48 research outputs found

    Interference Mitigation in Frequency Hopping Ad Hoc Networks

    Get PDF
    Radio systems today exhibit a degree of flexibility that was unheard of only a few years ago. Software-defined radio architectures have emerged that are able to service large swathes of spectrum, covering up to several GHz in the UHF bands. This dissertation investigates interference mitigation techniques in frequency hopping ad hoc networks that are capable of exploiting the frequency agility of software-defined radio platforms

    Intelligent spectrum management techniques for wireless cognitive radio networks

    Get PDF
    PhD ThesisThis thesis addresses many of the unique spectrum management chal- lenges in CR networks for the rst time. These challenges have a vital e ect on the network performance and are particularly di cult to solve due to the unique characteristics of CR networks. Speci cally, this thesis proposes and investigates three intelligent spectrum management tech- niques for CR networks. The issues investigated in this thesis have a fundamental impact on the establishment, functionality and security of CR networks. First, an intelligent primary receiver-aware message exchange protocol for CR ad hoc networks is proposed. It considers the problem of alleviat- ing the interference collision risk to primary user communication, explic- itly to protect primary receivers that are not detected during spectrum sensing. The proposed protocol achieves a higher measure of safeguard- ing. A practical scenario is considered where no global network topology is known and no common control channel is assumed to exist. Second, a novel CR broadcast protocol (CRBP) to reliably disseminate the broadcast messages to all or most of the possible CR nodes in the network is proposed. The CRBP formulates the broadcast problem as a bipartite-graph problem. Thus, CRBP achieves a signi cant successful delivery ratio by connecting di erent local topologies, which is a unique feature in CR ad hoc networks. Finally, a new defence strategy to defend against spectrum sensing data falsi cation attacks in CR networks is proposed. In order to identify malicious users, the proposed scheme performs multiple veri cations of sensory data with the assistance of trusted nodes.Higher Committee For Education Devel- opment in Iraq (HCED-Iraq

    Thwarting inside jamming attacks on wireless broadcast communications

    Full text link
    We address the problem of jamming-resistant broadcast com-munications under an internal threat model. We propose a time-delayed broadcast scheme (TDBS), which implements the broadcast operation as a series of unicast transmissions, distributed in frequency and time. TDBS does not rely on commonly shared secrets, or the existence of jamming-immune control channels for coordinating broadcasts. In-stead, each node follows a unique pseudo-noise (PN) fre-quency hopping sequence. Contrary to conventional PN se-quences designed for multi-access systems, our sequences ex-hibit high correlation to enable broadcast. Moreover, their design limits the information leakage due to the exposure of a subset of sequences by compromised nodes. We map the problem of constructing such PN sequences to the 1-factorization problem for complete graphs. Our evaluation results show that TDBS can maintain broadcast communi-cations in the presence of inside jammers

    Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies

    Get PDF
    This study investigated a novel mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies. Specifically, a mother spacecraft would deploy over the surface of a small body one, or several, spacecraft/rover hybrids, which are small, multi-faceted enclosed robots with internal actuation and external spikes. They would be capable of 1) long excursions (by hopping), 2) short traverses to specific locations (through a sequence of controlled tumbles), and 3) high-altitude, attitude-controlled ballistic flight (akin to spacecraft flight). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and, in turn, the entire mission architecture affordable

    Optimal Channel-Switching Strategies in Multi-channel Wireless Networks.

    Full text link
    The dual nature of scarcity and under-utilization of spectrum resources, as well as recent advances in software-defined radio, led to extensive study on the design of transceivers that are capable of opportunistic channel access. By allowing users to dynamically select which channel(s) to use for transmission, the overall throughput performance and the spectrum utilization of the system can in general be improved, compared to one with a single channel or more static channel allocations. The reason for such improvement lies in the exploitation of the underlying temporal, spatial, spectral and congestion diversity. In this dissertation, we focus on the channel-switching/hopping decision of a (group of) legitimate user(s) in a multi-channel wireless communication system, and study three closely related problems: 1) a jamming defense problem against a no-regret learning attacker, 2) a jamming defense problem with minimax (worst-case) optimal channel-switching strategies, and 3) the throughput optimal strategies for a group of competing users in IEEE 802.11-like medium access schemes. For the first problem we study the interaction between a user and an attacker from a learning perspective, where an online learner naturally adapts to the available information on the adversarial environment over time, and evolves its strategy with certain payoff guarantee. We show how the user can counter a strong learning attacker with knowledge on its learning rationale, and how the learning technique can itself be considered as a countermeasure with no such prior information. We further consider in the second problem the worst-case optimal strategy for the user without prior information on the attacking pattern, except that the attacker is subject to a resource constraint, which models its energy consumption and replenishment process. We provide explicit characterization for the optimal strategies and show the most damaging attacker, interestingly, behaves randomly in an i.i.d. fashion. In the last problem, we consider a group of competing users in a non-adversarial setting. We place the interaction among users in the context of IEEE 802.11-like medium access schemes, and derive decentralized channel allocation for overall throughput improvement. We show the typically rule-of-thumb load balancing principle in spectrum resource sharing can be indeed throughput optimal.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108949/1/qingsi_1.pd

    Never Live Without Neighbors: From Single- to Multi-Channel Neighbor Discovery for Mobile Sensing Applications

    Full text link
    corecore