563 research outputs found

    Project RISE: Recognizing Industrial Smoke Emissions

    Full text link
    Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for social good.Comment: Technical repor

    Advances in Deep Learning Towards Fire Emergency Application : Novel Architectures, Techniques and Applications of Neural Networks

    Get PDF
    Paper IV is not published yet.With respect to copyright paper IV and paper VI was excluded from the dissertation.Deep Learning has been successfully used in various applications, and recently, there has been an increasing interest in applying deep learning in emergency management. However, there are still many significant challenges that limit the use of deep learning in the latter application domain. In this thesis, we address some of these challenges and propose novel deep learning methods and architectures. The challenges we address fall in these three areas of emergency management: Detection of the emergency (fire), Analysis of the situation without human intervention and finally Evacuation Planning. In this thesis, we have used computer vision tasks of image classification and semantic segmentation, as well as sound recognition, for detection and analysis. For evacuation planning, we have used deep reinforcement learning.publishedVersio

    Multi-teacher knowledge distillation as an effective method for compressing ensembles of neural networks

    Full text link
    Deep learning has contributed greatly to many successes in artificial intelligence in recent years. Today, it is possible to train models that have thousands of layers and hundreds of billions of parameters. Large-scale deep models have achieved great success, but the enormous computational complexity and gigantic storage requirements make it extremely difficult to implement them in real-time applications. On the other hand, the size of the dataset is still a real problem in many domains. Data are often missing, too expensive, or impossible to obtain for other reasons. Ensemble learning is partially a solution to the problem of small datasets and overfitting. However, ensemble learning in its basic version is associated with a linear increase in computational complexity. We analyzed the impact of the ensemble decision-fusion mechanism and checked various methods of sharing the decisions including voting algorithms. We used the modified knowledge distillation framework as a decision-fusion mechanism which allows in addition compressing of the entire ensemble model into a weight space of a single model. We showed that knowledge distillation can aggregate knowledge from multiple teachers in only one student model and, with the same computational complexity, obtain a better-performing model compared to a model trained in the standard manner. We have developed our own method for mimicking the responses of all teachers at the same time, simultaneously. We tested these solutions on several benchmark datasets. In the end, we presented a wide application use of the efficient multi-teacher knowledge distillation framework. In the first example, we used knowledge distillation to develop models that could automate corrosion detection on aircraft fuselage. The second example describes detection of smoke on observation cameras in order to counteract wildfires in forests.Comment: Doctoral dissertation in the field of computer science, machine learning. Application of knowledge distillation as aggregation of ensemble models. Along with several uses. 140 pages, 67 figures, 13 table

    Fire detection using deep learning methods

    Get PDF
    Fire detection is an important task in the field of safety and emergency prevention. In recent years, deep learning methods have shown high efficiency in solving various computer vision problems, including detecting objects in images. In this paper, monitoring wildfires was considered, which allows you to quickly respond to them and prevent their spread using deep learning methods. For the experiment, images from the satellite and images from the FireWatch sensor were taken as initial data. In this work, the deep learning algorithms you only look once (YOLO), convolutional neural network (CNN), and fast recurrent neural network (FastRNN) were considered, which makes it possible to determine the accuracy of a natural fire. As a result of the experiments, an automated fire recognition algorithm using YOLOv4 deep learning methods was created. It is expected that the results of the study will show that deep learning methods can be successfully applied to detect fire in images. This may lead to the development of automated monitoring systems capable of quickly and reliably detecting fire situations, which will help improve safety and reduce the risk of fires

    A deep learning based object identification system for forest fire detection

    Get PDF
    POCI-01-0247-FEDER-038342Forest fires are still a large concern in several countries due to the social, environmental and economic damages caused. This paper aims to show the design and validation of a proposed system for the classification of smoke columns with object detection and a deep learning-based approach. This approach is able to detect smoke columns visible below or above the horizon. During the dataset labelling, the smoke object was divided into three different classes, depending on its distance to the horizon, a cloud object was also added, along with images without annotations. A comparison between the use of RetinaNet and Faster R-CNN was also performed. Using an independent test set, an F1-score around 80%, a G-mean around 80% and a detection rate around 90% were achieved by the two best models: both were trained with the dataset labelled with three different smoke classes and with augmentation; Faster R-CNNN was the model architecture, re-trained during the same iterations but following different learning rate schedules. Finally, these models were tested in 24 smoke sequences of the public HPWREN dataset, with 6.3 min as the average time elapsed from the start of the fire compared to the first detection of a smoke column.publishersversionpublishe

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex Fire Scenarios

    Full text link
    In response to the existing object detection algorithms are applied to complex fire scenarios with poor detection accuracy, slow speed and difficult deployment., this paper proposes a lightweight fire detection algorithm of Light-YOLOv5 that achieves a balance of speed and accuracy. First, the last layer of backbone network is replaced with SepViT Block to enhance the contact of backbone network to global information; second, a Light-BiFPN neck network is designed to lighten the model while improving the feature extraction; third, Global Attention Mechanism (GAM) is fused into the network to make the model more focused on global dimensional features; finally, we use the Mish activation function and SIoU loss to increase the convergence speed and improve the accuracy simultaneously. The experimental results show that Light-YOLOv5 improves mAP by 3.3% compared to the original algorithm, reduces the number of parameters by 27.1%, decreases the computation by 19.1%, achieves FPS of 91.1. Even compared to the latest YOLOv7-tiny, the mAP of Light-YOLOv5 was 6.8% higher, which demonstrates the effectiveness of the algorithm
    corecore