56 research outputs found

    Traffic offloading in future, heterogeneous mobile networks

    Get PDF
    The rise of third-party content providers and the introduction of numerous applications has been driving the growth of mobile data traffic in the past few years. In order to tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks' capacity by expanding their infrastructure, deploying more Base Stations (BSs). Particularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic offloading through the dense deployment of low-power BSs, the small cells (SCs), is one promising solution to address the aforementioned explosive data traffic increase. Due to their financial implementation requirements, which could not be met by the MNOs, the emergence of third parties that deploy small cell networks creates new business opportunities. Thus, the investigation of frameworks that facilitate the implementation of outsourced traffic offloading, the collaboration and the transactions among MNOs and third-party small cell owners, as well as the provision of participation incentives for all stakeholders is essential for the deployment of the necessary new infrastructure and capacity expansion. The aforementioned emergence of third-party content providers and their applications not only drives the increase in mobile data traffic, but also create new Quality of Service (QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs accommodate this traffic, they do not get any monetary compensation or subsidization for the required capacity expansion. On the contrary, their revenues reduce continuously. To that end, it is necessary to research and design network and economic functionalities adapted to the new requirements, such as QoE-aware Radio Resource Management and Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and maximization the MNO profit (to compensate the diminished MNOs' revenues and the increasing deployment investment). Following a thorough investigation of the state-of-the-art, a set of research directions were identified. This dissertation consists of contributions on network sharing and outsourced traffic offloading for the capacity enhancement of MNO networks, and the design of network and economic functions for the sustainable deployment and use of the densely constructed HetNets. The contributions of this thesis are divided into two main parts, as described in the following. The first part of the thesis introduces an innovative approach on outsourced traffic offloading, where we present a framework for the Multi-Operator Radio Access Network (MORAN) sharing. The proposed framework is based on an auction scheme used by a monopolistic Small Cell Operator (SCO), through which he leases his SC infrastructure to MNOs. As the lack of information on the future offered load and the auction strategies creates uncertainty for the MNOs, we designed a learning mechanism that assists the MNOs in their bid-placing decisions. Our simulations show that our proposal almost maximizes the social welfare, satisfying the involved stakeholders and providing them with participation incentives. The second part of the thesis researches the use of network and economic functions for MNO profit maximization, while guaranteeing the users' satisfaction. Particularly, we designed a model that accommodates a plethora of services with various QoS and QoE requirements, as well as diverse pricing, that is, various service prices and different charging schemes. In this model, we proposed QoE-aware user association, resource allocation and joint resource allocation and dynamic pricing algorithms, which exploit the QoE-awareness and the network's economic aspects, such as the profit. Our simulations have shown that our proposals gain substantial more profit compared to traditional and state-of-the-art solutions, while providing a similar or even better network performance.El aumento de los proveedores de contenido de terceros y la introducción de numerosas aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los últimos años. Para hacer frente a este desafío, los operadores de redes móviles (Mobile Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante la expansión de su infraestructura y el despliegue de más estaciones base (BS). Particularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia, las células pequeñas (small cells, SCs), es una solución prometedora para abordar el aumento del tráfico de datos explosivos antes mencionado. Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir, la aparición de terceros que implementan redes de células pequeñas crea nuevas oportunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la implementación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre MNOs y terceros propietarios de células pequeñas, así como la provisión de incentivos de participación para todas las partes interesadas esencial para el despliegue de la nueva infraestructura necesaria y la expansión de la capacidad. La aparición antes mencionada de proveedores de contenido de terceros y sus aplicaciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia (Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen continuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que garantizan la satisfacción del abonado y la maximización de la ganancia de operador móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de implementación). Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se dividen en dos partes principales, como se describe a continuación. La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcontratada de tráfico, en el que presentamos un marco para el uso compartido de la red de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco propuesto se basa en un esquema de subasta utilizado por un operador monopólico de celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las partes interesadas involucradas y proporcionándoles incentivos de participación. La segunda parte de la tesis investiga el uso de las funciones económicas y de red para la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir, varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos algoritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un rendimiento de red similar o incluso mejor.Postprint (published version

    Scalable monitoring and optimization techniques for mega-scale data centers

    Get PDF

    Traffic offloading in future, heterogeneous mobile networks

    Get PDF
    The rise of third-party content providers and the introduction of numerous applications has been driving the growth of mobile data traffic in the past few years. In order to tackle this challenge, Mobile Network Operators (MNOs) aim to increase their networks' capacity by expanding their infrastructure, deploying more Base Stations (BSs). Particularly, the creation of Heterogeneous Networks (HetNets) and the application of traffic offloading through the dense deployment of low-power BSs, the small cells (SCs), is one promising solution to address the aforementioned explosive data traffic increase. Due to their financial implementation requirements, which could not be met by the MNOs, the emergence of third parties that deploy small cell networks creates new business opportunities. Thus, the investigation of frameworks that facilitate the implementation of outsourced traffic offloading, the collaboration and the transactions among MNOs and third-party small cell owners, as well as the provision of participation incentives for all stakeholders is essential for the deployment of the necessary new infrastructure and capacity expansion. The aforementioned emergence of third-party content providers and their applications not only drives the increase in mobile data traffic, but also create new Quality of Service (QoS) as well as Quality of Experience (QoE) requirements that the MNOs need to guarantee for the satisfaction of their subscribers. Moreover, even though the MNOs accommodate this traffic, they do not get any monetary compensation or subsidization for the required capacity expansion. On the contrary, their revenues reduce continuously. To that end, it is necessary to research and design network and economic functionalities adapted to the new requirements, such as QoE-aware Radio Resource Management and Dynamic Pricing (DP) strategies, which both guarantee the subscriber satisfaction and maximization the MNO profit (to compensate the diminished MNOs' revenues and the increasing deployment investment). Following a thorough investigation of the state-of-the-art, a set of research directions were identified. This dissertation consists of contributions on network sharing and outsourced traffic offloading for the capacity enhancement of MNO networks, and the design of network and economic functions for the sustainable deployment and use of the densely constructed HetNets. The contributions of this thesis are divided into two main parts, as described in the following. The first part of the thesis introduces an innovative approach on outsourced traffic offloading, where we present a framework for the Multi-Operator Radio Access Network (MORAN) sharing. The proposed framework is based on an auction scheme used by a monopolistic Small Cell Operator (SCO), through which he leases his SC infrastructure to MNOs. As the lack of information on the future offered load and the auction strategies creates uncertainty for the MNOs, we designed a learning mechanism that assists the MNOs in their bid-placing decisions. Our simulations show that our proposal almost maximizes the social welfare, satisfying the involved stakeholders and providing them with participation incentives. The second part of the thesis researches the use of network and economic functions for MNO profit maximization, while guaranteeing the users' satisfaction. Particularly, we designed a model that accommodates a plethora of services with various QoS and QoE requirements, as well as diverse pricing, that is, various service prices and different charging schemes. In this model, we proposed QoE-aware user association, resource allocation and joint resource allocation and dynamic pricing algorithms, which exploit the QoE-awareness and the network's economic aspects, such as the profit. Our simulations have shown that our proposals gain substantial more profit compared to traditional and state-of-the-art solutions, while providing a similar or even better network performance.El aumento de los proveedores de contenido de terceros y la introducción de numerosas aplicaciones ha impulsado el crecimiento del tráfico de datos en redes móviles en los últimos años. Para hacer frente a este desafío, los operadores de redes móviles (Mobile Network Operators, MNOs) apuntan a aumentar la capacidad de sus redes mediante la expansión de su infraestructura y el despliegue de más estaciones base (BS). Particularmente, la creación de Redes Heterogéneas (Heterogenous Networks, HetNets) y la aplicación de descarga de tráfico a través del despliegue denso de BSs de baja potencia, las células pequeñas (small cells, SCs), es una solución prometedora para abordar el aumento del tráfico de datos explosivos antes mencionado. Debido a sus requisitos de implementación financiera, que los MNO no pudieron cumplir, la aparición de terceros que implementan redes de células pequeñas crea nuevas oportunidades comerciales. Por lo tanto, la investigación de marcos que faciliten la implementación de la descarga tercerizada de tráfico, la colaboración y las transacciones entre MNOs y terceros propietarios de células pequeñas, así como la provisión de incentivos de participación para todas las partes interesadas esencial para el despliegue de la nueva infraestructura necesaria y la expansión de la capacidad. La aparición antes mencionada de proveedores de contenido de terceros y sus aplicaciones no solo impulsa el aumento del tráfico de datos móviles, sino también crea nuevos requisitos de calidad de servicio (Quality of Service, QoS) y calidad de la experiencia (Quality of Experience, QoE) que los operadores de redes móviles deben garantizar para la satisfacción de sus suscriptores. Además, a pesar de que los operadores de redes móviles adaptan este tráfico, no obtienen ninguna compensación monetaria o subsidio por la expansión de capacidad requerida. Por el contrario, sus ingresos se reducen continuamente. Para ello, es necesario investigar y diseñar funcionalidades económicas y de red adaptadas a los nuevos requisitos, tales como las estrategias QoE-conscientes de gestión de recursos de radio y de precios dinámicos (Dynamic Pricing, DP), que garantizan la satisfacción del abonado y la maximización de la ganancia de operador móvil (para compensar los ingresos de los MNOs disminuidos y la creciente inversión de implementación). Después de una investigación exhaustiva del estado del arte, se identificaron un conjunto de direcciones de investigación. Esta disertación consiste en contribuciones sobre el uso compartido de redes y la descarga tercerizada de tráfico para la mejora de la capacidad de redes MNO, y el diseño de funciones económicas y de red para el despliegue y uso sostenible de las HetNets densamente construidas. Las contribuciones de esta tesis se dividen en dos partes principales, como se describe a continuación. La primera parte de la tesis presenta un enfoque innovador sobre la descarga subcontratada de tráfico, en el que presentamos un marco para el uso compartido de la red de acceso de radio de múltiples operadores (Multi-Operator RAN, MORAN). El marco propuesto se basa en un esquema de subasta utilizado por un operador monopólico de celda pequeña (Small Cell Operator, SCO), a través del cual arrienda su infraestructura SC a MNOs. Como la falta de información sobre la futura carga de red y las estrategias de subasta creaban incertidumbre para los MNO, diseñamos un mecanismo de aprendizaje que asiste a los MNO en sus decisiones de colocación de pujas. Nuestras simulaciones muestran que nuestra propuesta casi maximiza el bienestar social, satisfaciendo a las partes interesadas involucradas y proporcionándoles incentivos de participación. La segunda parte de la tesis investiga el uso de las funciones económicas y de red para la maximización de los beneficios de los MNOs, al tiempo que garantiza la satisfacción de los usuarios. Particularmente, diseñamos un modelo que acomoda una gran cantidad de servicios con diversos requisitos de QoS y QoE, tanto como diversos precios, es decir, varios precios de servicio y diferentes esquemas de cobro. En este modelo, propusimos algoritmos QoE-conscientes para asociación de usuarios, asignación de recursos y conjunta asignación de recursos y de fijación dinámica de precios, que explotan la conciencia de QoE y los aspectos económicos de la red, como la ganancia. Nuestras simulaciones han demostrado que nuestras propuestas obtienen un beneficio sustancial en comparación con las soluciones tradicionales y del estado del arte, a la vez que proporcionan un rendimiento de red similar o incluso mejor

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    NOVEL USER-CENTRIC ARCHITECTURES FOR FUTURE GENERATION CELLULAR NETWORKS: DESIGN, ANALYSIS AND PERFORMANCE OPTIMIZATION

    Get PDF
    Ambitious targets for aggregate throughput, energy efficiency (EE) and ubiquitous user experience are propelling the advent of ultra-dense networks. Inter-cell interference and high energy consumption in an ultra-dense network are the prime hindering factors in pursuit of these goals. To address this challenge, we investigate the idea of transforming network design from being base station-centric to user-centric. To this end, we develop mathematical framework and analyze multiple variants of the user-centric networks, with the help of advanced scientific tools such as stochastic geometry, game theory, optimization theory and deep neural networks. We first present a user-centric radio access network (RAN) design and then propose novel base station association mechanisms by forming virtual dedicated cells around users scheduled for downlink. The design question that arises is what should the ideal size of the dedicated regions around scheduled users be? To answer this question, we follow a stochastic geometry based approach to quantify the area spectral efficiency (ASE) and energy efficiency (EE) of a user-centric Cloud RAN architecture. Observing that the two efficiency metrics have conflicting optimal user-centric cell sizes, we propose a game theoretic self-organizing network (GT-SON) framework that can orchestrate the network between ASE and EE focused operational modes in real-time in response to changes in network conditions and the operator's revenue model, to achieve a Pareto optimal solution. The designed model is shown to outperform base-station centric design in terms of both ASE and EE in dense deployment scenarios. Taking this user-centric approach as a baseline, we improve the ASE and EE performance by introducing flexibility in the dimensions of the user-centric regions as a function of data requirement for each device. So instead of optimizing the network-wide ASE or EE, each user device competes for a user-centric region based on its data requirements. This competition is modeled via an evolutionary game and a Vickrey-Clarke-Groves auction. The data requirement based flexibility in the user-centric RAN architecture not only improves the ASE and EE, but also reduces the scheduling wait time per user. Offloading dense user hotspots to low range mmWave cells promises to meet the enhance mobile broadband requirement of 5G and beyond. To investigate how the three key enablers; i.e. user-centric virtual cell design, ultra-dense deployments and mmWave communication; are integrated in a multi-tier Stienen geometry based user-centric architecture. Taking into account the characteristics of mmWave propagation channel such as blockage and fading, we develop a statistical framework for deriving the coverage probability of an arbitrary user equipment scheduled within the proposed architecture. A key advantage observed through this architecture is significant reduction in the scheduling latency as compared to the baseline user-centric model. Furthermore, the interplay between certain system design parameters was found to orchestrate the ASE-EE tradeoff within the proposed network design. We extend this work by framing a stochastic optimization problem over the design parameters for a Pareto optimal ASE-EE tradeoff with random placements of mobile users, macro base stations and mmWave cells within the network. To solve this optimization problem, we follow a deep learning approach to estimate optimal design parameters in real-time complexity. Our results show that if the deep learning model is trained with sufficient data and tuned appropriately, it yields near-optimal performance while eliminating the issue of long processing times needed for system-wide optimization. The contributions of this dissertation have the potential to cause a paradigm shift from the reactive cell-centric network design to an agile user-centric design that enables real-time optimization capabilities, ubiquitous user experience, higher system capacity and improved network-wide energy efficiency

    A comprehensive survey on radio resource management in 5G HetNets: current solutions, future trends and open issues

    Get PDF
    The 5G network technologies are intended to accommodate innovative services with a large influx of data traffic with lower energy consumption and increased quality of service and user quality of experience levels. In order to meet 5G expectations, heterogeneous networks (HetNets) have been introduced. They involve deployment of additional low power nodes within the coverage area of conventional high power nodes and their placement closer to user underlay HetNets. Due to the increased density of small-cell networks and radio access technologies, radio resource management (RRM) for potential 5G HetNets has emerged as a critical avenue. It plays a pivotal role in enhancing spectrum utilization, load balancing, and network energy efficiency. In this paper, we summarize the key challenges i.e., cross-tier interference, co-tier interference, and user association-resource-power allocation (UA-RA-PA) emerging in 5G HetNets and highlight their significance. In addition, we present a comprehensive survey of RRM schemes based on interference management (IM), UA-RA-PA and combined approaches (UA-RA-PA + IM). We introduce a taxonomy for individual (IM, UA-RA-PA) and combined approaches as a framework for systematically studying the existing schemes. These schemes are also qualitatively analyzed and compared to each other. Finally, challenges and opportunities for RRM in 5G are outlined, and design guidelines along with possible solutions for advanced mechanisms are presented
    corecore