2,152 research outputs found

    An Active Pattern Recognition Architecture for Mobile Robots

    Full text link
    An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.Defense Advanced Research Projects Agency (90-0083); Office of Naval Research (N00014-92-J-1309); Consejo Nacional de Ciencia y Tecnología (63462

    Toward an object-based semantic memory for long-term operation of mobile service robots

    Get PDF
    Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time

    A multi-touch interface for multi-robot path planning and control

    Get PDF
    In the last few years, research in human-robot interaction has moved beyond the issues concerning the design of the interaction between a person and a single robot. Today many researchers have shifted their focus toward the problem of how humans can control a multi-robot team. The rising of multi-touch devices provides a new range of opportunities in this sense. Our research seeks to discover new insights and guidelines for the design of multi-touch interfaces for the control of biologically inspired multi-robot teams. We have developed an iPad touch interface that lets users exert partial control over a set of autonomous robots. The interface also serves as an experimental platform to study how human operators design multi-robot motion in a pursuit-evasion setting

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    An adaptive appearance-based map for long-term topological localization of mobile robots

    Get PDF
    This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor

    An adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment

    Can models of agents be transferred between different areas?

    Get PDF
    One of the main reasons for the sustained activity and interest in the field of agent-based systems, apart from the obvious recognition of its value as a natural and intuitive way of understanding the world, is its reach into very many different and distinct fields of investigation. Indeed, the notions of agents and multi-agent systems are relevant to fields ranging from economics to robotics, in contributing to the foundations of the field, being influenced by ongoing research, and in providing many domains of application. While these various disciplines constitute a rich and diverse environment for agent research, the way in which they may have been linked by it is a much less considered issue. The purpose of this panel was to examine just this concern, in the relationships between different areas that have resulted from agent research. Informed by the experience of the participants in the areas of robotics, social simulation, economics, computer science and artificial intelligence, the discussion was lively and sometimes heated

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions
    corecore