
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-17-2013

Design Modifications and Platform Implementation Procedures Design Modifications and Platform Implementation Procedures

for Supporting Dynamic Partial Reconfiguration of FPGA for Supporting Dynamic Partial Reconfiguration of FPGA

Applications Applications

Sean Gabriel Owens

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Owens, Sean Gabriel, "Design Modifications and Platform Implementation Procedures for Supporting
Dynamic Partial Reconfiguration of FPGA Applications" (2013). Theses and Dissertations. 1302.
https://scholarsjunction.msstate.edu/td/1302

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/1302?utm_source=scholarsjunction.msstate.edu%2Ftd%2F1302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Automated Template C: Created by James Nail 2011V2.01

Design modifications and platform implementation procedures for supporting dynamic

partial reconfiguration of FPGA applications

By

Sean Gabriel Owens

A Thesis

Submitted to the Faculty of

Mississippi State University

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Electrical and Computer Engineering

in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

August 2013

Copyright by

Sean Gabriel Owens

2013

Design modifications and platform implementation procedures for supporting dynamic

partial reconfiguration of FPGA applications

By

Sean Gabriel Owens

Approved:

_________________________________ _________________________________

Thomas H. Morris Yoginder S. Dandass

Assistant Professor Associate Professor

Electrical and Computer Engineering Computer Science and Engineering

(Director of Thesis) (Committee Member)

_________________________________ _________________________________

Bryan A. Jones James E. Fowler

Associate Professor Professor

Electrical and Computer Engineering Electrical and Computer Engineering

(Committee Member) (Graduate Program Director)

Jerome A. Gilbert

Interim Dean of the Bagley College of

Engineering

Name: Sean Gabriel Owens

Date of Degree: August 17, 2013

Institution: Mississippi State University

Major Field: Electrical and Computer Engineering

Major Professor: Dr. Tommy Morris

Title of Study: Design modifications and platform implementation procedures for

supporting dynamic partial reconfiguration of FPGA applications

Pages in Study: 141

Candidate for Degree of Master of Science

Dynamic partial reconfiguration of FPGAs allows systems to autonomously alter

sections of their design during runtime based on the state of the system. This

functionality provides size, weight, and power benefits that are useful in extreme

environments such as space. Therefore, NASA has requested research into the feasibility

of using a commercial off-the-shelf software flow to convert a static HDL design to

support partial reconfiguration. This project presents an analysis of this conversion

process using the Xilinx Partial Reconfiguration Flow to convert the static design for the

ITU G.729 Voice Decoder. This paper explores the design modifications that must be

made to allow for partial reconfiguration. Furthermore, an in-depth description of how to

set up the hardware platform to support the HDL application is provided. Finally, timing

and size data are presented and analyzed to empirically show the benefits and limitations

of using dynamic partial reconfiguration.

ii

DEDICATION

This work is dedicated to my sister, Stephanie Lynn.

iii

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation

under Grant No. DGE-0947419 at Mississippi State University. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation.

I would like to first thank the Mississippi Space Grant Consortium and National

Science Foundation for funding the research that made this project possible. I would also

like thank my family, Sherryl, John, Perryl, Jim, Evie, Jill, Justin, Dave, Matthew, and

Michael for always supporting me throughout my childhood and my graduate school

career. I also want thank my friends Hannah W., Hannah B., Kasey, Erin J., Erin A., and

Leilani for always rooting for me. I want to especially thank Matt B. for being there for

me when I needed help or to keep pushing me when I needed motivation. Finally I would

like to thank the members of the CODEC team whose work was critical in being able to

do this work: Zach, Troy, Mike, Parker, Nick, Cooper, Josh, David, Corey, Walter, Doug,

Jeff, and Seth.

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ACRONYMS ... xi

CHAPTER

I. INTRODUCTION ...1

1.1 Background ..1

1.2 Motivation and Problem Statement ...4

1.3 Previous Research and Significance of Work ..8

II. HDL DESIGN MODIFICATION ..12

2.1 Module Data Extraction ...12

2.2 Reconfigurable Module Set Selection ...17

2.3 Reconfigurable Module Port Set Selection and Abstraction21

2.4 System Architecture Modification ...27

2.4.1 Data Flow Architecture ..27

2.4.2 External Signals ...30

2.5 System Functionality Simulation ...34

III. DYNAMIC PARTIAL RECONFIGURATION SYSTEM DESIGN

AND IMPLEMENTATION ..36

3.1 Reconfigurable Module Unit Synthesis ...36

3.2 Dynamic Partial Reconfiguration Hardware Platform37

3.2.1 Platform Design and Synthesis ..37

3.2.2 Partial Reconfiguration Design and System Implementation39

3.3 Software Testing Platform ...45

IV. RESULTS...48

v

4.1 Design Size ..48

4.1.1 Size Data ..48

4.1.2 Size Analysis ..49

4.2 Application Runtime ..51

4.2.1 Timing Data ...51

4.2.2 Timing Analysis ...53

4.2.2.1 Test System Analysis ...53

4.2.2.2 Timing Analysis Extrapolation ..55

4.2.2.3 PR Application Period..56

V. FUTURE WORK AND CONCLUSIONS ..58

5.1 Conclusions ..58

5.2 Future Work ...59

REFERENCES ..61

APPENDIX

A. G.729 DECODER TOP-LEVEL FSM ..64

B. DYNAMIC PARTIAL RECONFIGURATION HARDWARE

PLATFORM DEVELOPMENT TUTORIAL ...73

B.1 File Structure ..75

B.2 ISE - Project Creation ..77

B.3 XPS - System Design I ..81

B.3.1 Base System Builder ..81

B.3.2 Additional Peripheral Insertion (HWICAP)85

B.3.3 Create a Custom Peripheral ...87

B.4 ISE - Custom Peripheral Modification ..92

B.5 XPS – System Design II ..93

B.6 ISE - Project Synthesis...99

B.7 PlanAhead - Floorplanning and Bitfile Generation100

B.7.1 Create a Project ..100

B.7.2 Define a Reconfigurable Partition ...103

B.7.3 Floorplanning ...107

B.7.4 Design Implementation ..108

B.7.5 Generate Bitstreams ...110

B.8 XPS – Test Platform Initialization ...110

B.9 SDK – Test Platform Configuration...111

B.10 iMPACT – FPGA Programming ..115

C. DYNAMIC PARTIAL RECONFIGURATION DECODER SYSTEM

TESTING APPLICATION ..118

vi

LIST OF TABLES

 2.1 ITU G.729 Decoder System Module Tree ...14

 2.2 ITU G.729 Decoder Module Port Data ..16

 2.3 Port Abstraction Method Size Comparison..27

 3.4 Reconfigurable Module Set Resource Requirements42

 4.1 RM Resource Data ...49

 4.2 Aggregated RM and Decoder Static Resource Requirements50

 4.3 Static and Partial Reconfiguration Design Size Comparison50

 4.4 Timing Data for 1 Frame of Audio ..53

vii

LIST OF FIGURES

 1.1 ITU G.729 Operation Overview [25]...3

 1.2 G.729 Decoder HDL Architecture ...4

 1.3 FPGA Configuration Memory ...5

 1.4 FPGA Partial Reconfiguration ...6

 1.5 DPR Testing Platform ..11

 2.1 Port Abstraction – Superset Port Name Generalization22

 2.2 Port Abstraction – Superset Port Set Selection ..22

 2.3 Port Abstraction – Vector Port Set Selection ...24

 2.4 Port Abstraction – Subset Port Set Selection ...25

 2.5 Original Data Flow Architecture ..28

 2.6 Decoder Intermediate Data Flow Architecture ..29

 2.7 Decoder Final Data Flow Architecture ..30

 2.8 Partial Reconfiguration Wait Time Without Optimization...............................33

 2.9 Partial Reconfiguration Wait Time With Optimization33

 2.10 Decoder Functional Simulation ...35

 3.1 DPR System Block Diagram ...38

 3.2 FPGA Resource Structure ..41

 3.3 Design Configurations Example 1 ...43

 3.4 Design Configurations Example 2 ...44

 4.1 FPGA Usage Comparison ..51

viii

 4.2 Timing Data Points ..52

 4.3 Frame Decode Timeline ...53

 4.4 Frame Decode Percent Contributions ..54

 4.5 PR Percent Contributions ...55

 A.1 Decoder Control FSM Overview ...65

 A.2 Decoder Control FSM Detailed Part 1 ...66

 A.3 Decoder Control FSM Detailed Part 2 ...67

 A.4 Decoder Control FSM Detailed Part 3 ...68

 A.5 Decoder Control FSM Detailed Part 4 ...69

 A.6 Decoder Control FSM Detailed Part 5 ...70

 A.7 Decoder Control FSM Detailed Part 6 ...71

 A.8 Decoder Control FSM Detailed Part 7 ...72

 B.1 Dynamic Partial Reconfiguration Software Flow Overview75

 B.2 DPR File Tree Structure ...76

 B.3 ISE Create New Project Window ...78

 B.4 ISE Project Settings Window ...79

 B.5 ISE Select Source Type Window ...80

 B.6 XPS Application Preferences Window ..81

 B.7 XPS BSB Board Selection Window ..82

 B.8 XPS BSB System Configuration Window ...83

 B.9 XPS BSB Processor Configuration Window ...84

 B.10 XPS BSB Peripheral Configuration Window ..85

 B.11 XPS HWICAP Core Configuration Window ...86

 B.12 XPS Create Peripheral Name and Version Window ..88

 B.13 XPS Create Peripheral IPIF Services Window ..89

ix

 B.14 XPS Create Peripheral User S/W Register Window ..90

 B.15 XPS Create Peripheral User Memory Space Window90

 B.16 XPS Create Peripheral Peripheral Implementation Support Window91

 B.17 XPS Import Peripheral Peripheral Flow Window ...93

 B.18 XPS Import Peripheral Name and Version Window ..94

 B.19 XPS Import Peripheral Source File Types Window ...95

 B.20 XPS Import Peripheral HDL Source Files Window ..96

 B.21 XPS Import Peripheral Bus Interfaces Window ..97

 B.22 XPS Import Peripheral SPLB: Parameter Window ...98

 B.23 XPS Import Peripheral Netlist Files Window ..99

 B.24 PlanAhead New Project Design Source Window ..101

 B.25 PlanAhead New Project Specify Top Netlist File Window102

 B.26 PlanAhead New Project Add/Create Constraints Window103

 B.27 PlanAhead Undefined Instance Warning ...104

 B.28 PlanAhead Undefined Module in Netlist Tree ...104

 B.29 PlanAhead Add RM - RM Module Name Window ..105

 B.30 PlanAhead Add RM – Specify Top Netlist File Window106

 B.31 PlanAhead Reconfigurable Partition Pblock ...107

 B.32 PlanAhead Pblock Statistics Panel...108

 B.33 PlanAhead Create Multiple Runs – Choose Implementation Strategies

and RMs Window ..109

 B.34 PlanAhead Create Multiple Runs – Specify Partition Window110

 B.35 SDK New Project – Project Name and Template Window112

 B.36 SDK New Project – BSP Configuration Window ..113

 B.37 SDK BSP Configuration Window ..114

x

 B.38 SDK FPGA Not Configured Warning ..114

 B.39 SDK Run Configurations - STDIO Connection Window115

 B.40 iMPACT Launch Window..116

 B.41 iMPACT Device Chain ..117

xi

LIST OF ACRONYMS

ASIC Application-Specific Integrated Circuit

BSB Board Support Package

CLB Configurable Logic Block

CODEC Coder/Decoder

COTS Custom Over-The-Shelf

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DSP Digital Signal Processor/Processing

EDK Embedded Development Kit

FIFO First In, First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

HWICAP Hardware Internal Configuration Access Port

ICAP Internal Configuration Access Port

IDE Integrated Development Environment

IP Intellectual Property

ISE Integrated Software Environment

MHz Megahertz

PAR Place and Route

xii

PLB Processor Local Bus

PR Partial Reconfiguration

RM Reconfigurable Module

RP Reconfigurable Partition

SDK Software Development Kit

XPS Xilinx Platform Studio

1

CHAPTER I

INTRODUCTION

1.1 Background

Scientists are constantly exploring new and more extreme environments. As the

complexity of the systems required to operate in these environments increases, new

methods must be researched to provide sufficient and efficient computing power. Of these

environments, space has become a major area of exploration over the last half century.

Space exploration introduces new challenges not found on Earth. Due to the infeasibility

of having access to hard line support systems such as power, life support, and

communication lines, space vehicles must operate on a finite and limited supply of power

in a finite and limited space. Therefore, it is imperative that the SWAP (size, weight, and

power) principle be taken into account when developing applications for execution in

space.

There are three main types of integrated circuits available for application

solutions. The first is the Application-Specific Integrated Circuit (ASIC) that requires

custom circuit design. The level of customization of these ICs can range from fully

custom to standard cell or gate array designs. However, using ASICs trades high

development cost and usage flexibility for better, “application specific” performance. On

the other end of the spectrum is the general purpose IC. This group of ICs includes chips

such as general purpose microprocessors, as well as general purpose digital signal

2

processors (DSPs) and some common logic configurations. This option reduces cost and

performance by allowing for the use of generalized instructions and high performance

mathematics circuits. The final category of ICs is field-programmable ICs. This group

provides a compromise between the two previous options. It includes Field-

Programmable Gate Arrays (FPGAs) which allow controllers to define a circuit for the

chip and then change the circuit and reprogram the chip with the new design. As FPGAs

have grown in size, become more powerful, and become more affordable, their ability to

support customized hardware designs as well as provide the ultimate flexibility of being

able to be reconfigured has led the platform to become a popular development option [1].

One area in particular that has been proposed by NASA is the use of FPGAs to

maintain voice communication protocols. A project was funded through an ESMD Space

Grant, Senior Design Project (ID: JSC4-36-SD), to develop an HDL implementation of

the ITU G.729 Voice CODEC currently in use by the space program. This project was

completed by four senior design teams at Mississippi State University. Detailed lists of

the contributions from each team are given in their respective design reports [8]-[11].

The G.729 is an audio compression system that produces highly-intelligible audio

in low-bandwidth environments using a “conjugate-structure algebraic-code-excited

linear prediction” algorithm at a rate of 8 kbits/s [23]. The CODEC operates in two

stages, the encoding stage and the decoding stage, as shown in Figure 1.1. During the

encoding stage, raw audio samples are streamed to the system. These samples are

collected and grouped into frames that correspond to 10 ms of audio or 80 samples. The

Encoder stage outputs 16-bit encoded bitstream that can then be transmitted to the

destination system that houses the decoding stage. The Decoder accepts the bitstream in

3

groups of 80 32-bit sign-extended double-words, and outputs an 8 kHz PCM raw audio

stream.

Figure 1.1 ITU G.729 Operation Overview [25]

While understanding of the mathematical and digital signal processing theory for

audio coding is needed to implement the two stages as demonstrated by Owens et al. in

[8]-[11], it is beyond the scope of this project. However, an overview of the architecture

and functionality of the HDL implementation is necessary for understanding the case

study presented in this paper. Both the Encoder and Decoder stages use the same general

architecture diagrammed in Figure 1.2. The system consists of three main blocks: the

control block (Top Level FSM), the datapath block (Top Level Datapath), and the

interconnect between the two and the interface to the external world (Top Level

Interface). The Encoder/Decoder functions by performing a set of algorithms on the input

data. For the Decoder, the set consists of 36 distinct functions. These functions are coded

into individual Verilog modules and called sequentially by the control FSM. All of the

algorithms use a shared set of math units and memory space that are located in the

Datapath block. Therefore, a multiplexer bank is used in the Datapath to direct the signals

from the currently executing function to the proper math modules and memory interfaces.

4

Figure 1.2 G.729 Decoder HDL Architecture

1.2 Motivation and Problem Statement

FPGAs were introduced in the late 1980’s by Xilinx [4]. The chips were

comprised of a set of distinct, configurable logic blocks (CLBs) that are connected by

programmable switches. Initially, FPGAs could only be reconfigured on a whole chip

basis. While this functionality did not lend itself to the in-application flexibility of later

models, this ability still provided much more flexibility than static VLSI designs. The

ability to partially reconfigure an FPGA first became available with the release of the

Xilinx 6200 series [5]. Furthermore, the Xilinx Virtex-II allowed the partial

reconfiguration of individual columns of the FPGA. However, as demonstrated by

Sedcole et al. [6], this method of partial reconfiguration puts heavy constraints on

routing. With Xilinx’s release of the Virtex 4, the size of the reconfiguration frame was

5

reduced to a height of only 16 configurable logic blocks (CLBs) which remedied the

routing problems found in the Virtex II. This ability to access small portions of the chip is

achieved through the use of a “Configuration Memory Layer” as shown in Figure 1.3.

Figure 1.3 FPGA Configuration Memory

The development of techniques to allow for the partial reconfiguration of FPGAs

has increased interest in using them as a platform for more diverse applications. A key

feature of partial reconfiguration is that a subset of the logic programmed to an FPGA can

be modified without affecting the operation of the rest of the logic on the chip [2]. This

idea is illustrated in Figure 1.4 where the logic circuits defined for the Logic Block 1

region can be replaced with the circuits defined in Logic Block 2 without modifying or

interrupting the execution of the circuits defined in the Static Logic region. For the rest of

this report, the area of the FPGA designated to be reconfigured independently from the

rest of the system will be referred to as the reconfigurable partition (RP). Furthermore,

the set of circuit designs that can be interchanged with one another inside of a given

6

reconfigurable partition will be referred to as reconfigurable modules (RMs). These

reconfigurable modules are defined by “partial bitfiles” that only give configuration

information for the reconfigurable partition, as opposed to “full bitfiles” which define the

configuration of the entire FPGA.

Figure 1.4 FPGA Partial Reconfiguration

The functionality of partial reconfiguration has led to the concept of Dynamic

Partial Reconfiguration (DPR). Dynamic partial reconfiguration allows a system to

autonomously reconfigure sections of its design based on the state of the system [3]. This

allows partial reconfiguration to be utilized in real time during the operation of a system.

There are two main options for configuring FPGAs: externally over a communications

channel or internally using on-chip logic to modify the FPGA’s logic. The external option

can be useful for debugging purposes but is not sufficient to support dynamic partial

reconfiguration designs. The second, internal option does support dynamic partial

reconfiguration and for certain Xilinx chips utilizes a native hardware construct named

7

the Internal Configuration Access Port (ICAP). The ICAP interfaces through a

communication FIFO that transfers reconfiguration data from the partial bitfiles in system

memory to the ICAP circuit.

There are many apparent benefits to using a dynamic partial reconfiguration

design. The first is design size. If a design would normally require 5 resource units, but 4

of these units are mutually exclusive, a dynamic partial reconfiguration design would

only require 2 resource units on the actual chip. A second apparent benefit is power

saving. This savings is due to the reduction of onboard circuitry needed to support

different applications simultaneously (e.g. a separate set of chips/interfaces solely for

voice communication, life support, navigation, etc.). Testing the power savings by

running partial reconfiguration as opposed to the standard circuitry is beyond the scope of

this project.

The benefits of dynamic partial reconfiguration have led to the conclusion that

partially reconfigurable systems would be useful in environments that have space and

power constraints. Therefore, dynamic partial reconfiguration has been a major area of

research for space applications. Osterloh et al. [7] provide an overview of the design

considerations necessary to use an FPGA in space. However, their focus is on the

physical hardware considerations and data integrity aspects of the system, rather than the

software capabilities of using dynamic partial reconfiguration. Recently, further research

was requested by NASA to answer the question, “Can a Commercial Over-The-Shelf

(COTS) design flow be used to convert a statically configured system to use dynamic

partial reconfiguration?”

8

1.3 Previous Research and Significance of Work

Several authors have presented research that answers different parts of this

question. The first, by Manet et al. [12], provides an in-depth analysis of the use of

dynamic partial reconfiguration in signal processing applications. The authors provide a

method for improving on the ICAP design by writing their own custom configuration

management system that utilizes direct memory access (DMA) and other optimization

techniques. The authors conclude that while dynamic partial reconfiguration has potential

for use in signal processing, custom hardware reconfiguration controllers must be created

to support the small processing period required by signal processing applications. While

the authors did provide conclusions on the shortcomings of the Xilinx software flow,

some of these shortcomings are outdated and the authors did not provide a detailed

assessment of the software flow’s capabilities for use without the need for custom

interface designs.

Another study utilizing partial reconfiguration for signal processing was

performed by Claus et al. [13]. The authors used partial reconfiguration to insert and

remove different “hardware accelerator engines” to support the varying needs of the

different functions that are running on the chip. This design is opposite of the design

presented in this project where the support modules are statically configured and the

function logic is reconfigured. Furthermore, the ICAP control was also modified in this

study to produce better throughput for partial reconfiguration.

Another research project, by McDonald [14], attempts to use partial

reconfiguration for a “software-defined radio” utilizing Xilinx’s work flow. In this case,

the author chose to use partial reconfigure to swap between the encoder and decoder

9

based on the current needs of the system. While the author does provide timing

information, no indication is made as to whether timing constraints were met. The

solution provided was to allocate enough memory as a buffer to avoid any loss of data

due to the latency of the system.

Another investigation into the use of DPR at a higher design level was presented

by Bhandari et al. [15]. The main focus of this paper was to evaluate the benefits of using

the dynamic partial reconfiguration to support multiple types of signal processing

systems on the same chip. The conclusions made by the authors are observations of the

apparent benefits of using dynamic partial reconfiguration over static designs. However,

they do provide empirical timing information for the use of dynamic partial

reconfiguration in real-time signal processing, but these results are for different CODECs

than the ITU G.729 CODEC used by NASA and are for changing between CODECs

rather than optimizing a single one.

Based on the information provided by Xilinx and the research presented above, it

was hypothesized that Xilinx’s dynamic partial reconfiguration flow was sufficient to

provide a COTS solution for converting statically designed systems to take advantage of

the benefits dynamic partial reconfiguration offers. The ITU G.729 Decoder HDL design

created by Owens et al. was chosen as a test case to evaluate the conversion process.

In order to validate this hypothesis, three stages must be completed: modify the

original HDL to support dynamic reconfiguration, create hardware and software testing

platforms for the application, and test the system to verify functionality, measure size,

and ensure it meets application timing constraints.

10

For the first stage, this project provides an evaluation of the process required to

convert a statically configured HDL design into a dynamically, partially reconfigurable

HDL design. This includes design requirements, such as port abstraction, as well as

design considerations, such as the system architecture and reconfigurable module sets.

To address the second stage, this project presents a validation platform design, as

summarized in Figure 1.5. The FPGA is externally programmed with the Xilinx iMPACT

tool via the JTAG cable. The JTAG is also used as the communication bus between the

Microblaze soft processor and the Xilinx SDK environment where debugging

information is output. The Microblaze is connected to a system bus that communicates

back and forth with the test application and the HWIcap, a standard interface to the ICAP

provided by Xilinx. The HWIcap is the construct that reconfigures the Decoder PR

Region, which is indicated by the dotted line. The Microblaze runs a software test

program that starts the Decoder, performs timing analysis, and runs the dynamic partial

reconfiguration procedure when necessary. The process for creation of the platform and

the design considerations associated with it are expanded upon in section 3.1.

11

Figure 1.5 DPR Testing Platform

Finally, this project gives validation data for three aspects of the system. First,

after the HDL design is modified to support dynamic partial reconfiguration, it must be

tested to ensure that it still functions properly. The results of these tests and the

procedures for doing so are presented in this paper. Second, although it is assumed that

the size of a design will reduce when utilizing dynamic partial reconfiguration, an

analysis of the actual resulting sizes is presented. This allows for an empirical conclusion

as to the benefits of dynamic partial reconfiguration with respect to design size. Finally,

although dynamic partial reconfiguration has many positive aspects, one property that is

negatively affected is run time. Therefore, this paper presents timing data and analysis to

determine if a system is capable of performing in its time constraints if it is using

dynamic partial reconfiguration.

12

CHAPTER II

HDL DESIGN MODIFICATION

A key contribution of this project is the evaluation of the additional work in the

design phase of the application development cycle necessary to produce a dynamically,

partially reconfigurable system. This chapter addresses the modifications that must be

made to a static design configuration as well as other aspects of the design that must be

considered when developing a dynamic partial reconfiguration application. The five

considerations presented below are: extracting module information for use in future

design decisions, defining the set of reconfigurable modules, abstracting the port lists of

reconfigurable modules, modifying the system architecture to support dynamic partial

reconfiguration, and performing functional simulation to ensure the modified design

produces the same results as the original.

2.1 Module Data Extraction

The first step in converting a static application to a dynamic partial

reconfiguration application is to analyze the design and determine the set of functional

blocks that can be implemented into independent modules. As is the case with the

Decoder design, the application may already be separated into mutually exclusive

modules. Once the set of modules is identified, information about each is extracted to

provide an overview of the system that is necessary for consideration in future design

13

decisions. This process was completed by hand; however some of the information

extracted could have been gathered using custom parsing programs. The key

characteristics to observe are: the system’s module tree, each module’s instantiation level,

and a breakdown of each module’s port list. Another data set that is included in the

module data extraction is a breakdown of the FPGA resources needed by each module.

However, this information can only be obtained after the reconfigurable module synthesis

process described in section 3.1 is completed.

The system module tree is a hybrid graph that shows multiple dimensions of the

application flow at the same time. Vertically, it shows the sequential order in which the

Decoder modules execute. Horizontally, it shows the module hierarchy. The left most

modules are the highest level or top level of module hierarchy. The right most modules

are the lowest level of module hierarchy, and modules listed more than once in the

vertical list are functions which are used more than once to compute the overall function.

This information is useful for determining the reconfigurable module set described in the

next section. The next important property is each module’s instantiation level. This

property is derived from the system module tree. A module’s instantiation level is defined

as the number of modules a signal must travel through to reach the highest hierarchy or

“top” level. Module instantiation levels are vital for determining the reconfigurable

module set and will be examined further in section 2.2. As stated, a breakdown of each

module’s port list is also included in the module extraction data. This data includes

counts for every port width for inputs and outputs and is necessary for the port

abstraction process described in section 2.3. Table 2.1 shows the system module tree for

the Top Level FSM block of the Decoder. Each column corresponds to the different

14

module instantiation levels. All modules of a given level are instantiated by the first

module encountered above it in the next highest level.

Table 2.1 ITU G.729 Decoder System Module Tree

0 1 2 3 4 5

Top_Level_FS

M

 bits2prm_ld8k

 bin2int

 CheckParityPi

tch

 D_lsp

 Lsp_iqua_cs

 Lsp_get_quant

 Lsp_expand_1

_2

 Lsp_prev_co

mpose

 Lsp_prev_upd

ate

 copy

 Lsp_stability

 Lsp_prev_extr

act

 Lsp_prev_upd

ate

 copy

 lsf_lsp2

 int_qlpc

 LSP_to_Az

 get_lsp_pol

 copy

 Dec_lag3

 Pred_lt_3

 Random

 L_shr

 L_add

 L_mult

 de_acelp

 Dec_gain

15

Table 2.1 (continued)

 Gain_update_

erasure

 Gain_predict

 Log2

 mpy_32_16

 Pow2

 Gain_update

 Log2

 syn_filt

 Weight_Az

 calc_st_filt

 syn_filt

 calc_rc0_h

 filt_mu

 scale_st

 pst_ltp

 Search_Del

 copy

 Compute_Ltp

_L

 select_ltp

 filt_plt

 post_process

The Decoder design can be broken down into four different module categories:

execution, utility, math, and memory. There are 36 execution modules corresponding to

the 36 functions called sequentially to decode an audio frame. There are 3 utility

functions that are used by the execution modules or run independently that are

instantiated in the FSM block rather than the Datapath block. There are 19 distinct math

operations that are broken into modules instantiated in the Datapath block. Finally, there

are four memory blocks corresponding to two memory cores with a memory controller

for each. The math and memory modules are shared by all of the execution and utility

functions. This breakdown is shown in Table 2.2. Furthermore, the port data for all of the

16

modules in the Decoder design are given in Table 2.2. The columns headings under Input

and Output Port Counts correspond to the bit widths of the ports (i.e. 1, 4, 6, etc.).

Table 2.2 ITU G.729 Decoder Module Port Data

Type Code Module Name 1 4 6 12 16 32 1 2 12 16 32 Total Ports

t1 Top_Level 19 0 0 2 0 1 14 0 0 0 1 37

t2 Top_Level_FSM

t3 Top_Level_Data_Path

b1 bits2prm_ld8k 5 0 0 0 2 2 4 0 3 4 1 21

b2 bin2int 5 0 0 0 4 1 3 0 1 5 0 19

b3 CheckParityPitch 5 0 0 0 2 1 4 0 2 4 1 19

b4 D_lsp 14 0 0 0 4 9 13 0 3 16 9 68

b5 Lsp_iqua_cs 12 0 0 3 3 8 11 0 3 13 8 61

b6 Lsp_get_quant 10 0 0 4 6 6 9 0 3 10 6 54

b7 Lsp_expand_1_2 8 1 0 1 3 3 7 0 2 6 5 36

b8 Lsp_prev_compose 6 0 0 5 1 4 5 0 3 6 2 32

b9 Lsp_prev_update 6 0 0 2 2 2 5 0 2 4 3 26

b10 Lsp_stability 7 0 0 1 2 3 6 0 2 4 5 30

b11 Lsp_prev_extract 7 0 0 5 1 5 6 0 3 7 3 37

b12 lsf_lsp2 9 0 0 2 4 4 8 0 3 11 2 43

b13 int_qlpc 29 0 0 0 11 13 17 0 3 17 13 103

b14 LSP_to_Az 27 0 0 2 10 12 16 0 2 15 13 97

b15 get_lsp_pol 29 0 0 1 10 12 16 0 2 15 13 98

b16 Dec_lag3 6 0 0 0 5 1 5 0 2 6 1 26

b17 Pred_lt_3 8 0 0 1 4 5 7 0 3 6 5 39

b18 Random 3 0 0 0 0 0 1 0 0 1 0 5

b19 de_acelp 6 0 0 0 3 1 5 0 2 6 1 24

b20 Dec_gain 23 0 0 0 5 9 14 0 3 16 9 79

b21 Gain_update_erasure 7 0 0 0 2 3 6 0 2 5 4 29

b22 Gain_predict 20 0 0 0 4 7 11 0 3 16 6 67

b23 Gain_update 16 0 0 0 3 7 9 0 3 10 6 54

b24 syn_filt 16 0 1 4 2 5 9 0 2 9 5 53

b25 Weight_Az 6 0 0 3 1 3 5 0 2 4 3 27

b26 Residu 9 0 0 3 2 5 8 0 2 9 5 43

b27 calc_st_filt 25 0 0 6 8 11 17 0 2 18 11 98

b28 calc_rc0_h 14 0 0 2 6 8 11 0 2 9 8 60

b29 filt_mu 17 0 0 3 7 10 15 0 2 16 9 79

b30 scale_st 16 0 0 3 8 8 14 0 2 13 8 72

b31 pst_ltp 27 0 0 2 17 15 20 0 3 23 13 120

b32 Search_Del 23 0 0 1 14 11 18 0 3 28 10 108

b33 Compute_Ltp_L 10 0 0 2 6 5 9 0 3 13 6 54

b34 select_ltp 16 0 0 0 18 7 11 1 0 16 6 75

b35 filt_plt 8 0 0 0 6 4 7 0 2 8 4 39

b36 post_process 15 0 0 10 8 10 11 0 3 13 8 78

Input Port Counts* Output Port Counts*

Execution

System

17

Table 2.2 (continued)

* The columns under the port count headings refer to the bitwidths of the different sized

ports (i.e. 1-bit, 4-bit, 6-bit, etc.)

2.2 Reconfigurable Module Set Selection

The first dynamic partial reconfiguration design decision is choosing the set of

modules to be included in the reconfigurable module set. The number of reconfigurable

modules sets possible is bounded by n!, where n is the number of identified potential

reconfigurable modules. This number increases very rapidly as the number of

reconfigurable modules increases. Therefore, this section provides common schemes and

practical constraints that will limit the number of set compositions.

u1 copy 5 0 0 2 2 2 4 0 2 2 3 22

u2 Log2 8 0 0 0 2 5 6 0 1 8 4 34

u3 Pow2 13 0 0 0 4 4 6 0 1 9 3 40

m1 add 3 0 0 0 2 0 2 0 0 1 0 8

m2 L_add 3 0 0 0 0 2 2 0 0 0 1 8

m3 sub 3 0 0 0 2 0 2 0 0 1 0 8

m4 L_sub 3 0 0 0 0 2 2 0 0 0 1 8

m5 mult 4 0 0 0 2 0 2 0 0 1 0 9

m6 L_mult 3 0 0 0 2 0 2 0 0 0 1 8

m7 shl 3 0 0 0 2 0 2 0 0 1 0 8

m8 L_shl 3 0 0 0 1 1 2 0 0 0 1 8

m9 shr 3 0 0 0 2 0 2 0 0 1 0 8

m10 L_shr 3 0 0 0 1 1 2 0 0 0 1 8

m11 norm_l 3 0 0 0 0 1 1 0 0 1 0 6

m12 norm_s 3 0 0 0 1 0 1 0 0 1 0 6

m13 L_abs 3 0 0 0 0 1 1 0 0 0 1 6

m14 L_negate 3 0 0 0 0 1 1 0 0 0 1 6

m15 L_mac 3 0 0 0 2 1 2 0 0 0 1 9

m16 L_msu 3 0 0 0 2 1 2 0 0 0 1 9

m17 mpy_32_16 9 0 0 0 2 3 4 0 0 6 2 26

m18 Mpy_32 9 0 0 0 1 4 4 0 0 6 2 26

m19 div_s 5 0 0 0 3 1 4 0 0 3 2 18

mem1 Scratch_Memory_Controller 2 0 0 2 0 1 0 0 0 0 1 6

mem2 scratch_memory_V1 2 0 0 2 0 1 0 0 0 0 1 6

mem3 Constant_Memory_Controller 2 0 0 1 0 1 0 0 0 0 1 5

mem4 CONSTANT_MEM 2 0 0 1 0 1 0 0 0 0 1 5

Memory

Math

Utility

18

To determine which modules are eligible for partial reconfiguration, all modules

must be analyzed to decide if they execute sequentially or concurrently with other

modules. Because sequentially executed modules only need to be present on the chip

during their execution time, they are perfect candidates for partial reconfiguration.

However, modules that run concurrently with other modules must be on the chip

whenever the other modules are executed. Such is the case for the math and memory

modules in the Decoder. While the modules are not used by every execution module,

their use is often enough and their design size is small enough that the added complexity

of including them in the reconfigurable module set would not be worth the benefits

gained. This reduces the potential reconfigurable modules to the 36 execution and 3

utility modules.

The execution modules from Table 2.2 are each finite state machines which were

derived by converting a C programming language functions to Verilog HDL. The

execution modules perform complex mathematical operations using the shared math

modules and read and store data from the share memory objects using the shared utility

functions. The execution module hierarchy mirrors the original C program and represents

the hierarchy found there. Instantiation of one module within another generally

represents either a large function which was carved out as a separate subroutine or

represents a function which was called multiple times in a loop. For the loop case the

Verilog HDL version includes a finite state machine in the higher hierarchy level module

which implements the loop and uses module to module hand shaking to wait for

execution of the lower module’s finite state machine. This organization had a large

19

impact on the decision process when choosing which modules to dynamically

reconfigure.

An obvious selection scheme would be to select every execution module for the

reconfigurable set. However, many execution modules utilize multiple instantiation

levels. All of the modules in a “multi-instantiation level” configuration can only be

implemented in three ways. The first implementation would have all of the execution

modules individually use the same reconfigurable partition regardless of the module’s

instantiation level in Table 2.1. Often leaf modules communicate through the higher level

modules to the shared math modules. As such the leaf module requires the multiplexors

or wires in the instantiating modules to be present. This creates a concurrency

requirement between the leaf module and its instantiating module. This makes it

impossible to treat each execution module as a separate member reconfigurable module

set. In effect, this creates groupings of modules which must always be simultaneously

present and reduces the size of the potential reconfigurable module set accordingly. A

second option considered was to move the lower hierarchy modules’ logic directly into

the higher level modules. This option is possible but proved impractical due to the

complexity of the logic that must be integrated into the higher level state machines of the

altered execution modules. The final option is to define a separate reconfigurable

partition, and thereby separate reconfigurable module sets, for each instantiation level.

This is infeasible because it requires the instantiation of a reconfigurable partition inside

of another reconfigurable partition, which is not supported by Xilinx’s PlanAhead

software. Therefore, it can be concluded that partially reconfiguring every module in a

20

“multi-instantiation level” design is impractical when using the standard Xilinx partial

reconfiguration flow.

So, to avoid a reconfigurable module set that spans across instantiation levels, the

reconfigurable module set was limited to modules from a single level of hierarchy. This

scenario forces all of the sub-modules associated with a given reconfigurable module to

dynamically added or removed from the FPGA simultaneously with the instantiating

module. Consequently, the set of possible reconfigurable modules without modifying the

original HDL structure is reduced to the set of modules in the first instantiation level. For

the Decoder, this set consists of 18 modules.

One of the goals of this project is to measure the impact of dynamic partial

reconfiguration on design size and runtime. For design size, data for the 18

reconfigurable module set chosen above can be obtained through the unit synthesis

procedure described in section 3.1. However, it is unnecessary to use the entire set to

obtain runtime data. This is because the reconfiguration time is dependent on the size of

the reconfigurable partition rather than the size of the reconfigurable module set.

Therefore, it is sufficient to select a small subset of the reconfigurable module set and

extrapolate the runtime for the whole set based on the data observed from using the

subset. Moreover, because the runtime is solely dependent on reconfigurable partition

size, the results can be extrapolated to predict the impact of implementing any selection

scheme. The subset chosen for the Decoder application consists of the first two modules

in the first instantiation level: b1 (bits2prm) and b3 (CheckParityPitch) as shown in Table

2.1.

21

2.3 Reconfigurable Module Port Set Selection and Abstraction

One design modification that is required by Xilinx for dynamic partial

reconfiguration systems is the port set selection and abstraction of all modules in the

reconfigurable module set. That is, all reconfigurable modules associated with a single

reconfigurable partition must have identical port lists [17]. As is the case with the

Decoder, most HDL systems are designed in such a way that each modules port list is

unique to the needs of that module. Therefore, it is necessary to modify the port lists of

all of the reconfigurable modules. There are three steps to this process: generalizing the

port names, selecting the port set, and abstracting the port list in the HDL design. Three

methods of port naming and set selection are presented below.

The first method is to create a “superset” of all of the ports for every

reconfigurable module. This method has the benefit of being easy to implement but also

has the largest port list. This can lead to the reconfigurable partition being “I/O Limited”,

where the size of the partition is bounded by the number of ports rather than the size of

the logic contained. The first step, generalizing port names, for the superset method can

be easily accomplished by adding a unique module identifier either as a prefix or suffix to

all of the ports. This process is illustrated in Figure 2.1.

22

Figure 2.1 Port Abstraction – Superset Port Name Generalization

Once all of the names have been generalized, the port set can be selected. In this

case, every port is selected for the superset as shown in Figure 2.2. In the figure, all three

modules have the same three ports. However, using the superset method, every port is

prefixed and added to the superset port list resulting in a nine port set.

Figure 2.2 Port Abstraction – Superset Port Set Selection

23

This unnecessary redundancy is addressed by the second approach to port set

selection. The goal of the second approach is to minimize the number of ports by defining

two vectors, one input and one output, that are sized to match the largest port list in the

reconfigurable module set. Then, each module’s ports can be mapped into the vectors.

This approach has the benefit of removing the need for port name generalization and

guaranteeing the minimum port list size. However, it does require more complex logic to

implement than the “superset” approach. An illustration of the “vector” approach is

shown in Figure 2.3. In this example, there are three modules with varying quantities of

2-bit, 16-bit, and 32-bit ports. The calculations on the right show how large a vector

would need to be to support that module. Because rm_3 requires the largest vector, it is

chosen as the vector size for the reconfigurable module port list. Although not drawn to

scale, the boxes at the bottom give a representation of how each module’s port list could

be mapped into the vector.

24

Figure 2.3 Port Abstraction – Vector Port Set Selection

A third approach, that bridges the gap between the two previous options, is to

define a port set that is a common subset to all of the reconfigurable modules. To

implement this “subset” approach, a different naming scheme must be used than the one

used in the “superset” method. In this naming scheme, all ports are converted to a

common naming convention that includes three properties: whether the port is an input or

an output, the width of the port, and a unique number for that port given its type and size.

For example, the third 8-bit input would have a generalized port name of the following

form: input_8_3.

Using the module port data collected in Table 2.2, a minimum set can be created

by taking the largest count for each port width and type. This procedure is illustrated in

Figure 2.4. Using the same example modules from the “vector” approach, the arrows in

25

this figure indicate which module is responsible for contributing the most ports for each

width. For the 2-bit case, module rm_2 is the contributing module because it requires 6,

2-bit ports, whereas rm_1 and rm_3 only require 3 and 1, respectively. The boxes at the

bottom of the figure show the calculations for each of the port widths.

Figure 2.4 Port Abstraction – Subset Port Set Selection

This approach requires more effort to implement than both of the other methods

but will result in a smaller port list than the “superset” method and a more legible design

than the “vector” approach.

All of the selection schemes presented above modify the port lists for the

reconfigurable modules; therefore, both require a port abstraction approach that will link

the original unique port names to the new generalized port names without requiring the

modification of any execution logic in the HDL design. It does, however, require

26

architecture modifications in both the instantiating module and the reconfigurable

modules. In the reconfigurable modules, all abstracted ports can be tied to their respective

signals with an assign statement. In the instantiating module, however, the abstraction

process is more complicated. Any mutually exclusive output signals associated with a

reconfigurable module can be linked to their respective abstracted port with an assign

statement. For the rest of the signals, a multiplexer circuit is implemented to allow the

system to determine what signal should be connected to what abstracted port based on

which reconfigurable module is currently on the chip.

Because one of the main goals of this project is to evaluate the design size

benefits associated with dynamic partial reconfiguration systems, “I/O Limiting” is a

factor when choosing which option to implement. The “vector approach produces the

greatest size reduction benefit possible. That is, using the approach, if the reconfigurable

partition size can be reduced to the point that it is I/O limited, any further reduction in

size would have to be the result of a reduction in the port list size. However, the port list

size is already at its minimum, therefore reducing it would cause some reconfigurable

module to not be supplied its required port counts. This creates a contradiction. The

selection approach chosen for the Decoder conversion is the subset solution because of its

reduced port list size and legibility. Based on the data in Table 2.2, Table 2.3 shows a

comparison of the port lists created for the Decoder using all three methods. It is clear

from this table that the vector method provides the best results while only sacrificing

code legibility.

27

Table 2.3 Port Abstraction Method Size Comparison

 Superset Vector Subset

Number of Ports Across Boundary 976 2 139

Number of Bits Across Boundary 12,614 1643 1849

2.4 System Architecture Modification

Although it is possible for a given application to be architected in a way that

already supports dynamic partial reconfiguration, this section outlines modifications that

were made to the Decoder application to illustrate the type of architecture necessary for

dynamic partial reconfiguration.

2.4.1 Data Flow Architecture

The first modification to the architecture is the removal of data flow selection

logic that is rendered unnecessary during the partial reconfiguration conversion process.

In the static design configuration of an application, a multiplexer bank is used to select

the proper set of signals to route from the execution modules to the shared modules based

on which module is currently executing. This original organization is shown in Figure

2.5. As can be seen in the figure, every executable module sends every one of its output

to the datapath block. Because the execution modules operate sequentially, only one set

of the outputs will be active at a time resulting in a high percentage of the signals being

inactive at any given time. Furthermore, because the execution modules are all attempting

to access the same resources in the datapath block, many of the signals redundantly point

to the same destination.

28

Figure 2.5 Original Data Flow Architecture

Although this design requires more inter-module communication than necessary,

it functions properly. However, this design is not sufficient for a dynamic partial

reconfiguration system. It is possible that all of the execution modules are designated as

reconfigurable modules. In this case, only one of the executable module blocks will ever

be on the chip at a time, producing only a single set of outputs. The adjustment for

linking this set of outputs to the proper design signals is already managed by the port

abstraction multiplexer described in the previous section. As a result, only a single set of

signals connects the FSM block to the Datapath block. This makes the original shared

module multiplexer useless because only a single input set will ever be driven resulting

multiple floating inputs, as shown as red ports in Figure 2.6. Therefore, the multiplexer

29

bank in the datapath can be removed from the system architecture to reduce design

complexity and size. The final system data flow architecture is shown in Figure 2.7.

Figure 2.6 Decoder Intermediate Data Flow Architecture

30

Figure 2.7 Decoder Final Data Flow Architecture

2.4.2 External Signals

The second architecture modification required to convert the Decoder application

was to revise the list of external signals from the Decoder and update their functionality.

The modifications in this section are the only changes that affect the operation of the

Decoder from its original version. However, the validation procedures presented in

section 2.5 show a method for checking that the application will still function properly.

There are three alterations made to the external signals of the Decoder: the removal of

testbench signals, the extension of the completion state, and the addition of partial

reconfiguration signals.

31

The Decoder implementation provided by Duplantis et al. had many external

signals that were used for application testbenching. These signals were used to pause

execution at certain key points during the decoding process to allow the testbench to

validate internal memory state. There signals are unnecessary now that the functionality

of the Decoder’s logic has been verified, so they have been removed to reduce the

Decoder’s design size. However, the pauses were created by states in the control logic

that wait for an external signal to continue execution. To avoid modifying the control

logic, a single continue signal is added to the external port list and permanently driven

high. This allows the Decoder to “fall through” the pause states in the control logic.

Another modification to the external signals that, while not required to support

dynamic partial reconfiguration, is necessary to interface with the Microblaze soft

microprocessor is the extension of the completion state. In the original configuration,

after the system completes the decoding process on one frame, a “done” state is entered

for a single clock cycle that sets an external “done” signal high. After this clock cycle the

system returns to the initial state and the “done” signal returns low. This single clock

cycle is virtually impossible to detect by a polling trigger in the Microblaze’s program,

which is needed to serve the Decoder with the next set of frame data. Moreover, the

timing operations performed in CHAPTER IV could only be completed if the Microblaze

can detect when the Decoder has finished its operation on a frame. Therefore, the “done”

signal was modified to remain at a high state while the Decoder is in its initial state and

only be driven low when the start signal for the next frame is received.

The final modification to the external port list was the addition of two signals

necessary to implement dynamic partial reconfiguration. These two signals are a load and

32

ready signal that allow the Decoder and Microblaze to communicate information about

which reconfigurable module needs to be loaded and which is currently on the chip,

respectively. Each signal is as wide as necessary to encode the number of reconfigurable

modules in the reconfigurable module set. In the case of the Decoder, there are 24

reconfigurable modules; therefore, the load and ready signals are both five bits wide.

A key design decision for implementing dynamic partial reconfiguration is

determining where in the control logic to signal the Microblaze to begin reconfiguring a

new reconfigurable module. The simplest method would be to signal the Microblaze

immediately before executing a reconfigurable module and then wait for the ready signal

to report that the module has been loaded onto the FPGA to proceed with the execution of

that module. However, simple analysis of the application flow can produce better results

if the design has extra control logic in between the calls to the reconfigurable modules, as

is the case with the Decoder. A system that calls functions sequentially gives the ability to

determine which module will be needed next prior to execution. Therefore, it is possible

to determine the earliest point in the application, after the previous reconfigurable module

finishes executing, that a reconfigurable module can be guaranteed to be the next module

to be executed. The control logic can signal the partial reconfiguration to begin at this

point and continue executing while the partial reconfiguration process takes place in

parallel. This method also requires that the application wait for the ready signal before

each reconfigurable module is executed. This is necessary to guarantee that the partial

reconfiguration process has completed before the application attempts to use the

reconfigured logic. Figure 2.8 and Figure 2.9 show the theoretical difference in the

33

amount of time spent waiting on the partial reconfiguration process to complete. Note:

these drawings are not to scale.

Figure 2.8 Partial Reconfiguration Wait Time Without Optimization

Figure 2.9 Partial Reconfiguration Wait Time With Optimization

APPENDIX A gives a state diagram of the control logic for the Decoder and an

illustration of which states (red) are executing reconfigurable modules and which states

(yellow) are the optimized points where the Decoder signals the Microblaze to begin the

partial reconfiguration process.

34

2.5 System Functionality Simulation

A vital component of the HDL application development cycle is operation

validation. Although an application being converted to be partially, dynamically

reconfigurable is assumed to have been functionally validated, the significant

modifications to the system detailed in the previous sections require that the application

be revalidated to ensure that the new design produces the same output as the original.

However, standard verification methods for HDL designs cannot be used when testing a

dynamic partial reconfiguration system. This is due to the fact that Xilinx tools are

incapable of simulating partial reconfiguration [17]. Consequently, a customized test

bench is presented in this section that allows for the testing of the functionality of the

partial reconfiguration design. It should be noted that, while the HDL code tested by the

presented method is not exactly the same as the code that is ultimately synthesized and

implemented, the differences between the two do not affect the output of the system.

The method used in this project instantiates all of the reconfigurable modules in

the system rather than replacing them with a black box. A difficulty faced is rectifying the

abstracted ports that are now repeated for each reconfigurable module. The redundant

input signals do not cause a problem because they are all loaded from a single, shared

source in the datapath. Therefore, the redundant signals act as a fan out of the single

signal. On the contrary, the redundant output signals create a single net that is driven

from multiple different sources, one from each reconfigurable module. This multiple

sources condition creates an undefined state for the net. Different options were proposed

for overcoming this dilemma that included using FORCE/RELEASE blocks to simulate

the effect that only a single reconfigurable module would be operable at a time. Another

35

option proposed was to use the wand and wor Verilog constructs to define the rules for

how the nets are driven. There is no signal conflict in the FPGA realization of the design

because there is only one black box module present in the reconfigurable partition at a

time. This problem was solved by assigning the output signals from each reconfigurable

module to separate nets uniquely associated with each reconfigurable module. This

allows modifications related to preparing the design for reconfigurable computing to be

tested. The output modifications were checked by visual inspection. The results of the

system functional simulation are shown in Figure 2.10. As can be seen in the figure, the

Decoder begins execution at 0 milliseconds shown by the vertical yellow marker. The

white marker indicates the point at which the done signal goes high. Thus, it is shown

that the time taken to decode a single frame in simulation is approximately 2.4

milliseconds. The test bench periodically performs internal memory state checks to verify

that the Decoder is executing properly. As a result, the same checks were performed on

the new system design which completed without any memory check errors, indicating

that the new system design functionally operated in the same manner as the original.

Figure 2.10 Decoder Functional Simulation

36

CHAPTER III

DYNAMIC PARTIAL RECONFIGURATION SYSTEM DESIGN AND

IMPLEMENTATION

This chapter describes the procedures necessary to implement a dynamic partial

reconfiguration system. This includes bottom-up synthesis of the reconfigurable modules,

design and creation of the hardware platform, and the design of a software application for

running the decoder and performing runtime calculations is presented.

3.1 Reconfigurable Module Unit Synthesis

After an application has been modified to support dynamic partial

reconfiguration, the first step in implementing the system is to perform a bottom-up

synthesis of the reconfigurable modules in the reconfigurable module set. Because the

instantiation of these modules is replaced by a black box in the full application, the

modules must be individually synthesized in order to generate netlist files that will be

used by the PlanAhead tool to implement the reconfigurable design. In order to complete

this process, a separate Xilinx ISE project must be created for each reconfigurable

module. The option to automatically add I/O Buffers must be turned off in the Xilinx

Specific Options tab of the Process Properties panel. This option is turned off because

otherwise the software would attempt to map the ports of the module to the I/O pins on

the FPGA. Once this is done, the modules can be synthesized and their netlist files stored

37

for later use. In addition, the synthesis report will provide the FPGA resource

requirements necessary for reconfigurable partition size calculations.

3.2 Dynamic Partial Reconfiguration Hardware Platform

The next step in the dynamic partial reconfiguration system implementation

process is to design and create a hardware platform to support the HDL application. An

overview of the hardware platform designed for this project is given in section 1.3. This

section will explain the process for creating this platform including discussion of the

different design decisions made during the process. A tutorial version of this process is

given in APPENDIX B. There are two main procedures for building the hardware

platform. The first is platform design and synthesis, and the second is system

configuration and implementation.

3.2.1 Platform Design and Synthesis

In order to build a hardware platform, several decisions, such as which

components to include and how to connect them, must be made. All of the procedures in

this section are managed through Xilinx’s ISE Project Manager software. Because the

design of this platform revolves around a central soft processor, the Microblaze, a

template embedded processor project can be created in the Project Manager, and from the

manager, the Xilinx Environment Development Kit (EDK) can be launched to customize

the embedded processor. The Microblaze was chosen for this project because it is the

example processor used in all of the Xilinx Partial Reconfiguration tutorials and

documentation.

38

The Embedded Development Kit is included in the Xilinx Platform Studio. It is

used to customize an embedded processor core by adding and modifying different

peripherals such as memory, communication controllers, and user defined logic. As

described in previous sections, the Microblaze is used in this project to serve frame data

to the Decoder, launch and manage the partial reconfigurations, time the execution of the

Decoder, and communicate this data back to the user. Therefore, several peripherals are

needed to support this functionality. They are shown in Figure 3.1. In order to support

timing operations, an external system timer was added. A custom logic peripheral was

added to connect the Decoder to the system bus, and an ICAP controller was added to

allow the Microblaze to interface with the configuration port. The ICAP controller,

named HWICAP, is designed to run at maximum frequency of 100 MHz; therefore, the

system clock for the entire platform was set to this frequency.

Figure 3.1 DPR System Block Diagram

39

Creating a custom logic peripheral requires extra steps to include in the system

design. The first step is to configure the custom peripheral’s bus interface and template

structure. This is done inside the Xilinx EDK. After creating the peripheral, it can be

opened as an independent project in a separate Xilinx ISE window. In this new instance,

code is added to the template interface to instantiate the partial reconfiguration

application, the Decoder for this project. Furthermore, the external signals from the

application are linked to the software registers defined by the peripheral, granting the

Microblaze access to these signals. Once the peripheral design is completed, it can be

synthesized in the Xilinx ISE window. In order to add the new version of the custom

peripheral, it must be re-imported into the Xilinx EDK project repository. From there, it

can be added to the platform design in the same manner as any other stock peripheral.

After adding all of the necessary peripherals to the platform design, the platform

must be synthesized to generate a system netlist file that will be used by the PlanAhead

tool to configure and implement the partial reconfiguration aspects of the system.

Synthesis of the platform is performed in the original Xilinx ISE instance.

3.2.2 Partial Reconfiguration Design and System Implementation

After the hardware platform is designed and synthesized, it can be configured for

partial reconfiguration. This process is completed in the Xilinx PlanAhead software.

Note: In order to develop and implement partial reconfiguration designs, the Partial

Reconfiguration License must be acquired from Xilinx. For this project, the license was

acquired on a trial basis for Academic research.

The first step in this process is creating a new process and selecting the system

netlist file created in the previous section as the Top Netlist File. This will allow the

40

software to load the system’s data for floorplanning and implementation. The next step is

to define and configure the reconfiguration partition. The software will automatically

detect the black box module that is the placeholder for the reconfigurable modules, so a

new partial reconfiguration partition is connected to this black box entry. This allows the

reconfigurable module netlist files created in the unit synthesis process to be assigned to

the reconfigurable partition.

After defining the reconfigurable partition and adding the reconfigurable modules

to it, a physical region on the FPGA must be defined for the partition. This is necessary to

ensure that all of the reconfigurable logic is confined to a constant set of FPGA

configurable logic blocks (CLBs) so that the partial reconfiguration will not interfere with

the static logic located on the rest of the chip. Before the partition can be defined, its size

must be calculated based on the requirements of the reconfigurable modules.

Figure 3.2 shows the resource structure for a Virtex 5 FPGA. The light pink and

light blue vertical bars in the FPGA diagram correspond to BRAM and DSP resources,

respectively. The dark blue regions of the FPGA correspond to CLBs which make up the

majority of the chip. These CLBs are made up of two SLICE resources, either one

SLICEL and one SLICEM or two SLICELs. These two configurations alternate column

by column across the FPGA. SLICELs (L=logic) can only be used for logic

implementation. SLICEMs (M=memory) can implement either logic or memory as

needed. Each SLICE element contains four Look-Up Tables and eight Flip-Flops. CLBs

are combined to create a “reconfiguration frame”. A reconfiguration frame is the smallest

amount of logic that can be partially reconfigured. The reconfiguration frames on the

Virtex 5 consists of 20 CLBs.

41

Figure 3.2 FPGA Resource Structure

Images taken from Xilinx PlanAhead

In order to demonstrate the procedure for calculating the size of the

reconfigurable partition, the partition created for the Decoder project will be used as an

example. The resource requirements data from the module data extraction is needed to

begin the reconfigurable partition size calculation. This data is given in Table 3.4. It is

clear from the table that module b1 requires the most resources and therefore dictates the

size of the partition. The values used in the calculation are the SLICEL and SLICEM

values. Note that the total number of SLICE elements required can be directly calculated

from the Slice Reg and LUT requirements:

 85 SLICEs (3.1)

The SLICEs are reported in a 1:1 ratio to be evenly distributed because both types

can implement logic. However, the requirements will adjust to the distribution of the

CLBs that are selected (i.e. if two columns are selected, the ratio will become 1:3, one

42

SLICEM to three SLICELs). Therefore, there is no need to consider the breakdown of the

SLICE types.

Table 3.4 Reconfigurable Module Set Resource Requirements

Module Code Module Name Slice Reg LUT SLICEL SLICEM

b1 bits2prm_ld8k 158 338 43 42

b3 CheckParityPitch 53 151 19 19

Because the height of a reconfigurable frame is fixed at 20 CLBs, a simple

equation can be used to determine the minimum number of frames, n, necessary for the

reconfigurable partition:

 (3.2)

Inserting the values from Table 3.4 into equation 3.2, the minimum number of

frames required for this reconfigurable partition is 3. However, this number is insufficient

for a practical implementation. The reported resources required are only for the actual

logic of a reconfigurable module and does not take into account space needed for signal

routing. Attempting to implement the design with the minimum number of frames may

cause the implementation to fail. Therefore, a simple method to account for this extra

resource requirement would be to double the minimum value. Because the design size for

this project was well below the capacity of the target FPGA, 10 frames were selected for

the reconfigurable partition. However, this selection has a direct impact on the execution

time of a partial reconfiguration. An analysis of this impact is given in section 4.2.

Once the reconfigurable partition has been defined, design configurations can be

defined and implemented. A design configuration corresponds to a single orientation of

43

static logic and reconfigurable modules on the chip. For a design with a single

reconfigurable partition containing three reconfigurable modules, only three design

configurations exist, as shown in Figure 3.3. A design with two reconfigurable partitions

containing three reconfigurable modules each, the number of design configurations

increases to 9, as shown in Figure 3.4. However, it is unnecessary to define every

possible combination. It is sufficient to define only as many configurations as it takes to

ensure that every reconfigurable module is represented at least once.

Figure 3.3 Design Configurations Example 1

44

Figure 3.4 Design Configurations Example 2

After all design configurations are defined, they can be implemented.

Implementation consists of three main stages: MAP, Place-and-Route, and bitfile

generation. The MAP and Place-and-Route stages analyze the design and automatically

map components and interconnections onto the FPGA. The bitfile generation stage

creates multiple bitfiles for every design configuration. For each configuration, a full

bitfile is created that represents the design with the designated reconfigurable modules

already configured into the correct partitions. Also, partial bit files will be created for any

reconfigurable modules defined in the configuration. Therefore, for this project, the

Decoder used two different configurations: static plus RM b1 and static plus RM b3. This

generated two full bitfiles and two partial bitfiles. Once the bitfiles are generated, the full

45

bitfiles can be used to program the FPGA in the same manner as a static project. The

partial bitfiles can be loaded into system memory and then be used in conjunction with a

Microblaze control program to dynamically reconfigure the reconfigurable partition on

the FPGA.

3.3 Software Testing Platform

As stated previously, the goals of this testing application are to run the Decoder,

manage the partial reconfiguration process, and perform timing analysis. The system is

controlled by a Microblaze that communicates with the other peripherals through the

Processor Local Bus (PLB). Attached to the PLB are the system memory, the ICAP, the

external system timer, and the Decoder logic. The code for the testing program that is run

on the Microblaze is given in APPENDIX C.

One of the major design decisions associated with testing the DPR system was

how to communicate with the FPGA to deliver the partial bitfiles and frame data to the

system. The first approach conceived was to hardcode the bitfiles into a BRAM using the

Xilinx CORE Generator application. This, however, proved paradoxical because the

.COE file needed to create the memory core could only be built after the partial bit files

were created which in turn needed the memory core files to be generated. A second

approach attempted was to use a separate C program to communicate with the FPGA over

the UART. This technique was very time consuming, requiring multiple millions of read

and writes every execution to transmit the two 59 kB files. Therefore, this option was

ultimately abandoned. Finally, it was decided to use a third option that involved

embedding the bitfile and frame data into the testing application as constant data arrays.

Each bitfile was broken into 32-bit words and added to the program in a header file. From

46

there, at runtime, the data would be copied from the arrays into DRAM. This approach

was a compromise required by the FPGA development board available for this work. In

ordinary practice partial bit files are stored on a separate flash device and then copied into

heap memory for use when reconfiguring.

After the bitfiles are loaded into memory, the program then begins the decode

section. This section runs in a loop for a predetermined number of times. For each loop,

a new set of frame data is loaded from memory. Then, a start signal is sent to the Decoder

logic. While the Decoder is running, the program waits for a load signal to reconfigure

the reconfigurable partition. When the signal is received, the program launches the Xilinx

provided function that performs the necessary operations required to read a partial bitfile

from memory into the HWICAP FIFO and then execute the partial reconfiguration of the

reconfigurable partition. Finally, the program waits for the Decoder to report that it has

completed a frame and finishes by printing out the timing data collected.

Three methods were proposed for collecting timing data for the Decoder. The first

method utilizes the profiling tool provided in the Xilinx SDK. This tool uses an interrupt

method that halts execution at regular intervals and determines which function the

program is currently executing in. The tool counts how many times each function is

identified and, after the program finishes, presents the data in a table including rows for

each function and columns representing the number of calls to that function and the

amount of time taken per call to run that function. However, after implementing this tool,

it was determined that the results reported were too inconsistent to make a valid

conclusion. Therefore, this method was discarded. The second approach uses the

ChipScope debugging application. This approach requires the inclusion of a ChipScope

47

core in the hardware platform design. This core can be added in Xilinx PlanAhead prior

to design implementation. Four signals are needed as triggers for timing: the application

start signal, the application done signal, the load reconfigurable module signal, and the

reconfigurable module ready signal. However, when the core was created for this project,

the PlanAhead software assigned the start and done signals to the same trigger. This

prevented the ChipScope Analyzer program from correctly timing the program.

Therefore, this approach was also discarded. The final approach uses a hardware timer

with a software interface to time the execution of the application. This approach uses an

xps_timer core added to the design in the Xilinx EDK during the hardware platform

creation. The xps_timer is accessed by the testing program that can start, stop reset, and

get the current value of the timer. This method provided the most accurate measurements

of the time taken by the Decoder. The timing data obtained by this method is presented

and analyzed in the next chapter.

48

CHAPTER IV

RESULTS

One of the goals of this project was to determine if dynamic partial

reconfiguration provides a suitable and possibly beneficial replacement for the static

configuration of an HDL design. This section will present data and compare it to data

collected from the static configuration. The results presented in this section were

aggregated from different sources. The size data presented is taken from unit synthesis

outlined in section 3.1, and the timing data was generated using a custom test application

that is described in section 3.3.

4.1 Design Size

One of the obvious benefits for converting a project to use dynamic partial

reconfiguration is that it will reduce the overall design size. This section presents size

data and a quantitative analysis of the size benefits earned by implementing a dynamic

partial reconfiguration system.

4.1.1 Size Data

Resource requirement data was collected for the 18 modules that are in the first

instantiation level. For each module, data was recorded for the following five resources:

SLICELs, SLICEMs, and DSP48E. This data is presented in Table 4.1. DSP48E is the

component name of the DSP type resource found on the FPGA.

49

Table 4.1 RM Resource Data

Module Code Module Name SLICEL SLICEM DSP48E

b1 bits2prm_ld8k 43 42 0

b3 CheckParityPitch 19 19 0

b4 D_lsp 281 280 0

b13 int_qlpc 131 130 0

u1 copy 22 21 0

b16 Dec_lag3 49 48 0

b17 Pred_lt_3 75 75 0

b18 Random 50 50 1

b19 de_acelp 35 34 0

b20 Dec_gain 359 359 0

b24 syn_filt 81 81 0

b25 Weight_Az 30 29 0

b26 Residu 62 62 0

b27 calc_st_filt 187 186 0

b29 filt_mu 103 103 0

b30 scale_st 123 122 0

b31 pst_ltp 699 698 0

b36 post_process 115 115 0

4.1.2 Size Analysis

The size of the entire static logic configuration can be computed by summing all

of the resources for each of the reconfigurable modules and adding that total to resources

required for the static portion of the Decoder. This result is computed by adding rows 2

and 3 in Table 4.2 and shown in row 1 of Table 4.3. Using the full reconfigurable module

set from the first instantiation level of the Decoder, the size of the Decoder’s

reconfigurable partition can be calculated by taking the resource requirements of the

largest reconfigurable module, identified as RM b31 and given in row 4 of Table 4.2Table

50

4.1. Adding this value to the Decoder’s static logic resources, row 2 of Table 4.2, will

result in the design size required for the partial reconfiguration configuration of the

design. This result is given in row 2 of Table 4.3. Row 3 of Table 4.3 shows that the

partial reconfiguration design gives an over 50% reduction in SLICE requirements.

Table 4.2 Aggregated RM and Decoder Static Resource Requirements

 SLICEL SLICEM DSP48E

FPGA 12800 4480 64

Decoder Static 634 633 14

RM Sum 2464 2454 1

RM Maximum 699 698 1

Table 4.3 Static and Partial Reconfiguration Design Size Comparison

SLICEL SLICEM DSP48E

Static Configuration 3098 3087 15

DPR Configuration 1333 1331 15

Percent Improvement 56.97% 56.88% 0.00%

A design size comparison can be created based on these values. Figure 4.1 shows

this comparison as a percentage breakdown of usage of the FPGA. Compared to the static

Decoder configuration, which requires 35.82% of the FPGA, the DPR configuration only

requires 15.46% of the FPGA. This is a space saving of 20.36%, enough space to

implement a second Decoder channel if desired. The results in this section prove that

DPR does provide a size benefit over equivalent static systems.

51

Figure 4.1 FPGA Usage Comparison

4.2 Application Runtime

4.2.1 Timing Data

Timing data was recorded for five seconds of audio data, equating to 500 frames.

For each frame, 126 data points were recorded. These 126 points correspond to the

following: the start and finish times of the Decoder, the start and finish times of the two

partial reconfiguration operations, the start and finish times of the 15 HWICAP FIFO

writes for each partial reconfiguration, and the start and finish times of the 15 HWICAP

reconfiguration processes for each partial reconfiguration. Although not drawn to scale,

Figure 4.2 shows where each of these points occurs during the execution of the Decoder.

52

Figure 4.2 Timing Data Points

A summary of the data collected is presented in Table 4.4. The data in the table is

presented in milliseconds. The Decoder column represents the total time taken to decode

a single frame of audio. The second column, “Partial Reconfig”, gives the time required

to perform a single partial reconfiguration. The “FIFO Write (FULL)” column

corresponds to the amount of time necessary to fill the entire HWICAP FIFO. The “FIFO

Config (FULL)” column gives the time taken to configure the partition when the FIFO is

full. The “FIFO Write (PARTIAL)” and “FIFO Config (PARTIAL)” columns are similar

to the previous two, respectively, but correspond to the runtime of the final loop when the

FIFO is not filled completely. The “Decode” column is summarized from a sample of 500

because it is only recorded once per frame. The “Partial Reconfig” time is recorded twice

per frame; therefore, 1000 samples were available for analysis. This is also true for the

53

two “Partial FIFO” columns. Finally, the “Full FIFO” columns are recorded 14 times per

partial reconfiguration and therefore 28 times per loop, which calculates to 14,000

samples over 500 runs.

Table 4.4 Timing Data for 1 Frame of Audio

 Decode
1 Partial

Reconfig
2

FIFO

Write
3

(FULL)

FIFO

Config
3

(FULL)

FIFO

Write
2

(PARTIAL)

FIFO

Config
2

(PARTIAL)

Average

Time (ms)
203.49 101.13 6.8602 0.02787 4.1714 0.02403

Standard

Deviation
0.00282 0.00039 0.00009 0.00008 0.0001 0.00007

1
500 Samples

2
1000 Samples

3
 14000 Samples

4.2.2 Timing Analysis

4.2.2.1 Test System Analysis

A frame decode timeline can be constructed as shown in Figure 4.3. Note that this

figure is not drawn to scale. Figure 4.4 illustrates what percentage of the runtime is spent

in each of the execution phases. As seen in the figure, the amount of time taken by the

partial reconfiguration process greatly outweighs the time spent in the Decoder logic.

Figure 4.3 Frame Decode Timeline

54

Figure 4.4 Frame Decode Percent Contributions

By subtracting the partial reconfiguration runtimes from the total runtime, it is

determined that the actual decoding logic only runs for 1.23 milliseconds. Testing by

Duplantis et al. showed that the Decoder running at 50 MHz completed a frame in

approximately 2.6 milliseconds [8]. For this project, the Decoder was run at 100 MHz;

therefore the observed runtime is in the expected range.

Conversely, the partial reconfiguration process did not execute in the expected

timeframe. According to Table 6-1 in [17], the HWICAP has a bandwidth of 3.2 Gbps

(32-bit data width at 100 MHz). Assuming this throughput, the HWICAP will be bounded

by the FIFO speed. However, with a bitfile consisting of 14943 double words, a FIFO

write time of 10 clock cycles, and a PLB running at 100 MHz, a pessimistic calculation

of the reconfiguration time would only require 1.5 milliseconds as shown in (4.1).

 (4.1)

An investigation of the DeviceWrite function shows that the FIFO is filled before

launching the XHwIcap_StartConfig function, which then runs to completion before

returning to the beginning of the loop to refill the FIFO if necessary. This method of

execution effectively removes any benefits gained by using the FIFO structure.

55

Furthermore, as shown in Figure 4.5, the FIFO write is the dominating value in the partial

reconfiguration runtime.

Figure 4.5 PR Percent Contributions

This calculation presents a further question as to why the FIFO write process is

taking 6.86 milliseconds to fill the FIFO. Knowing that the FIFO has a depth of 1024,

equation (4.2) shows the calculation of the number of clock cycles necessary to write a

double word to the FIFO. It is undetermined what is causing the multiple orders of

magnitude increase in the number of cycles required to write data to the FIFO.

 (4.2)

4.2.2.2 Timing Analysis Extrapolation

Moreover, the timing data presented above only reflects the dynamic partial

reconfiguration system implementing the first two reconfigurable modules. An

extrapolation of the timing data, combined with the size data from the previous section,

can show the estimated timing results for a reconfigurable module set that includes every

module in the first instantiation level. The size data recorded for this extrapolated system

indicates that the required reconfigurable partition would have to be at least four times

56

the size of the reconfigurable partition used in the project, which results in a minimum

partial bitfile size of 60,000 double words. Equation (4.1) can be used to calculate the

new runtime required to perform a partial reconfiguration, as shown in (4.3).

 (4.3)

In the average case, the extrapolated decode process will require 31

reconfigurations per frame. Equation (4.4) shows the calculation of the Decoder runtime

with the extrapolated system design.

 (4.4)

It should be noted that even an estimated best case FIFO write time will exceed

the 10ms period for the full reconfigurable module set, as shown in (4.5) and (4.6).

 (4.5)

 (4.6)

4.2.2.3 PR Application Period

As shown in the previous two sections, the standard Xilinx dynamic partial

reconfiguration flow is insufficient to support the high frequency/small period timing

requirements of the G.729 Voice Decoder Application even in a reduced capacity (2

reconfigurable modules versus 18 reconfigurable modules). Therefore, it is clear that

there is a minimum application period that is supportable by this flow. This minimum

period can be calculated using a generalized form of equation (4.4) presented below in

(4.7). In (4.7), the value of tpr represents the time required to reconfigure the

reconfigurable partition and can be calculated by substituting the size of the partial bitfile

57

for the reconfigurable module into (4.1). The npr element corresponds to the number of

partial reconfigurations that will occur every period of the application. Finally, the tlogic

element accounts for the time necessary to perform the logic operations for the

application. Using (4.7), application designers will be able to determine if their

application is suitable for dynamic partial reconfiguration by checking if the application’s

frequency is greater than the TDPR.

 (4.7)

58

CHAPTER V

FUTURE WORK AND CONCLUSIONS

5.1 Conclusions

Dynamic partial reconfiguration of FPGA’s is becoming a very popular area of

research. Dynamic partial reconfiguration allows designers to create smaller and more

flexible systems that are critical in extreme environments. This main contribution of this

project was to assess the ability of Xilinx’s standard partial reconfiguration flow to

provide a useable Commercial Off-The-Shelf solution for converting static HDL designs

to dynamically, partially reconfigurable designs.

A first component of this assessment was to analyze the design changes required

to convert an application from static to partially reconfigurable. In this assessment,

multiple approaches were presented for selecting the reconfigurable module set to be

used for the final system. Furthermore, three different methods of abstracting the port

lists for the modules in the reconfigurable module set were presented. Also, a listing of

the architecture modifications necessary was enumerated.

Secondly, this project gives an overview of the process necessary to design and

implement a hardware platform for supporting a dynamic partial reconfiguration

application and a software application to run it. In this process, a method for calculating

the minimum reconfigurable partition size required is presented. An in depth tutorial of

this process is provided in APPENDIX B.

59

A final contribution of this project was to provide an examination of software

verification techniques for dynamic partial reconfiguration systems, empirical timing and

design-size data, and analysis that can be used by future designers to predict how

conducive an application is for conversion to a dynamic partial reconfiguration system.

This data proved that dynamic partial reconfiguration provides a substantial reduction in

design size for the Decoder application. However, the timing data showed that the

standard implementation provided by Xilinx is not sufficient to support the 10ms period

of the Decoder. Therefore, a minimum partial reconfiguration period equation is

presented to allow designers to predict whether a given application will be able to support

dynamic partial reconfiguration.

5.2 Future Work

As evident by the timing analysis in section 4.2.2, work must be done to improve

the speed at which data can be transferred to the ICAP. As stated in the introduction,

research has been done in this area, as in [12]; however, this was a custom design.

Because this project assesses the tools and implementations provided by Xilinx, future

work must be done by Xilinx to provide a more efficient method for bitfile data

communication. One suggested approach would be to utilize the FIFO already in place by

reconfiguring data as it is loaded into the FIFO.

Another area of future work that was mentioned in previous sections is the

possibility of creating a partial reconfiguration region hierarchy. This hierarchy would

allow regions inside of a reconfigurable partition to be reconfigured independently of the

parent region. This design would be useful for systems such as the Decoder that have

multiple instantiation levels. This would further increase the size benefits of using

60

dynamic partial reconfiguration, but would also incur further costs to runtime due to the

increased number of reconfigurations.

A final area of research that would be useful for the dynamic partial

reconfiguration flow would be to create template HDL files that would allow designers to

easily communicate with the ICAP without the need for a software interface. The removal

of the software interface could greatly increase the speed at which partitions could be

reconfigured. Furthermore, this would allow programmers to create deployment ready

systems without the necessity for custom HDL designs.

61

REFERENCES

[1] R.J. Petersen and B.L. Hutchings, “An Assessment of the Suitability of

FPGA-Based Systems for use in Digital Signal Processing,” in 5th

International Workshop on Field-Programmable Logic and Applications,

Oxford, England, 1995.

[2] M. Kristan, B. Loveland, and R. Sazanowicz. (2001) Dynamic Partial

Reconfiguration of a Field Programmable Gate Array [Online]. Available:

http://www.wpi.edu/Pubs/E-project/Available/E-project-030307-

144157/unrestricted/MQP_GDC07_FINAL.pdf

[3] W. Lie and W. Feng-yan, “Dynamic partial reconfiguration in FPGAs,” in

Third International Symposium on Intelligent Information Technology

Application, Nanchang, China, 2009.

[4] R. Tessier and W. Burleson. “Reconfigurable Computing for Digital Signal

Processing: A Survey.” Journal of VLSI Signal Processing, vol. 28, no. 1-

2, pp. 7-27, 2001.

[5] J. Villasenor and B. Hutchings, “The Flexibility of Configurable

Computing,” IEEE Signal Processing Magazine, Sept. 1998, pp. 67–84.

[6] P. Sedcole et al. “Modular dynamic reconfiguration in Virtex FPGAs.”

Computers and Digital Techniques, IEE Proceedings, vol. 153, no. 3, pp.

157-164, 2006.

[7] B. Osterloh et al., “Dynamic Partial Reconfiguration in Space

Applications,” in NASA/ESA Conference on Adaptive Hardware and

Systems, San Francisco, CA, 2009.

[8] S. Owens and J.Z. Thornton. (2010, December 1). Design Document for

ITU G.729 FPGA Implementation [Online]. Available:

http://www.ece.msstate.edu/courses/design/2010/codec/Final_Design_Doc

ument.pdf

[9] T. Huguet et al. (2011, December 2). Design Document for ITU G.729

FPGA Implementation [Online]. Available:

http://www.ece.msstate.edu/courses/design/2011/codec2/Deliverables/Fina

lDocument2.pdf

http://www.wpi.edu/Pubs/E-project/Available/E-project-030307-144157/unrestricted/MQP_GDC07_FINAL.pdf
http://www.wpi.edu/Pubs/E-project/Available/E-project-030307-144157/unrestricted/MQP_GDC07_FINAL.pdf
http://www.ece.msstate.edu/courses/design/2010/codec/Final_Design_Document.pdf
http://www.ece.msstate.edu/courses/design/2010/codec/Final_Design_Document.pdf
http://www.ece.msstate.edu/courses/design/2011/codec2/Deliverables/FinalDocument2.pdf
http://www.ece.msstate.edu/courses/design/2011/codec2/Deliverables/FinalDocument2.pdf

62

[10] D. Mudd and J. Humphreys. (2012, 25 April). Design Document for Voice

Decoder [Online]. Available:

http://www.ece.msstate.edu/courses/design/2011/team_humphreys/deliver

ables/Final_Doc.pdf

[11] C. Duplantis et al. (2012, April 25). Design Document for ITU G.729

Voice Decoder [Online]. Available:

http://www.ece.msstate.edu/courses/design/2012/team_ratcliff/documents/

FinalDoc_Final.pdf

[12] P. Manet et al. “An Evaluation of Dynamic Partial Reconfiguration for

Signal and Image Processing in Professional Electronics Applications”.

EURASIP Journal on Embedded Systems, vol. 2008, pp. 1-11, 2008.

[13] Claus et al. “Towards Rapid Dynamic Partial Reconfiguration in Video-

Based Driver Assistance Systems”. In Reconfigurable Computing:

Architectures, Tools and Applications (ARCS), volume 5992 of LNCS, pp.

55-67. Springer, 2010.

[14] E. J. McDonald, “Runtime FPGA Partial Reconfiguration,” in IEEE

Aerospace Conference, Big Sky, MT, 2008.

[15] S. Bhandari et al. “Internal dynamic partial reconfiguration for real time

signal processing on FPGA”. Indian Journal of Science and Technology,

vol. 3, no. 4, pp. 365-368, 2010.

[16] PlanAhead User Guide. Xilinx, UG632, 2010.

[17] Partial Reconfiguration User Guide. Xilinx, UG702, 2010.

[18] PlanAhead Software Tutorial Overview of the Partial Reconfiguration

Flow. Xilinx, UG743, 2010.

[19] Lab 1: Intro to Partial Reconfiguration Flow Lab [Online]. Available:

http://www.xilinx.com/university/workshops/partial-reconfiguration-flow/

[20] Lab 2: Creating Constraints and Performing Timing Analysis in a PR

Design consists of HDL and Netlist Files Lab [Online]. Available:

http://www.xilinx.com/university/workshops/partial-reconfiguration-flow/

[21] Adding EDK IP to an Embedded System Lab [Online]. Available:

http://www.cosmiac.org/edk.html

[22] Adding Custom IP to an Embedded System Lab [Online]. Available:

http://www.cosmiac.org/edk.html

http://www.ece.msstate.edu/courses/design/2011/team_humphreys/deliverables/Final_Doc.pdf
http://www.ece.msstate.edu/courses/design/2011/team_humphreys/deliverables/Final_Doc.pdf
http://www.ece.msstate.edu/courses/design/2012/team_ratcliff/documents/FinalDoc_Final.pdf
http://www.ece.msstate.edu/courses/design/2012/team_ratcliff/documents/FinalDoc_Final.pdf
http://www.xilinx.com/university/workshops/partial-reconfiguration-flow/
http://www.xilinx.com/university/workshops/partial-reconfiguration-flow/
http://www.cosmiac.org/edk.html
http://www.cosmiac.org/edk.html

63

[23] G.729: Coding of speech at 8 kbit/s using conjugate-structure algebraic-

code-excited linear prediction (CS-ACELP). ITU-T, Rec. ITU-T G.729,

2012.

[24] http://www.xilinx.com/products/boards-and-kits/XUPV5-LX110T.htm

[25] S. Owens et al., “A Multi-Team Multi-Semester Large-Scale Capstone

Project Experience,” in Proceedings of the ASEE Southeastern Section

Annual Conference, Starkville, MS, 2012.

http://www.xilinx.com/products/boards-and-kits/XUPV5-LX110T.htm

64

APPENDIX A

G.729 DECODER TOP-LEVEL FSM

65

Figure A.1 Decoder Control FSM Overview

INIT

0

BITS2PRM_LD8K

2

CHECK_CLEAR

32

CHECK_CLEAR_2

33

CHECK_PARITY_PITCH

3

TEST_UPDATE_1

36

DECODE_LD8K_1

34

D_LSP

4

TEST_UPDATE_2

37

DECODE_LD8K_2

35

INT_QLPC

5

TEST_UPDATE_3

38

COPY

6

DECODE_LD8K_FOR_1

39

COPY_3

101

DECODE_LD8K_FOR_2

40

DECODE_LD8K_FOR_P1_1

41

DECODE_LD8K_FOR_P1_2

42

DECODE_LD8K_FOR_P1_5

45

DEC_LAG3

7

DECODE_LD8K_FOR_P1_6

46

DECODE_LD8K_FOR_P1_7

47

DECODE_LD8K_FOR_P1_8

48

DECODE_LD8K_FOR_P1_9

49

PRE_PRED_LT_3_1

103

DECODE_LD8K_FOR_P1_3

43

DECODE_LD8K_FOR_P1_4

44

DECODE_LD8K_FOR_P2_1

50

DEC_LAG3_2

51

DECODE_LD8K_FOR_P2_4

54

DECODE_LD8K_FOR_P2_2

52

DECODE_LD8K_FOR_P2_3

53

DECODE_LD8K_FOR_P2_5

55

DECODE_LD8K_FOR_P2_6

56

DECODE_LD8K_FOR_P2_7

57

PRE_PRED_LT_3_2

104

PRE_PRED_LT_3_3

105

PRED_LT_3

8

DECODE_LD8K_FOR_3

58

DECODE_LD8K_FOR_4

59

DECODE_LD8K_FOR_5

63

DECODE_LD8K_FOR_P3_1

60

DECODE_LD8K_FOR_6

64

DECODE_LD8K_FOR_6_2

106

DECODE_LD8K_FOR_7

65

DEC_ACELP

9

DECODE_LD8K_FOR_P3_2

61

DECODE_LD8K_FOR_P3_3

62

DECODE_LD8K_FOR_8

66

DECODE_LD8K_FOR_9

67

DECODE_LD8K_FOR_10

68

DECODE_LD8K_FOR_11

69

DECODE_LD8K_FOR_P4_1

70

DECODE_LD8K_FOR_P4_2

71

DECODE_LD8K_FOR_P4_3

72

DECODE_LD8K_FOR_P4_4

73

DECODE_LD8K_FOR_P4_5

74

DEC_GAIN

10

DECODE_LD8K_FOR_12

75

DECODE_LD8K_FOR_13

76

DECODE_LD8K_FOR_13_2

108

DECODE_LD8K_FOR_14

77

DECODE_LD8K_FOR_15

78

DECODE_LD8K_FOR_16

79

DECODE_LD8K_FOR_17

80

DECODE_LD8K_FOR_17_2

107

DECODE_LD8K_FOR_19

82

DECODE_LD8K_FOR_18

81

DECODE_LD8K_FOR_20

83

DECODE_LD8K_FOR_21

84

DECODE_LD8K_FOR_22

85

DECODE_LD8K_FOR_28

91

DECODE_LD8K_FOR_23

86

DECODE_LD8K_FOR_24

87

DECODE_LD8K_FOR_25

88

DECODE_LD8K_FOR_26

89

DECODE_LD8K_FOR_27

90

SYN_FILT

11

DECODE_LD8K_FOR_29

92

DECODE_LD8K_FOR_30

93

PRE_COPY_2_1

97

SYN_FILT_2

96

DECODE_LD8K_FOR_31

94

DECODE_LD8K_FOR_32

95

DECODE_LD8K_FOR_33

100

PRE_COPY_2_2

98

COPY_2

99

TEST_UPDATE_4

102

POST_0

117

POST_1

109

POST_1_0

116

POST_2

110

TEST_UPDATE_5

114

POST_3

111

POST_4

112

POST_5

113

TEST_UPDATE_6

166

POST_6

115

POST_7_0

163

POST_7_1

164

POST_7_2

165

POST_7

118

POST_7_3

176

TEST_UPDATE_7

167

POST_8

119

POST_9

120

POST_10

121

POST_11

122

TEST_UPDATE_8

168

POST_12

123

TEST_UPDATE_9

169

POST_13_0

177

POST_13

124

TEST_UPDATE_10

170

POST_14

125

TEST_UPDATE_11

171

POST_15

126

POST_16

127

TEST_UPDATE_15

175

POST_18

129

POST_19

130

POST_38

149

POST_39

150

POST_40_6

158

POST_40

151

TEST_UPDATE_16

178

66

Figure A.2 Decoder Control FSM Detailed Part 1

67

Figure A.3 Decoder Control FSM Detailed Part 2

68

Figure A.4 Decoder Control FSM Detailed Part 3

69

Figure A.5 Decoder Control FSM Detailed Part 4

70

Figure A.6 Decoder Control FSM Detailed Part 5

71

Figure A.7 Decoder Control FSM Detailed Part 6

72

Figure A.8 Decoder Control FSM Detailed Part 7

73

APPENDIX B

DYNAMIC PARTIAL RECONFIGURATION HARDWARE PLATFORM

DEVELOPMENT TUTORIAL

74

Dynamic partial reconfiguration development requires multiple Xilinx IDE’s. The

basic software flow is shown in Figure B.1. The first step is to create a project in Xilinx

ISE. From here, the Microblaze system is created and designed in the Xilinx XPS/EDK

tool. The next step is to configure the custom logic peripheral in a new instance of Xilinx

ISE. After the custom logic peripheral is re-imported back into the XPS platform, the

system can be synthesized in the original ISE window. The next step is to import the

system netlist into the Xilinx PlanAhead software for partial reconfiguration design. In

the PlanAhead tool, the reconfigurable partition is defined and the reconfigurable

modules are associated with it. Then, the system is implemented and the bitfiles

generated. With the full and partial bitfiles generated, the FPGA can be programmed with

the Xilinx iMPACT tool, and the Xilinx SDK can be used to develop a test application for

the system.

75

Figure B.1 Dynamic Partial Reconfiguration Software Flow Overview

This chapter details the process of developing a DPR project and executing it on a

Xilinx FPGA. This process was developed using multiple tutorials provided by Xilinx

[16]-[22].

B.1 File Structure

During the development cycle many files will be generated and passed from one

software tool to another. Furthermore, partial bit file creation requires the use of multiple

.ngc files that must have the same name. Therefore, an important step in developing a

DPR project is setting up the file tree structure. The file structure used for this project is

illustrated in Figure B.2.

76

Project Root Folder

ISE Project Root Folder

PlanAhead Project Root Folder

EDK Project Root Folder

SDK Project Root Folder

Custom Logic IP Development Folder

Unit Module Synthesis Root Folder

ngc files

RM Module 1 Folder

RM Module 2 Folder

RM Module 3 Folder

Synthesis Project Folders

RM Module 1 Project

RM Module 2 Project

RM Module 3 Project

PlanAhead Project Folder

Project.bit

Project.data

Project.runs

Project.srcs

Figure B.2 DPR File Tree Structure

The figure above shows that there are two main folders inside the root project

folder. The ISE Project Root Folder holds all files related to the platform development

project including ISE, EDK, and SDK files. Inside this folder are all of the ISE project

files and an EDK Project folder that is named based on the processor source created in

the ISE project. The EDK Project folder contains all of the platform creation files, as well

as the SDK project Folder and Custom Logic IP folder. The SDK project folder is where

77

all of the files associated with software development for application execution are stored.

The Custom Logic IP folder is where all of the files associated with generating a custom

logic peripheral to be added to the platform design in the EDK.

The second folder found in the Project root folder is the PlanAhead Root Folder.

This folder holds all files associated with the PlanAhead IDE and partial bit file

generation process. The first subfolder is the unit synthesis folder. This folder is used to

hold all files related to .ngc file generation for reconfigurable modules. Due to Xilinx’s

common name constraint, a folder is needed for each reconfigurable module to identify

which module the contained .ngc corresponds to. The other folder in this location

contains the the project folders for each RM’s ISE project used to generate the .ngc files.

The second file in the PlanAhead root folder is the PlanAhead project folder that contains

the PlanAhead project files and generated partial bit files. The bit files are generated and

automatically stored in the Project.runs folder but are copied into the user created

Project.bit folder for ease of access.

B.2 ISE - Project Creation

Xilinx ISE is a project manager that allows the user to build a system from scratch

and then automatically launch other Xilinx IDE’s when necessary. All of the development

projects presented in this document were built in Xilinx ISE 12.4 64-bit environment.

The first step is to open the Xilinx ISE Project Navigator and launch the “New

Project Wizard” found in “File -> New Project”. The user can then input a project name

and directory as shown in Figure B.3. The Top-level source type should be set to HDL.

78

Figure B.3 ISE Create New Project Window

After proceeding to the next page, the user can set their hardware properties and

preferred language. This project is designed to be executed on Xilinx’s XUPV5-LX110T

Development Platform which uses a Virtex-5 XC5VLX110T FPGA. This page is shown

in Figure B.4.

79

Figure B.4 ISE Project Settings Window

The final page allows the user to review the project and finish project creation.

Once the project has been created, the user can add an embedded processor to the project

through “Project -> New Source”. In the New Source Wizard window, the embedded

processor option is selected and given a name and directory as demonstrated in Figure

B.5.

80

Figure B.5 ISE Select Source Type Window

When the embedded processor source is created, Xilinx ISE will automatically

launch the EDK to customize the processor design. Once the EDK is open, it will detect

that the loaded project does not have a design associated with it and will prompt the user

to launch the Base System Builder (BSB) Wizard. The reference designs for the

development board used in this project are not included in the standard Xilinx Suite

installation; these files must be downloaded and associated with the EDK before the BSB

Wizard can be run. Therefore, the option to run the BSB Wizard must be declined. The

reference designs for the development board were downloaded from Xilinx’s website

[24]. The files are associated with the EDK by going to the Preferences window at “Edit -

> Preferences -> Global Peripheral Repository Search Path” and setting the field to

“../EDK-XUPV5-LX110T-Pack/lib”. This process is shown in Figure B.6.

81

Figure B.6 XPS Application Preferences Window

In order for the EDK to associate with the new folder, it must be restarted. To do

this, exit the EDK and return to the ISE Project Navigator. Select the embedded processor

and launch “Manage Processor Design” in the Design tab under Design Utilities.

B.3 XPS - System Design I

The Embedded Development Kit is included in the Xilinx Platform Studio. It

allows users to customize a virtual processor core by adding and modifying different

peripherals such as memory, communication controllers, and user created peripherals.

The EDK is used in this project to create a Microblaze processor to handle

reconfiguration and data flow processes and to add a custom logic peripheral to the

design. Xilinx XPS version 12.4 (nt64) was used for all development on this project.

B.3.1 Base System Builder

The first step to creating the processor design is to run the “BSB Wizard”. The

EDK will automatically launch the BSB for an empty project. The first screen is the

Board Selection window. If the repository was linked successfully, the EDK should

82

automatically load the XUPV5-LX110T Evaluation Platform from the device data

entered into the ISE project. The board screen is shown in Figure B.7.

Figure B.7 XPS BSB Board Selection Window

The next screen is the System Configuration page. This page allows the user to

choose between a single or multiprocessor system. This project uses the processor for

simple data transfer and FPGA reconfiguration, therefore the single processor option is

sufficient for use in the design. The System Configuration screen is shown in Figure B.8.

83

Figure B.8 XPS BSB System Configuration Window

The next configuration page is the Processor Configuration page. On this page

the user can select which processor type to use (Microblaze or PowerPC), the system

clock frequency, and local memory size. This project uses a Microblaze processor type

running at 100 MHz. 100 MHz was chosen for the reference clock frequency to match the

maximum operating frequency of the internal reconfiguration unit, HWICAP. The

processor configuration page is shown Figure B.9.

84

Figure B.9 XPS BSB Processor Configuration Window

After configuring the processor properties, the user is presented with a page to

configure the peripherals that will be automatically attached to the system. The list of

included peripherals will be based on the repository included in the previous step. The

following automatically included peripherals were unnecessary for this application and

therefore removed from the system: DIP_Switches_8Bit, Hard_Ethernet_MAC,

IIC_EEPROM, LEDs_8Bit, LEDs_Positions, PCIe_Bridge, Push_Buttons_5Bit, and

SysACE_CompactFlash. The RS232 ports were maintained for debugging purposes and

were configured as xps_uart16550. Furthermore, an external system timer, xps_timer,

was added to aid in timing analysis. The Peripheral Configuration window is shown in

Figure B.10.

85

Figure B.10 XPS BSB Peripheral Configuration Window

The next two configuration pages allow the user to define custom caches and test

applications respectively. These options were left as default. The final configuration page

is a summary of the configured system. Selecting “Finish” will save the system settings

into a .bsb (Base System Builder) file that can be recovered and reused on future projects.

B.3.2 Additional Peripheral Insertion (HWICAP)

The next step in setting up the system for partial reconfiguration is to add the

reconfiguration peripheral to the design. The peripheral is listed as the “FPGA Internal

Configuration Access Port” and can be found in the IP Catalog under the FPGA

Reconfiguration heading. After selecting the IP, right-click and select Add IP to insert the

HWICAP into the system design. Before the peripheral is added, a window will appear

86

that allows the user to configure the optional settings associated with it. In the case of the

HWICAP, the only option modified is the write FIFO depth. This setting is increased to

the maximum of 1024 for timing considerations that will be addressed in the timing

analysis section of this document. The HWICAP configuration window is shown in

Figure B.11.

Figure B.11 XPS HWICAP Core Configuration Window

After the IP is added to the design, it must be manually connected to the other

modules in the system. In the “Bus Interfaces” tab of the System Assembly View, expand

xps_hwicap_0 and in the drop-down menu for the SPLB select mb_plb to connect the

87

HWICAP to the PLB bus. Next, in the Ports tab of the System Assembly View, expand

xps_hwicap_0 and select the 100 MHz clock (clk_100_0000MHzPLL0) for the

ICAP_Clk port. This application uses the polled version of the ICAP, therefore, the

IP2INTC_Irpt port is left unconnected. Finally, the IP must be given a system memory

address. In the Addresses tab of the System Assembly View, click the “Generate

Addresses” button and verify that the xps_hwicap_0 listing is moved from the Unmapped

Addresses section to the Microblaze’s Address Map.

B.3.3 Create a Custom Peripheral

The final step in setting up the system is creating and adding a custom peripheral

to the design. This custom peripheral will allow the user to include custom logic that can

communicate with the other modules in the system. As described in the System

Architecture section above, this allows the application (CODEC) to communicate to the

Microblaze that a new RM is needed and for the Microblaze to signal the application that

an RM is ready for use.

To create a custom peripheral, select Hardware -> Create or Import Peripheral…

and click “Next”. In the Peripheral Flow window, select “Create templates for a new

peripheral” and advance to the next window. In the Repository or Project window, the

user can select whether the IP should be saved to the local project or to an external

repository for reuse in other applications. This peripheral is only intended to be used once

and is therefore saved to the local project folder. The next window lets the user name and

assign revision information to the peripheral. Revision information is extremely

important for custom logic IPs because every time the peripheral is modified, it must be

88

re-imported to the EDK system design using a new revision number. Figure B.12 shows

the Name and Version window for the first revision of the Decoder peripheral.

Figure B.12 XPS Create Peripheral Name and Version Window

The next window, Bus Interface, allows the user to select the bus type the IP will

connect to. This system uses the PLB bus so it is selected. The following window allows

the user to customize the IPs bus interface. The default selections include software

registers and a data phase timer. However, the decoder implements its own memory.

Therefore, the “User logic memory space” option must also be selected. The IPIF

Services window is shown in Figure B.13.

89

Figure B.13 XPS Create Peripheral IPIF Services Window

After configuring the IP interface, the user has the option to create and modify a

slave interface for the peripheral. This functionality is unnecessary for this application

and is left to default values. The next window, User S/W Register, permits the user to

define the number of software accessible registers. These registers will be used to

communicate the outputs from the decoder to the Microblaze. For this application, 32

registers are declared to encompass all outputs from the decoder and allow for future

expansion if necessary. Then, in the User Memory Space, the user can define the number

of memory regions needed for the peripheral. The decoder only requires one memory

block. The User S/W Register and User Memory Space windows are shown in Figure

B.14 and Figure B.15, respectively.

90

Figure B.14 XPS Create Peripheral User S/W Register Window

Figure B.15 XPS Create Peripheral User Memory Space Window

91

The next two windows, IP Interconnect and Peripheral Simulation Support, are

left to default values. The final configuration window, Peripheral Implementation

Support, allows the user to customize the automatically generated IP code. This project is

written in Verilog, therefore, the “Generate stub ‘user_logic’ template in Verilog instead

VHDL” is selected to make implementation simpler. Moreover, the “Generate ISE and

XST project files to help you implement the peripheral using XST flow” option is

selected to simplify the IP modification and verification process. The Peripheral

Implementation Support window is shown in Figure B.16.

Figure B.16 XPS Create Peripheral Peripheral Implementation Support Window

Clicking “Finish” in the summary window will generate the IP and the project

files associated with it. Furthermore, the peripheral will be added to the IP catalog under

92

the Project Local PCores -> USER group. Following the procedures outlined for adding

the HWICAP peripheral in the previous step, the new custom IP can be added to the

design, however, this is unnecessary at this time because the peripheral will be modified

and re-imported under a different version name.

B.4 ISE - Custom Peripheral Modification

The next process in setting up the DPR system is to modify the custom logic IP

template to include the Decoder code, as well as, update the interface code between the

Decoder and the PLB bus. This process is completed in a new instance of the Xilinx ISE

Project Navigator. The automatically generated project file is located in the

\pcores\g_729_decoder_v1_00_a\devl\projnav\ directory of the EDK Project Root Folder.

Once the project is open, the decoder source files can be added to the project

using ISE’s source import tools. The top_level module must be instantiated in the

user_logic.v source file for the logic to be included in the peripheral. Further

modifications to the user_logic.v template include: decoder output signal definitions,

decoder memory access controller instantiation, and connections from the software

registers to the read/write bus signals. Once the peripheral is completed, the project is

synthesized. Note that functional validation of the application being inserted into the

peripheral template must be done in a separate external project. However, any

modification to the application will require the peripheral project to be re-synthesized

with the new application source files.

93

B.5 XPS – System Design II

Because the custom logic peripheral has been modified, it must be re-imported

into the system design. This process is completed using the previous instance of the EDK

in Xilinx XPS. To begin the re-import process, select Hardware -> Create or Import

Peripheral... and click “Next”. In the Peripheral Flow window, select “Import existing

peripheral” and click “Next”, shown in Figure B.17.

Figure B.17 XPS Import Peripheral Peripheral Flow Window

As in the creation process, this peripheral will be saved to the local project;

therefore, the default value on the Repository or Project window is left selected. In the

Name and Version window, the previously created peripheral name is selected from the

drop-down menu and a new version number is assigned as shown in Figure B.18.

94

Figure B.18 XPS Import Peripheral Name and Version Window

The next window, Source File Types, lets the user select the types of source files

that will be included in the peripheral. In this project, because memory cores are used in

the peripheral, both “HDL source files” and “Netlist files” are selected. The Source File

Types window is shown in Figure B.19.

95

Figure B.19 XPS Import Peripheral Source File Types Window

The HDL Source Files window allows the user to select where the HDL source

files will be scraped from. The HDL Language selection is changed to “Mixed” because

this project uses both Verilog and VHDL source files. The most stable way to scrape the

source files is by using the project file associated with the peripheral. This file is found in

the \pcores\g_729_decoder_v1_00_a\devl\projnav\ directory of the EDK Project Root

Folder. Note that there is another .prj file in the ..\devl\synthesis\ folder. This project file

does not have the information necessary to import the peripheral correctly and should not

be used. The HDL Source Files window is shown in Figure B.20.

96

Figure B.20 XPS Import Peripheral HDL Source Files Window

In the subsequent HDL Analysis Information window, the results of the file scrape

can be verified to ensure that all of the new source files have been identified.

The following window is the Bus Interfaces window that lets the user define the

bus interface used by the peripheral. In this application, the peripheral is defined to be a

“PLBV46 Slave (SPLB)” as illustrated in Figure B.21.

97

Figure B.21 XPS Import Peripheral Bus Interfaces Window

The subsequent SPLB: Port window summarizes the bus connections found by

the tool. No custom bus connections were created for this application, so no

modifications are required in this window. However, the SPLB: Parameter window does

require modification. In the “Memory Space” pane a listing must be created for the

memory core defined by the peripheral. Clicking the “Add” button will add a template

listing to the pane. In the “Base Address Parameter” column select

“C_MEM0_BASEADDR” from the drop-down menu. Likewise, in the “High Address

Parameter” column select “C_MEM0_HIGHADDR”. This window is shown in Figure

B.22.

98

Figure B.22 XPS Import Peripheral SPLB: Parameter Window

The next window allows the user to configure interrupts for the peripheral. This

peripheral does not use interrupts, therefore the “Select and configure interrupt(s)” option

is deselected. The next two windows, Parameter Attributes and Port Attributes are

unneeded and left as default.

The final window is the Netlist Files window that lets users include netlist files to

the peripheral definition. This window is where the memory core netlist files are

included. The netlist files are located in the \pcores\g_729_decoder_v1_00_a\hdl\verilog\

directory of the EDK Project Root Folder. The Netlist Files window is shown in Figure

B.23.

99

Figure B.23 XPS Import Peripheral Netlist Files Window

Clicking “Finish” on the summary window will generate a new peripheral based

on the updated information that will be available in the IP catalog under Project Local

PCores -> USER. The custom logic IP can now be added to the system design using the

“add peripheral” process described in section B.3.2. When generating addresses for the

custom IP, two different listings will be present, one for the IP and one for the memory

space defined for it. The memory space listing does not have a default size and will

produce an error during address generation. A size of 64k is defined for the memory

space and regeneration of the address map will remove any generation errors.

B.6 ISE - Project Synthesis

Upon completing the design of the system using the EDK, the project must be

synthesized for use in PlanAhead. This process is completed by the original instance of

100

Xilinx ISE used in section B.2. The decoder uses shared verilog parameter files.

Therefore, before the project can be synthesized, the parameter files must be copied from

the original peripheral folder to the new peripheral version’s hdl folder. Failure to do this

will result in an NgdBuild Error with an error code of 76. Once the files are copied, the

synthesis process can be initiated by selecting the system in the Implementation pane and

clicking “Synthesize - XST” in the Design tab.

B.7 PlanAhead - Floorplanning and Bitfile Generation

The final process in developing a DPR system is to configure the PR regions,

implement the design, and generate the full and partial bitstreams. This process is

completed using Xilinx PlanAhead 12.4 and follows closely to the processes found in

[19]. Note: In order to develop and generate partial bitfiles, the Partial Reconfiguration

License must be acquired from Xilinx. This license was obtained on a trial basis for

Academic research purposes.

B.7.1 Create a Project

The first step in the PlanAhead process is to create a new project. Open

PlanAhead and select “Create New Project”. The program will open a wizard to

configure the project. Click “Next”, enter a project name and directory to save the project

in, and click “Next” to advance. In the Design Source window, the “Specify synthesized

(EDIF or NGC) netlist” option is selected, however, the “Set PR Project” option must

also be selected to allow for partial reconfiguration options to become available (this

option would be blocked if the PR License was not available). The Design Source

window is shown in Figure B.24.

101

Figure B.24 PlanAhead New Project Design Source Window

The next window is the Specify Top Netlist File window, shown in Figure B.25,

which allows users to identify the netlist file that defines the system in development. The

netlist file to be selected is the system.ngc file created by the synthesis process completed

in the previous section. It can be found in the ISE Project Root Folder.

102

Figure B.25 PlanAhead New Project Specify Top Netlist File Window

The subsequent window allows the user to include constraints files that may be

associated with the system included in the previous window. The EDK automatically

creates a constraints file for the system and this system.ucf file is included here. It is

found in the “data” folder of the EDK Project Root Folder. Also, a constraints file for the

DDR2 SDRAM IP is provided by Xilinx and must be included in the project to prevent

future errors. The DDR2 constrains file can be found in the “implementation” folder of

the EDK Project Root Folder. The system.ucf file is marked as the target UCF to indicate

it should be loaded with the netlist file. The Add/Create Constraints window is shown in

Figure B.26.

103

Figure B.26 PlanAhead New Project Add/Create Constraints Window

The next window, Default Part, requires the user to select the hardware that the

project is targeting. This selection is used for floorplanning and size/usage data as well as

implementation processes. The part information is extracted from the netlist file and does

not require modification. The final window is a summary window. Clicking “Finish” in

the summary window will import the netlist and constraints files and load the project.

B.7.2 Define a Reconfigurable Partition

The second step of the PlanAhead DPR process is to create and configure the

reconfigurable partition of the design. To begin, click the “Netlist Design” button to load

the netlist. This process will produce a warning, shown in Figure B.27, which indicates

an undefined module was found and converted to a black box. This undefined module is

the reconfigurable module defined inside the decoder and the warning is expected.

104

Figure B.27 PlanAhead Undefined Instance Warning

With the netlist loaded, select the PR module named i_codec_rm under

g_729_decoder_0 in the Netlist tab as shown in Figure B.28.

Figure B.28 PlanAhead Undefined Module in Netlist Tree

105

Right click on the module and select “Set Partition” to open a configuration

window. In the first window, the module will be shown to be recognized as a

reconfigurable partition. Click “Next” to continue.

The Reconfigurable Module Name window allows the user to name the RM

currently being defined for this partition. The option indicating this module has an

existing netlist is selected because this is an actual module. If a black box module were

being added to allow for periods were no logic is implemented in the region, the second

option would be selected. An example is shown in Figure B.29 where the first

reconfigurable module, b1, is being added.

Figure B.29 PlanAhead Add RM - RM Module Name Window

The subsequent window allows the user to specify the netlist defining the

reconfigurable module. In this project, the netlists for the RMs are found in the “ngc

106

files” folder in the Unit Module Synthesis Root Folder. This window is shown in Figure

B.30.

Figure B.30 PlanAhead Add RM – Specify Top Netlist File Window

The next window allows the user to add constraints files to associate with the

module. The modules used in this application do not require constraints files, therefore,

this window will be left to default. The final window summarizes the configuration

process and clicking the “Finish” button creates the reconfigurable partition and adds the

RM to it. The process can be verified by checking that the icon used to represent the

module changes from a gold capital I on a black background to a gold diamond on a

white background. The next step is to add the other reconfigurable modules by right

clicking on the module and selecting “Add Reconfigurable Module…” then following the

steps above.

107

B.7.3 Floorplanning

After defining the reconfigurable partition and adding the RMs to it, the physical

region of the chip associated with the partition must be established. To accomplish this,

select the partition under the Physical Constraints tab. Right click on the partition and

select “Set Pblock Rectangle”. In the Device tab, draw a rectangle that encompasses the

necessary resources to support the super-set of resources required by all of the

reconfigurable modules, as shown in Figure B.31. To aid in this process, PlanAhead

provides an estimation of the amount of resources required compared to the amount of

resources selected by the current Pblock in the Pblock Properties pane under the Statistics

tab, as shown in Figure B.32.

Figure B.31 PlanAhead Reconfigurable Partition Pblock

108

Figure B.32 PlanAhead Pblock Statistics Panel

It is of note that the size of the Pblock defined for this application is larger than

required by the reconfigurable modules it serves. There are two factors for this design

decision. The first is to aid in design implementation. The resource estimates give an

estimate of logic resources required for a module but do not include the extra CLBs

necessary for interconnections and partition interfaces. The second factor is bitfile size.

The minimum reconfigurable region is 20 CLBs tall. Therefore, there is no

reconfiguration speed benefit to reducing the rectangle below this height.

B.7.4 Design Implementation

After defining the partitions region, the design is ready to be implemented. The

first step is to configure the first design run. In the “Design Runs” tab, select the first run.

The run’s properties can be modified in the “Implementation Run Properties” panel. In

the “Options” tab, the effort levels of the map and PAR procedures can be defined. In the

“Partitions” tab, both the static logic and the RP must be set to “Implement”. When the

109

run’s properties are set, the run can be initiated by right clicking on the run and selecting

“Launch Runs…”

Once the first run is complete, PlanAhead will provide the user with a list of

options for post run processes. Because other RMs must be implemented, “Promote

Partitions” is selected. Then, to create additional runs, select “Create Multiple Runs”

from the drop-down menu on the “Implement” button. This action will launch a wizard

that will allow the user to add as many extra runs as necessary to accommodate the

number of RMs in the design. The main window is the Choose Implementation Strategies

and Reconfigurable Modules. In this window, runs can be added using the “More” button,

renamed under the Name column, and modified by selecting the “…” button under the

Partition Action column, as shown in Figure B.33. For each addition run created, the

partition action required is to “Import” the Static Logic from the first run and

“Implement” the new RM. This configuration is illustrated in Figure B.34.

Figure B.33 PlanAhead Create Multiple Runs – Choose Implementation Strategies and

RMs Window

110

Figure B.34 PlanAhead Create Multiple Runs – Specify Partition Window

In the final window of the wizard, the newly created runs can be launched.

B.7.5 Generate Bitstreams

The final step of the PlanAhead procedure is to generate the bitstreams for each

run. To perform this task, select all of the implemented runs and right click to select

“Generate Bitstream”. This will launch the bitgen process for each run and will, upon

completion, create two bitstreams for each run. The first bitstream is a full bitstream that

defines the entire FPGA with the run’s RM implemented in the RP. The second bitfile is a

partial bitfile that defines the run’s RM for partial reconfiguration into the RP during

execution. These bitfiles will be saved in the Project.runs folder in the PlanAhead Project

Folder. For ease of access, the bitfiles are relocated to the Project.bit folder.

B.8 XPS – Test Platform Initialization

Now that the bitfiles have been generated, the test application to run the system

can be developed. This test application is created and run in Xilinx’s SDK. To launch the

SDK with the system’s properties automatically imported, the instance of Xilinx XPS

111

used in section B.3and B.5 is used. In XPS, select Project -> Export Hardware Design to

SDK… In the opened window, select “Export and Launch SDK”. This will open an

instance of the SDK.

B.9 SDK – Test Platform Configuration

The Xilinx SDK allows the user to design, implement, and execute applications to

run on the Microblaze implemented on the FPGA. The Xilinx SDK version used in this

project is 12.4. In order to develop and run an application in the SDK, the user must first

create a new project, set up the board support package (BSP), and configure the console

output.

To create a new project, select File -> New -> Xilinx C Project. This will open a

wizard. The first window will allow the user to name the project and select a project

template to use. For this project, the “Hello World” template was selected because it

automatically establishes file connections with minimal code to modify. Furthermore, it

can be run “as-is” to test that the following configuration steps are completed

successfully. The first window is shown in Figure B.35.

112

Figure B.35 SDK New Project – Project Name and Template Window

The next window in the project creation wizard is the BSP configuration page. It

allows you to name a new BSP and set its directory or load an existing BSP. For this

project, a new BSP is created as shown in Figure B.36.

113

Figure B.36 SDK New Project – BSP Configuration Window

Clicking “Finish” will create the project and BSP as well as any associated files.

At this point, the main source file will be named helloworld.c. This is refactored to mimic

the project name by right clicking on the file in the Project Explorer panel and selecting

Refactor.

The next step to setting up the SDK environment is to configure the BSP. Select

Xilinx Tools -> Board Support Package Settings and click “OK” to select the project’s

BSP. In the standalone tab, set the stdin and stdout values to mdm_0 to enable standard

communication over the JTAG. This configuration is shown in Figure B.37.

114

Figure B.37 SDK BSP Configuration Window

The final step to setting up the SDK is connecting the SDK console to the JTAG

so that the output from the Microblaze can be viewed in the SDK. To carry out this task,

you must access the run configurations; however, there are no run configurations

available until the program is executed. Therefore, click the run button (Green Triangle)

and when you receive a query about configuring the FPGA as seen in Figure B.38, click

cancel. This will allow you to now access the run configurations through Run -> Run

Configurations.

Figure B.38 SDK FPGA Not Configured Warning

115

In the Run Configurations menu, select the STDIO Connection tab and select the

“Connect STDIO to Console” option. Finally, select the JTAG UART from the “Port”

drop-down menu and click “Apply”. This configuration is shown in Figure B.39.

Figure B.39 SDK Run Configurations - STDIO Connection Window

B.10 iMPACT – FPGA Programming

The final procedure in setting up the FPGA for a DPR application is programming

the board. This procedure is completed using the Xilinx iMPACT tool. As the program is

launched it will provide the user with a list of processes to execute. Because the board

will be manually programmed, the “Configure devices using Boundary-Scan (JTAG)”

option is selected as shown in Figure B.40.

116

Figure B.40 iMPACT Launch Window

After the program automatically detects the device chain, it will query the user to

assign configuration files. For this project only the FPGA needs to be programmed;

therefore, “No” is selected. This will load the main window shown in Figure B.41.

117

Figure B.41 iMPACT Device Chain

After the device chain is loaded, the configuration file (bitfile) can be associated

with the FPGA. To do this, right click on the FPGA icon (xc5vlx110t) and select “Assign

New Configuration File…” iMPACT will open a file browser that allows the user to

select the bitfile for programming. The bitfiles are located in the Project.bit folder in the

PlanAhead Project Folder. Once the configuration file is loaded, the FPGA can be

programmed by right clicking on the FPGA icon and selecting “Program”.

This completes the software flow for developing a DPR system and setting up a

test platform for it. Further discussion on the modification of the decoder application as

well as development of the test application is given in CHAPTER II and CHAPTER III,

respectively.

118

APPENDIX C

DYNAMIC PARTIAL RECONFIGURATION DECODER SYSTEM TESTING

APPLICATION

119

[1] /*

[2] profile_test.c: simple test application

[3] */

[4] #include <stdio.h>

[5] #include <stdlib.h>

[6] #include "platform.h"

[7] #include "xparameters.h"

[8] #include "xutil.h"

[9] #include "xuartns550.h"

[10] #include "xuartns550_l.h"

[11] #include "xbasic_types.h"

[12] #include "xhwicap.h"

[13] #include "xhwicap_i.h"

[14] #include <xstatus.h>

[15] #include "platform_config.h"

[16] #include "string.h"

[17] #include "xio.h"

[18] #include "xil_io.h"

[19] #include "xtmrctr.h"

[20] #include "bitfile1.h"

[21] #include "bitfile2.h"

[22] #include "serial_data.h"

120

[23] #include "timer_vars.h"

[24] /* Constant Definitions */

[25] #define num_run 14

[26] #define XPAR_DEFAULT_BAUD_RATE 115200

[27] #define STATIC_BASE_ADDR

 XPAR_DONE_FIXED_STATIC_0_BASEADDR

[28] #define STATIC_MEM_BASE_ADDR

 XPAR_DONE_FIXED_STATIC_0_MEM0_BASEADDR

[29] /* Function Declarations */

[30] int load_rm(Xuint32 *rm_load_reg);

[31] int decode_frame(Xuint32 *debug_32_reg, Xuint32 *start_reg, Xuint32

*done_reg, Xuint32 *rm_load_reg, Xuint32 *rm_ready_reg, Xuint32 *state_reg,

Xuint32 *test_cont, Xuint32 *mux_reg, Xuint32 *CPP_done_reg, Xuint32

*DLSP_done_reg, Xuint32 *QLPC_done_reg, Xuint32 *LD8K_done_reg, Xuint32

*RESIDU_done_reg, Xuint32 *WEIGHT_AZ_done_reg, Xuint32

*PST_LTP_done_reg, Xuint32 *CALC_ST_FILT_done_reg, Xuint32

*FILT_MU_done_reg, Xuint32 *SCALE_ST_done_reg, Xuint32

*POST_PROCESS_done_reg, Xuint32 *SYN_FILT_done_reg, Xuint32

*COPY_done_reg);

[32] int load_bitfile(XHwIcap *HwIcap_Ptr, Xuint32 *bit_mem, Xuint32 word_pairs,

Xuint32 odd_words);

121

[33] void send_byte(XUartNs550 *uart, unsigned char c);

[34] Xuint8 recv_byte(XUartNs550 *uart);

[35] int DeviceWrite(XHwIcap *InstancePtr, u32 *FrameBuffer, u32 NumWords);

[36] /* Global Variables */

[37] struct rm_data_struct {

[38] Xuint32 *mem_locs[NUM_RM];

[39] Xuint32 word_pair_counts[NUM_RM];

[40] Xuint8 odd_words[NUM_RM];

[41] } rm_data;

[42] Xuint32 rm = 0;

[43] /* HwIcap instance */

[44] static XHwIcap HwIcap;

[45] int main()

[46] {

[47] /***

**

[48] *

[49] *

[1] Platform Setup

122

[50] *

[51] *

[52] **

/

[53] init_platform();

[54] print("Hello World\n\r");

[55] int Status;

[56] int i,j,k;

[57] i = 0;

[58] j = 0;

[59] k = 0;

[60] /* Configure the Timer */

[61] timer_0 = &xps_timer_0;

[62] Status = XTmrCtr_Initialize(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

[63] if (Status != XST_SUCCESS) {

[64] return XST_FAILURE;

[65] }

[66] XTmrCtr_Start(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

[67] StartTime = XTmrCtr_GetValue(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

[68] EndTime = XTmrCtr_GetValue(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

123

[69] Calibration = EndTime - StartTime;

[70] print("Timer Initialized!\r\n");

[71] /* Configure the HwIcap */

[72] XHwIcap_Config *ConfigPtr;

[73] ConfigPtr = XHwIcap_LookupConfig(XPAR_XPS_HWICAP_0_DEVICE_ID);

[74] if (ConfigPtr == NULL) {

[75] return XST_FAILURE;

[76] }

[77] Status = XHwIcap_CfgInitialize(&HwIcap, ConfigPtr,ConfigPtr->BaseAddress);

[78] if (Status != XST_SUCCESS) {

[79] return XST_FAILURE;

[80] }

[81] print("HwIcap Initialized\r\n");

[82] Xuint32 num_rms;

[83] num_rms = 0x00000002;

[84] for(i=0;i<(int)num_files;i++)

[85] {

[86] Xuint8 rm_number;

[87] if(i==0)

[88] rm_number = 1;

124

[89] else if(i==1)

[90] rm_number = 3;

[91] xil_printf("File: %d\r\n",rm_number);

[92] rm_data.mem_locs[rm_number] = NULL;

[93] rm_data.word_pair_counts[rm_number] = 7471;

[94] rm_data.odd_words[rm_number] = 1;

[95] rm_data.mem_locs[rm_number] = (Xuint32 *)malloc(80000* sizeof(int));

[96] if(rm_data.mem_locs[rm_number]==NULL)

[97] {

[98] xil_printf("ALLOCATION ERROR! Could not allocate memory for file

%d",rm_number);

[99] return -1;

[100] }

[101] else

[102] {

[103] print("Memory Allocation Successful\r\n");

[104] }

[105] /* Transfer bitfile data */

[106] for(j=0;j<(rm_data.word_pair_counts[rm_number]*2)+rm_data.odd_words[rm_n

umber];j++)

125

[107] {

[108] rm_data.mem_locs[rm_number][j] = 0x00000000;

[109] if(rm_number == 1)

[110] rm_data.mem_locs[rm_number][j] = bitfile1_data[j];

[111] else if(rm_number == 3)

[112] rm_data.mem_locs[rm_number][j] = bitfile2_data[j];

[113] if(j%1000==0) {

[114] xil_printf("Read word %d\r\n",j);

[115] }

[116] }

[117] }

[118] /***

**

[119] *

[120] *

[121] Main Program

[122] *

[123] *

[124] **

/

126

[125] /* Decoder External Signals and Memory Locations Declarations */

[126] Xuint32 *start_reg, *done_reg, *rm_ready_reg, *rm_load_reg, *state_reg,

*mux_reg, *debug_32_reg;

[127] Xuint32 *CPP_done_reg, *DLSP_done_reg, *QLPC_done_reg,

*LD8K_done_reg, *RESIDU_done_reg;

[128] Xuint32 *WEIGHT_AZ_done_reg, *PST_LTP_done_reg,

*CALC_ST_FILT_done_reg, *FILT_MU_done_reg;

[129] Xuint32 *SCALE_ST_done_reg, *POST_PROCESS_done_reg,

*SYN_FILT_done_reg, *COPY_done_reg;

[130] Xuint32 *test_cont;

[131] Xuint32 *mem, *serial, *parm, *aq_t_low, *aq_t_high, *synth_buf, *old_exc,

*lsp_new;

[132] Xuint32 *voicing, *t0_first, *mem_syn, *pst_out;

[133] Xuint32 *gain_prec, *y2_hi, *y2_lo, *y1_hi, *y1_lo, *x0, *x1;

[134] /* Decoder Memory Location Offset Definitions */

[135] Xuint32 serial_offset = 2944;

[136] Xuint32 parm_offset = 624;

[137] Xuint32 aq_t_low_offset = 800;

[138] Xuint32 aq_t_high_offset = 816;

[139] Xuint32 synth_buf_offset = 1024;

[140] Xuint32 old_exc_offset = 3072;

127

[141] Xuint32 lsp_new_offset = 384;

[142] Xuint32 voicing_offset = 3567;

[143] Xuint32 t0_first_offset = 3564;

[144] Xuint32 mem_syn_offset = 4080;

[145] Xuint32 pst_out_offset = 1152;

[146] Xuint32 gain_prec_offset = 1115;

[147] Xuint32 y2_hi_offset = 1116;

[148] Xuint32 y2_lo_offset = 1117;

[149] Xuint32 y1_hi_offset = 1118;

[150] Xuint32 y1_lo_offset = 1119;

[151] Xuint32 x0_offset = 1120;

[152] Xuint32 x1_offset = 1121;

[153] /* Decoder External Signals and Memory Locations Address Definitions */

[154] mem = (Xuint32 *) (STATIC_MEM_BASE_ADDR);

[155] serial = mem + serial_offset;

[156] parm = mem + parm_offset;

[157] aq_t_low = mem + aq_t_low_offset;

[158] aq_t_high = mem + aq_t_high_offset;

[159] synth_buf = mem + synth_buf_offset;

[160] old_exc = mem + old_exc_offset;

[161] lsp_new = mem + lsp_new_offset;

[162] voicing = mem + voicing_offset;

128

[163] t0_first = mem + t0_first_offset;

[164] mem_syn = mem + mem_syn_offset;

[165] pst_out = mem + pst_out_offset;

[166] gain_prec = mem + gain_prec_offset;

[167] y2_hi = mem + y2_hi_offset;

[168] y2_lo = mem + y2_lo_offset;

[169] y1_hi = mem + y1_hi_offset;

[170] y1_lo = mem + y1_lo_offset;

[171] x0 = mem + x0_offset;

[172] x1 = mem + x1_offset;

[173] start_reg = (Xuint32 *) (STATIC_BASE_ADDR);

[174] done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*1);

[175] rm_ready_reg = (Xuint32 *) (STATIC_BASE_ADDR +

4*2);

[176] rm_load_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*3);

[177] test_cont = (Xuint32 *) (STATIC_BASE_ADDR + 4*4);

[178] CPP_done_reg = (Xuint32 *) (STATIC_BASE_ADDR +

4*5);

[179] DLSP_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*6);

[180] QLPC_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*7);

[181] LD8K_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*8);

[182] RESIDU_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*9);

129

[183] WEIGHT_AZ_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*10);

[184] PST_LTP_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*11);

[185] CALC_ST_FILT_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*12);

[186] FILT_MU_done_reg = (Xuint32 *) (STATIC_BASE_ADDR +

4*13);

[187] SCALE_ST_done_reg = (Xuint32 *) (STATIC_BASE_ADDR +

4*14);

[188] POST_PROCESS_done_reg = (Xuint32 *) (STATIC_BASE_ADDR +

4*15);

[189] SYN_FILT_done_reg = (Xuint32 *) (STATIC_BASE_ADDR +

4*16);

[190] COPY_done_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*17);

[191] state_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*18);

[192] mux_reg = (Xuint32 *) (STATIC_BASE_ADDR + 4*19);

[193] debug_32_reg = (Xuint32 *) (STATIC_BASE_ADDR +

4*20);

[194] /* Decoder Initial Conditions Definitions */

[195] *voicing = 0x0000003C;

[196] *gain_prec = 0x00004000;

[197] *y2_hi = 0x00000000;

[198] *y2_lo = 0x00000000;

[199] *y1_hi = 0x00000000;

130

[200] *y1_lo = 0x00000000;

[201] *x0 = 0x00000000;

[202] *x1 = 0x00000000;

[203] /* Decoder Execution Loop */

[204] for(i=0;i<num_run;i++)

[205] {

[206] /* Transfer New Audio Frame Data */

[207] for(k = 0; k<80; k++)

[208] {

[209] serial[k] = serial1_data[i*80+k];

[210] }

[211] /* Decoder Execution Preparation */

[212] *start_reg = 0;

[213] *test_cont = 1;

[214] *rm_ready_reg = 0;

[215] XTmrCtr_Stop(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

[216] XTmrCtr_Reset(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

[217] XTmrCtr_Start(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

[218] StartTime = 0;

[219] EndTime = 0;

131

[220] /* Launch Decoder */

[221] Status = decode_frame(debug_32_reg, start_reg, done_reg, rm_load_reg,

rm_ready_reg, state_reg, test_cont, mux_reg, CPP_done_reg, DLSP_done_reg,

QLPC_done_reg, LD8K_done_reg, RESIDU_done_reg, WEIGHT_AZ_done_reg,

PST_LTP_done_reg, CALC_ST_FILT_done_reg, FILT_MU_done_reg,

SCALE_ST_done_reg, POST_PROCESS_done_reg, SYN_FILT_done_reg,

COPY_done_reg);

[222] /* Output timing data */

[223] xil_printf("%d\t%d\t%d\t",i,StartTime,BeginReconfig[0]);

[224] for(k=0;k<fifo_counter;k++)

[225] {

[226] xil_printf("%d\t%d\t%d\t%d\t",fifo_start_time[0][k],fifo_end_time[0][k],config_s

tart_time[0][k],config_end_time[0][k]);

[227] }

[228] xil_printf("%d\t%d\t",EndReconfig[0],BeginReconfig[1]);

[229] for(k=0;k<fifo_counter;k++)

[230] {

[231] xil_printf("%d\t%d\t%d\t%d\t",fifo_start_time[1][k],fifo_end_time[1][k],config_s

tart_time[1][k],config_end_time[1][k]);

[232] }

[233] xil_printf("%d\t%d\r\n",EndReconfig[1],EndTime);

[234] }

132

[235] /* Platform cleanup */

[236] XTmrCtr_Stop(timer_0, XPAR_XPS_TIMER_0_DEVICE_ID);

[237] cleanup_platform();

[238] return 0;

[239] }

[240] int decode_frame(Xuint32 *debug_32_reg, Xuint32 *start_reg, Xuint32

*done_reg, Xuint32 *rm_load_reg, Xuint32 *rm_ready_reg, Xuint32 *state_reg,

Xuint32 *test_cont, Xuint32 *mux_reg, Xuint32 *CPP_done_reg, Xuint32

*DLSP_done_reg, Xuint32 *QLPC_done_reg, Xuint32 *LD8K_done_reg, Xuint32

*RESIDU_done_reg, Xuint32 *WEIGHT_AZ_done_reg, Xuint32

*PST_LTP_done_reg, Xuint32 *CALC_ST_FILT_done_reg, Xuint32

*FILT_MU_done_reg, Xuint32 *SCALE_ST_done_reg, Xuint32

*POST_PROCESS_done_reg, Xuint32 *SYN_FILT_done_reg, Xuint32

*COPY_done_reg)

[241] {

[242] int status;

[243] rm = 0;

[244] *start_reg = 1;

[245] *start_reg = 0;

133

[246] StartTime = XTmrCtr_GetValue(&xps_timer_0,

XPAR_XPS_TIMER_0_DEVICE_ID);

[247] do

[248] {

[249] if(*rm_ready_reg != *rm_load_reg)

[250] {

[251] if(*rm_load_reg <= 3)

[252] {

[253] fifo_counter = 0;

[254] BeginReconfig[rm] = XTmrCtr_GetValue(&xps_timer_0,

XPAR_XPS_TIMER_0_DEVICE_ID);

[255] status = load_bitfile(&HwIcap, rm_data.mem_locs[*rm_load_reg],

rm_data.word_pair_counts[*rm_load_reg], rm_data.odd_words[*rm_load_reg]);

[256] EndReconfig[rm] = XTmrCtr_GetValue(&xps_timer_0,

XPAR_XPS_TIMER_0_DEVICE_ID);

[257] rm++;

[258] if(status != 0)

[259] return -1;

[260] else

[261] *rm_ready_reg = *rm_load_reg;

[262] }

[263] else

[264] {

134

[265] *rm_ready_reg = *rm_load_reg;

[266] }

[267] }

[268] }while(*done_reg != 1);

[269] EndTime = XTmrCtr_GetValue(&xps_timer_0,

XPAR_XPS_TIMER_0_DEVICE_ID);

[270] return 0;

[271] }

[272] int load_bitfile(XHwIcap *HwIcap_Ptr, Xuint32 *bit_mem, Xuint32 word_pairs,

Xuint32 odd_words)

[273] {

[274] XStatus Status;

[275] Status = DeviceWrite(HwIcap_Ptr, bit_mem,

rm_data.word_pair_counts[1]*2+rm_data.odd_words[1]);

[276] if (Status != XST_SUCCESS)

[277] {

[278] print("Error writing to ICAP!");

[279] return -1;

[280] }

135

[281] return 0;

[282] }

[283] /* Xilinx Provided Function */

[284] int DeviceWrite(XHwIcap *InstancePtr, u32 *FrameBuffer, u32 NumWords)

[285] {

[286] u32 WrFifoVacancy;

[287] u32 IntrStatus;

[288] Xil_AssertNonvoid(InstancePtr != NULL);

[289] Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

[290] Xil_AssertNonvoid(FrameBuffer != NULL);

[291] Xil_AssertNonvoid(NumWords > 0);

[292] /*

[293] Make sure that the last Read/Write by the driver is complete.

[294] */

[295] if (XHwIcap_IsTransferDone(InstancePtr) == FALSE) {

[296] return XST_FAILURE;

[297] }

[298] /*

136

[299] Check if the ICAP device is Busy with the last Read/Write

[300] */

[301] if (XHwIcap_IsDeviceBusy(InstancePtr) == TRUE) {

[302] return XST_FAILURE;

[303] }

[304] /*

[305] Set the flag, which will be cleared when the transfer

[306] is entirely done from the FIFO to the ICAP.

[307] */

[308] InstancePtr->IsTransferInProgress = TRUE;

[309] /*

[310] Disable the Global Interrupt.

[311] */

[312] XHwIcap_IntrGlobalDisable(InstancePtr);

[313] /*

[314] Set up the buffer pointer and the words to be transferred.

[315] */

[316] InstancePtr->SendBufferPtr = FrameBuffer;

137

[317] InstancePtr->RequestedWords = NumWords;

[318] InstancePtr->RemainingWords = NumWords;

[319] /*

[320] Fill the FIFO with as many words as it will take (or as many as we

[321] have to send).

[322] */

[323] fifo_start_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[324] WrFifoVacancy = XHwIcap_GetWrFifoVacancy(InstancePtr);

[325] while ((WrFifoVacancy != 0) &&

[326] (InstancePtr->RemainingWords > 0)) {

[327] XHwIcap_FifoWrite(InstancePtr, *InstancePtr->SendBufferPtr);

[328] InstancePtr->RemainingWords--;

[329] WrFifoVacancy--;

[330] InstancePtr->SendBufferPtr++;

[331] }

[332] fifo_end_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[333] /*

[334] Start the transfer of the data from the FIFO to the ICAP device.

[335] */

138

[336] config_start_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[337] XHwIcap_StartConfig(InstancePtr);

[338] while ((XHwIcap_ReadReg(InstancePtr->HwIcapConfig.BaseAddress,

[339] XHI_CR_OFFSET)) &

[340] XHI_CR_WRITE_MASK);

[341] config_end_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[342] fifo_counter = 1;

[343] /*

[344] Check if there is more data to be written to the ICAP

[345] */

[346] if (InstancePtr->RemainingWords != NULL){

[347] /*

[348] Check whether it is polled or interrupt mode of operation.

[349] */

[350] if (InstancePtr->IsPolled == FALSE) { /* Interrupt Mode */

[351] /*

[352] If it is interrupt mode of operation then the

[353] transfer of the remaining data will be done in the

[354] interrupt handler.

[355] */

139

[356] /*

[357] Clear the interrupt status of the earlier interrupts

[358] */

[359] IntrStatus = XHwIcap_IntrGetStatus(InstancePtr);

[360] XHwIcap_IntrClear(InstancePtr, IntrStatus);

[361] /*

[362] Enable the interrupts by enabling the

[363] Global Interrupt.

[364] */

[365] XHwIcap_IntrGlobalEnable(InstancePtr);

[366] }

[367] else { /* Polled Mode */

[368] while (InstancePtr->RemainingWords > 0) {

[369] fifo_start_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[370] WrFifoVacancy =

[371] XHwIcap_GetWrFifoVacancy(InstancePtr);

[372] while ((WrFifoVacancy != 0) &&

140

[373] (InstancePtr->RemainingWords > 0)) {

[374] XHwIcap_FifoWrite(InstancePtr,

[375] *InstancePtr->SendBufferPtr);

[376] InstancePtr->RemainingWords--;

[377] WrFifoVacancy--;

[378] InstancePtr->SendBufferPtr++;

[379] }

[380] fifo_end_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[381] config_start_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[382] XHwIcap_StartConfig(InstancePtr);

[383] while ((XHwIcap_ReadReg(

[384] InstancePtr->HwIcapConfig.BaseAddress,

[385] XHI_CR_OFFSET)) & XHI_CR_WRITE_MASK);

[386] config_end_time[rm][fifo_counter] = XTmrCtr_GetValue(&xps_timer_0, 0);

[387] fifo_counter++;

[388] }

[389] /*

[390] Clear the flag to indicate the write has been done

141

[391] */

[392] InstancePtr->IsTransferInProgress = FALSE;

[393] InstancePtr->RequestedWords = 0x0;

[394] }

[395] } else {

[396] /*

[397] Clear the flag to indicate the write has been done

[398] */

[399] InstancePtr->IsTransferInProgress = FALSE;

[400] InstancePtr->RequestedWords = 0x0;

[401] }

[402] return XST_SUCCESS;

[403] }

	Design Modifications and Platform Implementation Procedures for Supporting Dynamic Partial Reconfiguration of FPGA Applications
	Recommended Citation

	Design modifications and platform implementation procedures for supporting dynamic partial reconfiguration of FPGA applications

