8 research outputs found

    Significant papers from the First 25 Years of the FPL Conference

    Get PDF
    The list of significant papers from the first 25 years of the Field-Programmable Logic and Applications conference (FPL) is presented in this paper. These 27 papers represent those which have most strongly influenced theory and practice in the field.postprin

    Design Modifications and Platform Implementation Procedures for Supporting Dynamic Partial Reconfiguration of FPGA Applications

    Get PDF
    Dynamic partial reconfiguration of FPGAs allows systems to autonomously alter sections of their design during runtime based on the state of the system. This functionality provides size, weight, and power benefits that are useful in extreme environments such as space. Therefore, NASA has requested research into the feasibility of using a commercial off-the-shelf software flow to convert a static HDL design to support partial reconfiguration. This project presents an analysis of this conversion process using the Xilinx Partial Reconfiguration Flow to convert the static design for the ITU G.729 Voice Decoder. This paper explores the design modifications that must be made to allow for partial reconfiguration. Furthermore, an in-depth description of how to set up the hardware platform to support the HDL application is provided. Finally, timing and size data are presented and analyzed to empirically show the benefits and limitations of using dynamic partial reconfiguration

    Design and Development of an FPGA-based Distributed Computing Processing Platform

    Get PDF
    This thesis presents two frameworks- a software framework and a hardware core manager framework- which, together, can be used to develop a processing platform using a distributed system of field-programmable gate array (FPGA) boards. The software framework providesusers with the ability to easily develop applications that exploit the processing power of FPGAs while the hardware core manager framework gives users the ability to configure and interact with multiple FPGA boards and/or hardware cores. This thesis describes the design and development of these frameworks and analyzes the performance of a system that was constructed using the frameworks. The performance analysis included measuring the effect of incorporating additional hardware components into the system and comparing the system to a software-only implementation. This work draws conclusions based on the provided results of the performance analysis and offers suggestions for future work

    Efficient architectures and power modelling of multiresolution analysis algorithms on FPGA

    Get PDF
    In the past two decades, there has been huge amount of interest in Multiresolution Analysis Algorithms (MAAs) and their applications. Processing some of their applications such as medical imaging are computationally intensive, power hungry and requires large amount of memory which cause a high demand for efficient algorithm implementation, low power architecture and acceleration. Recently, some MAAs such as Finite Ridgelet Transform (FRIT) Haar Wavelet Transform (HWT) are became very popular and they are suitable for a number of image processing applications such as detection of line singularities and contiguous edges, edge detection (useful for compression and feature detection), medical image denoising and segmentation. Efficient hardware implementation and acceleration of these algorithms particularly when addressing large problems are becoming very chal-lenging and consume lot of power which leads to a number of issues including mobility, reliability concerns. To overcome the computation problems, Field Programmable Gate Arrays (FPGAs) are the technology of choice for accelerating computationally intensive applications due to their high performance. Addressing the power issue requires optimi- sation and awareness at all level of abstractions in the design flow. The most important achievements of the work presented in this thesis are summarised here. Two factorisation methodologies for HWT which are called HWT Factorisation Method1 and (HWTFM1) and HWT Factorasation Method2 (HWTFM2) have been explored to increase number of zeros and reduce hardware resources. In addition, two novel efficient and optimised architectures for proposed methodologies based on Distributed Arithmetic (DA) principles have been proposed. The evaluation of the architectural results have shown that the proposed architectures results have reduced the arithmetics calculation (additions/subtractions) by 33% and 25% respectively compared to direct implementa-tion of HWT and outperformed existing results in place. The proposed HWTFM2 is implemented on advanced and low power FPGA devices using Handel-C language. The FPGAs implementation results have outperformed other existing results in terms of area and maximum frequency. In addition, a novel efficient architecture for Finite Radon Trans-form (FRAT) has also been proposed. The proposed architecture is integrated with the developed HWT architecture to build an optimised architecture for FRIT. Strategies such as parallelism and pipelining have been deployed at the architectural level for efficient im-plementation on different FPGA devices. The proposed FRIT architecture performance has been evaluated and the results outperformed some other existing architecture in place. Both FRAT and FRIT architectures have been implemented on FPGAs using Handel-C language. The evaluation of both architectures have shown that the obtained results out-performed existing results in place by almost 10% in terms of frequency and area. The proposed architectures are also applied on image data (256 Ā£ 256) and their Peak Signal to Noise Ratio (PSNR) is evaluated for quality purposes. Two architectures for cyclic convolution based on systolic array using parallelism and pipelining which can be used as the main building block for the proposed FRIT architec-ture have been proposed. The first proposed architecture is a linear systolic array with pipelining process and the second architecture is a systolic array with parallel process. The second architecture reduces the number of registers by 42% compare to first architec-ture and both architectures outperformed other existing results in place. The proposed pipelined architecture has been implemented on different FPGA devices with vector size (N) 4,8,16,32 and word-length (W=8). The implementation results have shown a signifi-cant improvement and outperformed other existing results in place. Ultimately, an in-depth evaluation of a high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called func-tional level power modelling approach have been presented. The mathematical techniques that form the basis of the proposed power modeling has been validated by a range of custom IP cores. The proposed power modelling is scalable, platform independent and compares favorably with existing approaches. A hybrid, top-down design flow paradigm integrating functional level power modelling with commercially available design tools for systematic optimisation of IP cores has also been developed. The in-depth evaluation of this tool enables us to observe the behavior of different custom IP cores in terms of power consumption and accuracy using different design methodologies and arithmetic techniques on virous FPGA platforms. Based on the results achieved, the proposed model accuracy is almost 99% true for all IP core's Dynamic Power (DP) components.EThOS - Electronic Theses Online ServiceThomas Gerald Gray Charitable TrustGBUnited Kingdo

    An assessment of the suitability of FPGA-based systems for use in digital signal processing

    No full text

    Efficient FPGA implementation and power modelling of image and signal processing IP cores

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are the technology of choice in a number ofimage and signal processing application areas such as consumer electronics, instrumentation, medical data processing and avionics due to their reasonable energy consumption, high performance, security, low design-turnaround time and reconfigurability. Low power FPGA devices are also emerging as competitive solutions for mobile and thermally constrained platforms. Most computationally intensive image and signal processing algorithms also consume a lot of power leading to a number of issues including reduced mobility, reliability concerns and increased design cost among others. Power dissipation has become one of the most important challenges, particularly for FPGAs. Addressing this problem requires optimisation and awareness at all levels in the design flow. The key achievements of the work presented in this thesis are summarised here. Behavioural level optimisation strategies have been used for implementing matrix product and inner product through the use of mathematical techniques such as Distributed Arithmetic (DA) and its variations including offset binary coding, sparse factorisation and novel vector level transformations. Applications to test the impact of these algorithmic and arithmetic transformations include the fast Hadamard/Walsh transforms and Gaussian mixture models. Complete design space exploration has been performed on these cores, and where appropriate, they have been shown to clearly outperform comparable existing implementations. At the architectural level, strategies such as parallelism, pipelining and systolisation have been successfully applied for the design and optimisation of a number of cores including colour space conversion, finite Radon transform, finite ridgelet transform and circular convolution. A pioneering study into the influence of supply voltage scaling for FPGA based designs, used in conjunction with performance enhancing strategies such as parallelism and pipelining has been performed. Initial results are very promising and indicated significant potential for future research in this area. A key contribution of this work includes the development of a novel high level power macromodelling technique for design space exploration and characterisation of custom IP cores for FPGAs, called Functional Level Power Analysis and Modelling (FLPAM). FLPAM is scalable, platform independent and compares favourably with existing approaches. A hybrid, top-down design flow paradigm integrating FLPAM with commercially available design tools for systematic optimisation of IP cores has also been developed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore