision 
maker, low-level planners, aircraft, sensors, a 
probabilistic event processor, an a situation assessor.  
In the top-left corner of Figure 2 is the automated 
monitor that is aware of the goal of a human operator.  
The monitor watches the evolving situation and also 
considers intermediate expectations that are generated 
by the decision maker. The monitor may trigger the 
HTN to replan if expectations are not being met. The 
HTN generates multiple plans for achieving the goal 
from the initial state. These plans are used to generate 
a probabilistic decision program. This decision 
program triggers tasks, based upon the present 
situation. The program consists of a set of probabilistic 
rules that map states to appropriate tasks, as well as 
expected postconditions. Decision rules are prioritized 
using value information that is determined by the HTN. 
The tasks are passed from the decision maker to a task 
handler. This handler passes individual tasks to 
appropriate low-level planners for asset selection, 
scheduling, and route generation. The best planning 
service is selected for each particular task. Fully 
populated tasks are returned to the task handler. Each 
task is passed to the aircraft guidance systems. As the 
aircraft move, they detect objects with their sensors. 
These detections are probabilistic and are passed to a 

probabilistic event handler that evaluates each relevant 
event. Event probabilities are passed to the situation 
assessor with status information to maintain a state 
vector. 
 
 3.1.1. Hierarchical Task Network (HTN) 

Planner. The high-level planner, SHOP++, is an 

extension of the Python version of the Simple 

Hierarchical Ordered Planner (SHOP) (Nau, et al., 

2005) (Nau, 2013). SHOP++ is contingency aware, 

meaning that it understands that tasks may not achieve 

their expected postcondition. Therefore, it generates 

many plans. SHOP++ allows a user to describe 

primitive tasks in terms of transitions from 

preconditions to postconditions. Each precondition 

describes a state of some system to which the task is 

applicable; further any state representation is 

supportable and virtually any transformation function 

may be implemented. Each postcondition describes 

how a task can transform that state. The HTN further 

uses a double-ended queue to perform a tree search for 

solutions as viable sequences of tasks that move initial 

conditions to a goal condition. Like other HTNs, 

methods allow a planner to achieve in a single iteration 

what would ordinarily require a search of many 

branches. Methods are collections of primitive tasks 

and are built during planning. 

The HTN is also contingent and the search will find 

multiple possible solutions given multiple possible 

postconditions. A set of two or more postconditions 

represents the various ways that a task may transform 

the state. The first positcondition is expected when the 

task is executed properly. The other postconditions 

represent non-ideal states that might occur if something 

goes wrong. These possibilities are prioritized and 

probability values may be provided if they are 

 
Figure 2. Conceptualization of an autonomous planning and tasking process 
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available. The search will find additional paths that 

include the off-nominal conditions, allowing the 

system to handle these contingencies. The priorities 

and probabilities are used to modify the values of tasks, 

thereby ordering the deterministic search without 

explicitly resorting to probabilistic search methods. In 

this way, the most important contingencies are 

considered first in case the planner hits a time limit. 

 

3.1.2. Decision Maker. The purpose of the decision 

maker is to quickly drive a succinct action policy, by 

issuing task commands for subsequent execution as 

actions. The decision maker avoids complicated 

replanning within the agent’s primary loop. Fast 

execution is necessary for timely responses to quickly 

changing conditions. 

The process is analogous to a sports game, where a 

coach deliberates and builds a succinct play from a set 

of template actions. The play is then executed in real 

time by the players. Using a sports analogy, in this 

system, SHOP++ is the coach and the decision maker 

and downstream components, including the task 

hander and the low-level planners, stand in the place of 

the players. The decision program that comes from 

SHOP++ via the program generator is the play. 

The decision maker is an automation routine that 

monitors the situation in real time and selects any task 

that is appropriate for the conditions at hand. It is 

similar to a rule-based system, but it evaluates 

conditions with Python program strings, not just 

comparison operators or distance measures. The 

decision maker is probabilistic so it handles an 

uncertain assessment of the situation. The decision 

maker annotates the task with information that informs 

the task handler about details, such as the area where 

the task is to be applied. The decision program returns 

a nominal expectation, which is the most probable 

postcondition that will arise if the task is successfully 

executed. This postcondition is used by the monitor to 

make sure that the task is successfully executed. The 

decision program runs in real time, making the agent 

much faster than if SHOP++ is inside the decision loop. 

 

3.1.3. Decision Program Generator. The Decision 

Program Generator (DPG) converts a set of plans from 

SHOP++ into a computer program (Python herein) for 

the decision maker. Tasks within the SHOP++ plans 

become the tasks of the decision making program. The 

preconditions of the SHOP++ tasks become the 

triggers for the decision program’s tasks. The 

postconditions become the expectations that are 

produced by the decision program. The plan values that 

are determined by SHOP++ are used to prioritize tasks. 

The result, in a perfectly deterministic world, is the 

equivalent of a state machine that executes the plans. If 

all the preconditions transform to the expected 

postconditions then the nominal plan will be executed. 

If the state transforms in an unexpected fashion then 

contingent tasks are available. In a probabilistic world, 

the decision program exhibits considerable flexibility 

over a state machine because it can operate even in the 

presence of unexpected state transitions. 

 

3.1.4. Probabilistic Event Processor. The 

Probabilistic Event Process (PEP) presently accepts 

probabilistic classifications from one or more sensor 

exploitation algorithms. For example, one can define 

an event as “(two or more sedans and one or more 

trucks) or (no vans and between three and four 

motorcycles)”. The algorithm accumulates 

probabilities of possible combinations of object counts, 

making it potentially computationally complex.  

However, there are a features that speed execution 

greatly. First, the PEP assumes that detections are 

independent and a closed-world assumption is 

included, reducing the possible combinations of 

objects that must be considered. (Conditional 

probabilities could be considered if they were 

available.) Second, the software orders the 

combinations according to decreasing probability, so 

that results may be approximated by truncating the 

process after accumulating only a small subset of the 

total collection of combinations. 

A general set of predicates is planned for the PEP.  

These predicates will operate together with the object 

counts to provide more general descriptions of events. 

In additions, the PEP will be recursive, providing 

hierarchical descriptions as events of events. 

 

4. Analysis and Simulation 
 

In order to assess the autonomy of the developed 

framework, an appropriate M&S scenario, or 

challenge, is needed. Ideally, such scenarios have 

richness and complexity that preclude solutions with 

simpler systems. 

 

4.1. Search and Rescue Richness and 
Complexity and Performance Metrics 
 
 During search and rescue missions, autonomous 

agents could conceivably accept dual tasks: primarily 

searching for cars and fiducials/hazards, as well as 

rescuing cars by dissuading them from traveling on 

dangerous roads.  Dissuading means that a fiducial is 

detected and that cars heading towards it are stopped. 

For illustrative purposes, we will assume that an agent 

can immediately apply all its assets to dissuade known 

cars from known hazards. However, the situation is 

dynamic and cars can enter and exit the scenario as 
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hazards expand, start, or contract.  Therefore, an agent 

must use some of its assets to search the environment 

to keep its assessment of the situation up to date.  To 

assess how well the agent handles these dual tasks, two 

metrics were constructed.  These include, the vehicle 

detection efficiency: 

 

 εVD = NVD / NV   (1) 

 

where NVD  is the number of vehicles detected and NV is 

the number of vehicles. The fiducial detection 

efficiency: 

 

 εF = NFD / NF   (2) 

 

where NFD  is the number of fiducials detected and NF 

is the number of fiducials.  

 Since real world missions do not often have a 

specific ending, as the truth is never fully known during 

the mission, neither should sufficiently complex 

simulations.  Thus, metrics that measure the goodness 

of the state at the end of the mission or that measure the 

total time of the mission have no meaning.  The benefit 

of metrics (1)-(3) is that, by recomputing at intervals 

and averaged over a long period of time, we can assess 

how well an agent is performing the exploration task.  

The metrics (1) and (2) additionally have the benefit of 

being bounded between 0 and 1. 

 

4.2. Real World Context:  2018 Puna Eruption  
 
 Inspiration for a rich and complex scenario was 

taken from the 2018 volcano eruptions on the Big 

Island of Hawaii. Beginning on May 3, 2018, 

earthquakes and spewing lava began disrupting regular 

life in lower Puna on the Big Island of Hawai’i 

(Wikipedia, 2020) (Overview of Kīlauea Volcano’s 

2018 Lower East Rift Zone Eruption and Summit 

Collapse, 2019). Figure 3 presents a general map of the 

Big Island of Hawaii, along with the 9 administrative 

districts on the island. Lower Puna encompasses the 

part of District 1 that includes Kapoho and the Leilani 

Estates. For context, Also labeled are the 5 volcanos of 

the Big Island of Hawaii  (Kilauea, Mauna Loa, Mauna 

Kea, Kohala, and Hualalai). Kilauea was the volcano 

associated with the 2018 lower Puna eruption. This 

eruption notably occurred in the Leilani Estates 

subdivision and the community of Kapoho, with the 

result being the destruction of many homes and farms. 

If UAVs had been available for search and rescue 

operations in the 2018 eruption, they might have saved 

lives by performing general tasks such as 

reconnaissance, dissuasion, and rescue. 

 

 
Figure 3. Big Island of Hawai’i with districts 

(1-9) identified along with the five volcanos and 

two points of reference (Kailua-Kona and Hilo).  

Lower Puna encompasses the part of District 1 

that includes Kapoho and the Leilani Estates. 

 

 
Figure 4. Google Map of Lower Puna eruption, 
as of September 18, 2018 from (A Community 
Lava Map Project, 2018).  This map includes 

Kapoho (far right, covered in lava as indicated 
by pink shaded areas) and the Leilani Estates 
(green/yellow street grid in middle of figure). 

Icons represent hazards (gas, lava,etc.) 
 

 Overall, the eruption spanned May 3 September 4 

and involved 13.7 square miles of land being covered 

with lava, destroying 700+ homes, and 1.36 square 

miles of new land being created in the ocean 

(Wikipedia, 2020). This is encapsulated in the 

Geographic Information System (GIS) representation 

of the lava flows and events in Figure 4. Figure 4 is 

from September 18, 2018 and shows the lava flow at 

its greatest and final extent. In Figure 4 we see various 

warnings, road conditions, lava coverage, as well as a 

general street map. Colors in Figure 4 indicate 

conditions, with Light Pink indicating older inactive 

flows, Green roads indicating passable roads, yellow 

roads indicating authorized personnel, and symbols 
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indicating various conditions (volcano symbols for 

eruptions, triangles for hazards, fires, etc.). 

 If UAVs had been available for search and rescue 

operations in the 2018 eruption, we can envision them 

in general tasks of interest to exploring how 

heterogeneous planners can operate together for the 

same mission, an appropriately rich and complex 

scenario was developed.  

 

 

4.3. Simulation Scenario Development 
 

The GIS representation in Figure 4 was used to 

create a scenario. SLAMEM, a simulation environment 

built by Toyon Research Corporation, was used as the 

modeling environment due to its primary focus on 

simulating intelligence, surveillance, and 

reconnaissance (ISR) missions for UAVs (Sullivan, 

Agate, & Beckman, 2004). Thus, tracking, vehicle 

movement, identification, and ISR missions from 

UAVs are standard tasks for SLAMEM. 

The process followed to move from the GIS 

representation in Google Maps to a UAV relevant in 

the SLAMEM simulation environment are as follows: 

1. The overall image from the location was taken, 

bounding box of lat/long of the extreme points 

2. The M&S system (SLAMEM) took the lat/long 

and found its internal map representation of this 

area 

3. Road networks were extracted manually  

4. Polygons to represent and illustrate location areas 

of lava on the map were added 

5. Lava fiducials were added where the lava 

intersected the roads 

6. Lava fiducials had logic whereby they appear over 

time, simulating lava flowing out 

7. Vehicles were added to the road as well. 

 

Alternatives to this could be extracting *.kml files to 

the desired simulation environment and adding sprites 

to represent vehicles and lava fiducials. 

 

4.4. Simulation Scenario  
 

In Figures 5a and 5b, the lava (orange), is seen to 

cross several roads (purple) and represents hazards to 

vehicles (oranges X’s). UAV search routes are then 

represented in yellow.  Figure 5a presents the scenario 

evaluated using the baseline non-autonomous 

exhaustive search of lawnmower patterns; Figure 5b 

presents the presents the scenario evaluated using the 

adaptive planning approach where paths and tasks are 

learned in-mission as new data is discovered.  

In both the baseline and adaptive planning cases, 5 

UAVs start at the upper left (notionally a staging area 

off the road from Pahoa to Hilo) and the scenarios all 

started with 32 cars, and an eventual 14 lava hazards 

(which grow dynamically over time).  The lava hazards 

are not identical to Figure 4, but similar in scope.  

Notably, there are more vehicles than hazards, making 

monitoring difficult, but room remains for ground 

vehicles to maneuver significantly, making the 

vehicles harder to track. Additionally, the number of 

these hazards slowly increases as the lava moves. The 

simulation does not provide any prior knowledge of 

these hazards to the autonomous system and it must 

find the hazards by searching for them.  

Vehicles were modeled as simple automatons for 

simulation, driving randomly across the road network. 

At an intersection, a driver will continue on the present 

road or to take one of the available turns. Without a 

road advisory, a ground vehicle that is driven towards 

a lava hazard is 50% likely to cross it and be destroyed. 

With a hazard advisory, the ground vehicle is only 20% 

likely to be destroyed because it is aware of the hazard. 

If an air vehicle is attempting to dissuade a ground 

vehicle from approaching a hazard, the ground vehicle 

is only 5% likely to strike the hazard and be destroyed. 

Once a driver encounters and survives a particular 

hazard, she will forever avoid that hazard. 

In operation, UAV detections occur when an object 

falls within the footprint, the polygon that is formed by 

the intersection of a sensor’s field of view and the 

ground. The UAVs have the responsibility to find lava 

 

 

Figure 5.  Graphical representation mission progress with UAV tasks/paths for same mission with 

no autonomy (left) and with the proposal (right) 
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hazards on roads and then issue an advisory for that 

road segment, dissuading vehicles from driving on it.  

They also look for vehicles to save before they hit a 

lava hazard. Additionally, the UAVs must search the 

road network to maintain an up-to-date understanding 

of the situation. However, they must occasionally break 

from this search, exploiting their knowledge to save 

ground vehicles. Thus, the problem is one of 

exploration versus exploitation. 

The automation for the Hawaii scenario is 

described by three primitive tasks, Table 1, with each 

of these tasks having a single preconditions and one, 

two, or four postconditions. Additionally, there is a 

completion task. This completion task will never be 

executed by the decision maker, because the absolute 

certainty requirement will never be received, but some 

condition is necessary for the HTN plans to terminate. 

Each task and each condition variable has an instance 

for each road segment, RX,x. The use of the road 

segments provide an example of how general 

knowledge can be instantiated by relating tasks and 

variables to members of object sets. Because of the 

postconditions and the road segments, the number of 

unique tasks are the permutations of seven times fifteen 

plus one. The primary contingency here is that if a car 

does not obey the warning then the agent will perform 

a more significant dissuasion. The starting condition is 

warn_cars_on(RX) and not(certain(RX)) for all RX, 

meaning that no advisories have been issued and the 

agent has no knowledge of what is on any road. The 

other variables are assumed to be False until otherwise 

specified  because of a closed-world assumption. The 

agent will begin with searches of the road segments. 

The nominal (lowest cost) plan that the HTN  

discovers is Search(RX) for all RX and then Warn(RX)) 

for all RX , terminating in the precondition of Complete, 

which is the goal. This plan handles the case where all 

cars follow the advisories. The longest plan that the 

HTN builds is Search( RX) for each road then Warn( 

RX) for each road then apply Dissuade( RX) to all roads, 

resulting in the goal. This plan handles the case where 

no car follows the advisories. While this example is 

relatively simple, the HTN could have just as well 

found these plans if we had included thousands of 

irrelevant tasks and thousands of irrelevant situation 

variables. Thus, complexity reduction is an important 

function of the HTN which discovers the relevant tasks 

to put into the decision program.  

  

4.4. Simulation Results 
 

Figure 6a shows a plot of the three performance 

measures for both non-autonomous (exhaustive 

lawnmower pattern searches) and autonomously 

directed searches.  Figure 6b shows the raw values of 

cars detected, lava detected for the same two cases.  By 

the end of the simulation at 2,695 seconds, with the 

Baseline, 20% of the 32 ground vehicles survive and 

less than 80% of the vehicles are found. In contrast, 

with the Adaptive Planning system, 55% of the ground 

vehicles survive and 100% of the vehicles are found. 

The reason that not all of the vehicles survive, even if 

found, is due to the simulation allowing vehicles to 

Table 1.  Tasks of the High-level Planner 

Task Precondition Postconditions Description 

Warn(RX) lava_on(RX) and 

not(warn_cars_on( RX)) 

warn_cars_on(RX) and not(car_on(RX)) Lava has crossed this road and there 

has been no advisory issued for this 

road so issue and advisory. Cars will 

either obey this advisory, or not. 

warn_cars_on(RX) and car_on( RX) 

Search(RX) not(certain_of( RX)) not (lava_on(RX)) and not(car_on(RX)) 

and certain_of( RX) 

If the agent is not certain about a 

road then it will search it. The result 
is certainty of some combination of 

lava danger and cars being on the 

road or not on the road. After an 

aircraft completes a search, the 
certainty is set to 1.0 and then slowly 

declines. 

not (lava_on( RX)) and car_on( RX) and 

certain_of(RX) 

lava_on( RX) and not(car_on( RX)) and 

certain_of(RX) 

lava_on(RX) and car_on( RX) and 

certain_of(RX) 

Dissuade(RX) warn_cars_on(RX), 

car_on(RX) 

not (car_on(RX)) If an advisory has been issued for a 

road and a car is on it anyway, apply 
a certain dissuasion tactic. To ensure 

the algorithm terminates, the car is 

assumed to leave the road segment. 

Complete  ((not(car_on(RX)) or 

not(lava_on( RX))) and 

certain_of(RX))) for all RX 

N/A A plan is complete if it achieves all 

cars off of all roads that do not have 

lava dangers, with certainty. 
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continue to move after a dissuasion is completed and 

thus they could hit a different lava hazard.   

Notably, some behaviors are evident in the results 

seen in Figure 6a/b. In simulation, each air vehicle 

follows one road segment at a time, with its camera 

oriented ahead in a push-broom fashion. Without 

missing any portion of a present road segment, each 

aircraft occasionally points it sensor to nearby road 

segments, which is associated with greatly increasing  

search efficiency and jumps in detection efficiencies. 

Fiducial detection efficiencies, when detecting the 

lave, is mostly increasing too and sees occasional drop 

which occurs when new lava crosses a road.  Ground 

vehicles are found at a much lower rate and with much 

lower confidence because they are swiftly moving 

targets, they are small, and they are often seen at long 

distances. So, very few dissuasion actions are 

performed by the automaton. The most obvious 

solution to this problem is to apply more air vehicles 

across this very large area. 

 

5. Conclusions 

 
A new, adaptive planning, approach to autonomy 

is presented to achieve useful behaviors within a 

complex environment. The automaton applies a high-

level planner to select the correct tasks elements for 

the conditions and the goal at hand. As a first step 

towards, handling unexpected situations, the planner 

considers contingent state transitions. The plans are 

used to generate a decision agent that intelligently 

chooses appropriate actions in response to changing 

conditions.  

The agent addresses the complexity of the 

environment by separating modes of “thought” across 

two time scales. The planner provides deliberation on 

a slow time scale where it can perform complex 

planning while potentially considering many task 

elements, situation variables, and goal conditions. 

Because this planning can be too complicated to run in 

real time, the resultant plans are converted into a 

decision program.  

A complex scenario is used to demonstrate the 

autonomy system. This scenario is based on the 2018 

volcano eruption on the island of Hawaii. When using 

the adaptive planning approach, the system of agents 

is shown to manage exploration and exploitation while 

directing multiple aircraft during a search and rescue 

mission.  Notably, the adaptive planning system 

reduces the danger to ground vehicles faster than when 

using the baseline nonautonomous operation. 

Improvements are planned. All the components 

will benefit from learning.  Future research will also 

give the agent a sense of self with access to its own 

internal states, including the states of its AI 

algorithms. A realism that is not included in this 

simulation is that each driver should have a specific 

destination and only drive for a limited time. 

Additionally, adding in probability of a driver to 

respond to an autonomous dissuasion was not 

considered, but would add more realism since some 

drivers would ignore such suggestions.  Cars tend to 

survive much longer when aid is provided by the 

autonomy system, which means that most cars with 

destinations would remain safe.  Finally, adding 

stochastic vehicles/fiducials as well as stochasticity of 

the autonomous agents and their success would further 

add realism.  
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