
Bucknell University
Bucknell Digital Commons

Master’s Theses Student Theses

2011

Design and Development of an FPGA-based
Distributed Computing Processing Platform
Juliana Su
Bucknell University

Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses

This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in
Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.

Recommended Citation
Su, Juliana, "Design and Development of an FPGA-based Distributed Computing Processing Platform" (2011). Master’s Theses. 38.
https://digitalcommons.bucknell.edu/masters_theses/38

https://digitalcommons.bucknell.edu?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/student_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bucknell.edu/masters_theses/38?utm_source=digitalcommons.bucknell.edu%2Fmasters_theses%2F38&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu

I, Juliana Su, do grant permission for my thesis to be copied.

Acknowledgements

To my family, Mom, Dad, and Tina, thank you for all of your support and encouragement

over the years. You have always believed in me, no matter what, and for that, I am so

grateful.

To my advisor, Professor Thompson, thank you for this wonderful opportunity. I still re-

member our very first meeting, something required as part of the first ELEC 101 homework

assignment. You asked me about what I wanted to do after graduation. As a junior, with

graduation being some two years away, I told you I was not sure (maybe grad school?). Well,

here we are, almost four years later, with me just over a week away from graduating with

a master’s and a few months away from starting a PhD program; I think your question has

been answered. I cannot thank you enough for your guidance, advice, support, and patience

over the past few years.

To the members of my thesis committee, Professors Hass and Nepal, thank you for your

thoughtful comments, suggestions, and advice on this work. I appreciate your help, not just

with my research, but with my other academic endeavors, as well. Thanks for teaching me

the ins and outs of digital design and writing recommendations for me.

i

Contents

1 Introduction 1

1.1 FPGAs . 2

1.2 Distributed Computing . 3

1.3 Problem Overview . 4

1.4 Contributions . 4

1.5 Thesis Organization . 5

2 Problem Statement 6

2.1 Challenges of Designing with FPGAs . 6

2.1.1 Development Time . 6

2.1.2 Hardware/Software Partitioning . 7

2.1.3 FPGA Fabric . 8

2.2 Design Requirements . 8

2.3 Summary . 9

3 Related Work 10

3.1 Reconfigurable Computing Systems . 10

3.1.1 Splash/Splash 2 . 11

3.1.2 PRISM . 11

3.1.3 SLAAC . 12

3.1.3.1 Tower of Power . 12

ii

3.1.3.2 Adaptive Computing Systems (ACS) Application Program-
ming Interface (API) . 13

3.1.4 Baylor University Cluster . 14

3.1.5 The Reconfigurable Computing Cluster (RCC) Project 15

3.2 Types of Applications . 16

3.2.1 Digital Signal Processing . 17

3.2.2 Bioinformatics . 18

3.2.3 Cryptography . 18

3.3 Summary . 19

4 Design and Implementation 20

4.1 System Overview . 20

4.2 Software Framework . 22

4.2.1 Conventions . 23

4.2.2 Initialization . 24

4.2.2.1 Communication . 24

4.2.2.2 Data Queues . 24

4.2.3 Processing Data . 25

4.2.3.1 Reading and Formatting Input Data 25

4.2.3.2 Receiving Results . 26

4.3 Hardware Core Manager Framework . 27

4.3.1 Conventions . 28

4.3.2 Operating System . 29

4.3.3 Initialization . 29

4.3.4 Receiving Requests . 29

4.3.5 Processing Core Requests . 30

4.3.5.1 Input Data Queue Setup . 31

4.3.5.2 Core List Setup . 31

4.3.6 Processing Data Requests . 32

iii

4.4 Communication . 32

4.4.1 Messages . 32

4.4.1.1 Message Components . 33

4.4.1.2 Types of Messages . 35

4.4.1.3 Exchanging Messages . 36

4.5 Summary . 39

5 Testing and Results 40

5.1 Overview . 40

5.2 Experimental Setup . 41

5.2.1 System Components . 41

5.2.1.1 Host PC . 41

5.2.1.2 FPGA Boards . 41

5.2.1.3 Hardware Base System . 42

5.2.1.4 Network . 44

5.2.1.5 Input Data Files . 45

5.2.2 Development Tools . 45

5.3 Test Application . 46

5.3.1 3DES . 46

5.3.2 3DES Hardware Core . 47

5.3.2.1 Interfacing with the 3DES Core 47

5.3.2.2 Verification . 49

5.4 Test Scenarios . 50

5.4.1 Single Core, Single Board Configuration 51

5.4.2 Multiple Cores, Single Board Configuration 51

5.4.3 Single Core Per Board, Multiple Boards Configuration 53

5.4.4 Multiple Cores Per Board, Multiple Boards Configuration 55

5.5 Software Implementation . 56

5.6 Preliminary Conclusions . 57

iv

5.7 Performance Bottleneck . 58

5.7.1 Hardware Core . 59

5.7.2 File I/O . 60

5.7.3 Network Transmission . 60

5.7.4 Analysis . 62

5.8 Summary . 63

6 Conclusion 64

6.1 Summary . 64

6.2 Future Work . 65

Bibliography 69

A Software Framework 70

A.1 wrapper.c . 70

A.2 wrapper.h . 86

B Example Software Application 91

B.1 FPGA.c . 91

B.2 Script to Run Software Application . 97

B.3 Makefile for Software Application . 97

C Hardware Core Manager 99

C.1 main.c . 99

C.2 HCM.c . 102

C.3 wrapper.c . 108

C.4 wrapper.h . 119

C.5 memory map.h . 122

D MATLAB Implementation 124

D.1 Script to Run 3DES . 124

v

D.2 3DES MATLAB Code . 125

D.3 DESDecrypt MATLAB Code . 127

vi

List of Tables

5.1 Single core, single board configuration throughput results. 51

5.2 Multiple cores, single board configuration throughput results. 52

5.3 Single core per board, multiple boards throughput results. 54

5.4 Multiple cores per board, multiple boards configuration throughput results . 56

5.5 3DES MATLAB performance results. 57

5.6 Hardware core performance comparison. 59

5.7 Processing times excluding time for file I/O 60

vii

List of Figures

1.1 Block diagram of an FPGA architecture . 3

2.1 Diagram of hardware/software partitioning 8

3.1 Diagram of the Tower of Power . 13

3.2 Block diagram of the Baylor University cluster 15

3.3 Block diagram of the RCC cluster . 16

4.1 Graphical representation of the system. 21

4.2 Data flow through the software application. 23

4.3 Data flow through the hardware core manager. 28

4.4 Flowchart depicting the receive request process. 30

4.5 Message components. 33

4.6 Message formats. 36

4.7 Exchanging of messages between the host PC and FPGA board over time. . 37

5.1 System Assembly view screenshot. 42

5.2 Graph of number of cores versus throughput. 53

5.3 Graph of number of boards versus throughput (one core per board). 55

viii

Abstract

This thesis presents two frameworks- a software framework and a hardware core manager

framework- which, together, can be used to develop a processing platform using a distributed

system of field-programmable gate array (FPGA) boards. The software framework provides

users with the ability to easily develop applications that exploit the processing power of

FPGAs while the hardware core manager framework gives users the ability to configure and

interact with multiple FPGA boards and/or hardware cores. This thesis describes the design

and development of these frameworks and analyzes the performance of a system that was

constructed using the frameworks. The performance analysis included measuring the effect

of incorporating additional hardware components into the system and comparing the system

to a software-only implementation. This work draws conclusions based on the provided

results of the performance analysis and offers suggestions for future work.

Chapter 1

Introduction

Recently, there has been growing interest in high-performance computing using FPGAs due

to numerous application areas experiencing an increased demand in processing capability.

Research conducted over the past twenty years has demonstrated that hardware acceler-

ation using FPGAs yields considerable performance improvements for certain application

areas, such as bioinformatics, digital signal processing, cryptography, and network packet

processing.

One method of exploiting the processing power of FPGAs is to cluster them together and dis-

tribute computations among them. The concept of dividing up a problem into smaller tasks

and distributing these tasks among separate processing elements is called distributed com-

puting. By using FPGAs in a distributed computing environment, performance is increased

through parallelization.

1

1.1 FPGAs

FPGAs are integrated circuits designed to be reconfigured and reprogrammed an unlimited

amount of times after the manufacturing process. They serve as the building blocks of re-

configurable computing, a computing paradigm that focuses on dividing applications into

parallel, application-specific pipelines. The beauty of reconfigurable computing is that it

combines the speed of hardware with the flexibility of software, essentially the best charac-

teristics of hardware and software.

The basic architecture of an FPGA, shown in Figure 1.1, consists of configurable logic blocks

(CLBs), routing channels, and input/output blocks. Each CLB, which is embedded in a

general routing structure, consists of look-up tables and flip-flops that can be configured

to perform either combinational or sequential logic. CLBs are surrounded by input/output

blocks (IOBs) for interfacing with external devices. The general routing structure allows for

arbitrary wiring, so designers can connect the logic elements however necessary. Designs can

be implemented on an FPGA using a hardware description language (HDL), such as Verilog

or VHDL, or a schematic.

2

Figure 1.1: Block diagram of an FPGA architecture [1].

In general, the amount of exploitable parallelism is the key factor in determining the suit-

ability of an application for FPGAs. FPGAs can only outperform modern processors by

exploiting huge amounts of parallelism.

1.2 Distributed Computing

A distributed system is defined as a collection of individual processing elements that commu-

nicate through a network. The concept of using a distributed system to solve computational

problems is known as distributed computing. In distributed computing, a problem is first

broken up into smaller tasks. These sub-tasks are then distributed among the separate pro-

cessing elements within the distributed system. The processing elements work together to

solve a problem, even though each processing element may be responsible for a different

portion of the problem.

3

1.3 Problem Overview

With FPGAs, the benefits of high performance and reconfigurability come at the cost of

added complexity. When designing for FPGAs, one challenge that designers face is the

need to work with both hardware and software components, each of which possesses its own

design methods. Using FPGAs in a distributed computing environment adds another level

of complexity since it introduces the element of networking. For the user, determining how

to configure and interact with hardware, software, and networking components in order to

develop an application for an FPGA can be a tedious and time-consuming task.

1.4 Contributions

The contributions of this work are as follows:

• We provide a software framework that provides users with a set of functionalities to

develop a software application that interfaces with multiple FPGA boards.

• We provide a hardware core manager framework that gives users the ability to configure

and interact with multiple FPGA boards and/or hardware cores.

• We perform an analysis of various system configurations, using an application devel-

oped with the frameworks, to observe what effect incorporating additional hardware

components (FPGA boards and hardware cores) into a system has on performance.

• We compare the performance of the application developed with our frameworks (a

hardware/software-based solution) to the performance of a software-based implemen-

tation of the application.

4

1.5 Thesis Organization

Chapter 2 defines the problem statement for this work. Chapter 3 explores related work.

Chapter 4 describes the design and implementation of the system. Chapter 5 provides the

results and analysis of our performance analysis. Chapter 6 summarizes this work and

discusses potential future work.

5

Chapter 2

Problem Statement

Unlike general-purpose computing systems, which separate the design of hardware and soft-

ware, embedded systems involve the simultaneous design of hardware and software. The

challenge of creating a system which clusters FPGAs in a distributed computing environ-

ment requires designers to be knowledgeable in hardware, software, and networking concepts.

2.1 Challenges of Designing with FPGAs

Exploiting huge amounts of parallelism using FPGAs is no trivial matter. This can be

attributed to three aspects of FPGA design: 1) lengthy development time; 2) complex

hardware/software partitioning; and 3) limited size.

2.1.1 Development Time

One of the major difficulties of FPGA design lies in the manner that designers must approach

a problem. Designing for FPGAs involves simultaneously using multiple resources that are

6

spread across a chip to achieve a massive amount of parallelism. Software programming, in

contrast, is generally aimed at exploiting a microprocessor’s ability to sequentially execute

instructions. Humans naturally think in a sequential manner, so translating a design into

parallel logic takes significantly more time than sequential programming. In addition to

the increased time it takes to implement designs in an HDL, there is a steep learning curve

associated with learning to use FPGA development tools. These tools are often vendor-

specific, depending on the FPGA being used. In summary, the increased time it takes to

design and implement parallel logic translates into longer development times.

2.1.2 Hardware/Software Partitioning

Finding the right balance between the flexibility of software and speed of hardware while

satisfying design requirements, such as performance, area, designer effort, etc., is a challenge

associated with designing for FPGAs. In a process called hardware/software partitioning,

shown in Figure 2.1, it is the responsibility of the designer to decide how best to divide

an application between a microprocessor component (“software”) and one or more custom

coprocessors (“hardware”). The task of partitioning is particularly difficult due to the fact

that there are often many ways to partition a design.

7

Figure 2.1: Diagram of hardware/software partitioning [2].

2.1.3 FPGA Fabric

Programmable interconnects dominate the FPGA fabric. A large amount of area on an

FPGA, roughly 90 percent, is devoted to internal routing, leaving only 10 percent of the

fabric for configurable logic [2]. Having a finite amount of area for configurable logic means

that there is a limit on how large an FPGA design can be in order to fit on a single chip.

2.2 Design Requirements

As the related work described in Chapter 3 implies, the task of designing a processing

platform that incorporates FPGAs is not a novel idea. What makes our particular problem

unique from previous research, however, is the combination of design requirements imposed

upon it. First, we require the system to be flexible. The system needs to not be application-

specific since we want to have the ability to incorporate any type of hardware core into the

system. Second, we require the system to be scalable. This means that the user should have

the ability to incorporate multiple boards and multiple cores into the system. In our case,

specifically, the ability to support multiple cores is crucial since we only have three FPGA

8

boards available for use. Our system will be very small-scale; however, we will design for

potential larger-scale configurations.

2.3 Summary

This chapter defined the problem statement of this work. Summarizing our design goals, we

aim to develop a system that decreases development time while being flexible and scalable.

The next chapter provides an overview of related work.

9

Chapter 3

Related Work

The following review of related work covers reconfigurable computing systems, as well as

types of FPGA applications. The purpose of reviewing reconfigurable computing systems is

to provide an overview of what has already been built and how these existing systems do or

do not address portions of the problem statement. A review of applications was conducted

to understand what types of application have been applied to FPGAs. These applications

provide an understanding of how FPGAs were utilized to run these applications. This

information was taken into account when our system was designed.

3.1 Reconfigurable Computing Systems

The majority of related reconfigurable computing systems take the form of computing clus-

ters in which multiple FPGA boards were either networked together or used as accelerators

on PCs to achieve increased computational performance.

10

3.1.1 Splash/Splash 2

Splash and Splash 2 [2] are special-purpose parallel processors that use FPGAs as processing

elements. Splash is a reconfigurable linear logic array of XC3000-series Xilinx FPGAs that

uses a Peripheral Component Interconnect bus to interface with a host system. Splash

2 consists of two rows of eight Xilinx XC4010 FPGAs, each with a small local memory

attached. Both systems are scalable since multiple FPGA boards can be incorporated into

a system and multiple systems can be connected together to form even larger systems.

While Splash/Splash 2 addresses scalability, it is a custom-designed system. Since we do

not not have the resources to design and produce our own boards, it is necessary to use

commercial-off-the-shelf (COTS) FPGA boards.

3.1.2 PRISM

Unlike the large-scale Splash systems, PRISM [3] is a small-scale proof-of-concept system,

which augments individual general-purpose core processors with FPGAs. In the system, an

FPGA, which serves as a coprocessor, is configured to execute the smaller, more frequently

executed sections of a program while the general-purpose core processor is responsible for

executing the less frequently accessed sections.

PRISM addresses the issue of hardware/software partitioning by assigning the most fre-

quently executed portions of code to the FPGA and the less frequently executed portions of

the code to the general-purpose processor. However, the issue with this generalized method

of partitioning a program is that it may not improve performance for all types of applica-

tions. The most frequently executed portions of a program may actually be better suited

for a general-purpose processor. In order for the system to execute a program more effi-

ciently, the FPGA must execute its computations faster than a general-purpose processor.

11

Otherwise, if a general-purpose processor can execute the same computations faster than the

FPGA, there is no benefit to using the FPGA over the general-purpose processor.

3.1.3 SLAAC

The objective of the Systems Level Applications of Adaptive Computing (SLAAC) project

[4] is to define an open and scalable heterogeneous distributed adaptive computing systems

architecture standard. Part of SLAAC’s mission includes creating a COTS reference platform

implementation. One such platform, the SLAAC Research Reference Platform (RRP), is

defined as a high-speed network cluster of desktop PCs where each PC is enhanced with a

reconfigurable accelerator, such as an FPGA board.

3.1.3.1 Tower of Power

An example of an existing RRP is Virginia Tech’s Tower of Power (ToP) [4, 5], a system

comprised of sixteen Pentium II PCs that are individually equipped with a WildForce board

and connected together using an an Ethernet and a Myrinet network. A diagram of the ToP

is shown in Figure 3.1. In total, the platform contains 80 Xilinx XC4062XL FPGAs and

memory banks. As part of the SLAAC project, researchers at Virginia Tech designed and

developed a common Application Programming Interface (API) which supports application

development for the SLAAC system.

12

Figure 3.1: Diagram of the Tower of Power [6].

3.1.3.2 Adaptive Computing Systems (ACS) Application Programming Inter-

face (API)

In [5] and [6], the ACS API is described as a development environment for applications on

heterogeneous distributed FPGA boards. Its purpose is to provide developers with a sim-

ple API for controlling a complex distributed system of interconnected adaptive computing

boards. Some applications of the API include HokieGene, a system that implements an

enhanced version of a genetic-search algorithm [7] and FIR filters [8].

The ACS API programming model describes a system as a collection of hosts, nodes, and

channels. Hosts are user application-level processes that allocate and control nodes, which

are hardware resources (typically FPGA accelerator boards). Hosts and nodes are connected

together by channels, which allow data to flow throughout system. This data flow is initiated

by system creation, streaming data, and memory access routines. System creation allocates

nodes and sets up channels. Streaming data functions allow the host application to insert

13

streaming data into and receive streaming data from the system. Memory access functions

include data transfer operations that read, write, and copy memory, as well as generate

interrupt signals at nodes.

The ACS API addresses the FPGA development time issue since it: 1) is independent of a

specific FPGA architecture; 2) allows a developer to control multiple boards with a single

program; and 3) configures the system’s communication network. All these characteristics of

the ACS API lessen the time it takes for developers to implement an FPGA-based system.

While the ACS API’s programming model and functions have characteristics desirable in

our system, the configuration of the cluster it was used for is not ideal for our purposes. ToP

is a large-scale configuration that simply incorporates too many PCs and too many FPGAs.

3.1.4 Baylor University Cluster

The reconfigurable computing cluster constructed in [9] by Troy consists of 16 XUPV2P

boards that are physically arranged in groups of four and networked to a Mini-ITX host PC.

Figure 3.2 shows a block diagram of the cluster. In order to quantify execution speedups

over a varying number of nodes, Troy measured the run times of multiple partitioned data

sets. Using the cluster, Troy scattered test data among the different nodes, all of which

contained a single copy of a hardware core implementation of the Triple Data Encryption

Standard (3DES) algorithm. His results showed that, while hardware acceleration improves

performance, speedup is limited by node communication and file I/O.

14

Figure 3.2: Block diagram of the Baylor University cluster [9].

This cluster addresses scalability, one of our design goals, in that FPGA boards can be added

or removed from the system. Results included configurations ranging from one board to 15

boards, indicating that this design works for both very small-case to larger-scale configura-

tions. However, while this cluster addresses the finite FPGA fabric issue by utilizing more

than one FPGA board, it does not take advantage of all the available FPGA space on each

board since each board only contained one 3DES hardware core.

3.1.5 The Reconfigurable Computing Cluster (RCC) Project

The RCC project at the University of North Carolina- Charlotte is a multi-institution, multi-

disciplinary project currently investigating the use of Xilinx ML-410 development boards to

build cost-effective petascale computers [10, 11]. As of 2008, the project has constructed

a prototype cluster consisting of 64 Xilinx Virtex-4 (V4P60) ML-410 Development boards.

Figure 3.3 shows a block diagram of the RCC cluster.

15

Figure 3.3: Block diagram of the RCC cluster [10].

While petascale computing is outside the scope of this work, we do find the configuration

of the RCC cluster to be ideal. It is similar to the design of the Baylor University cluster

in that it consists of a host PC and multiple FPGA board nodes connected together via a

network switch. Despite the fact that these two clusters incorporate a large number of FPGA

boards, they do not use a large number of PCs, as in the ToP system, which is ideal in terms

of resources. Like the Baylor University cluster, the RCC cluster addresses scalability since

FPGA nodes can be added or removed from the system.

3.2 Types of Applications

In terms of applications often designed for FPGAs, digital signal processing, bioinformatics,

and cryptography are typical target applications due to inherent characteristics that are

conducive to exploiting parallelism. This section provides a few examples of viable target

applications that were considered for our performance analysis. Since our system needs to be

flexible and not application-specific, this review revealed what variable application features,

such as different types and sizes of input data, need to be accommodated.

16

3.2.1 Digital Signal Processing

One of the earliest reconfigurable computing applications was signal processing. Digital sig-

nal processing (DSP) is concerned with the processing of signals that have been converted

into a digital format. DSP technology is used in a variety of areas, such as speech pro-

cessing, imaging processing, audio processing, information systems, control systems, and

instrumentation.

DSP applications possess characteristics that increase the amount of parallelism that can

be exploited by reconfigurable computing. First, the operations in many DSP functions

follow rather regular schedules. This predictability reduces the amount of control logic

needed in the design and allows hardware to be customized to extract a significant amount

of parallelism. Second, many DSP applications use small word data widths. Requiring less

hardware and less routing, smaller word widths allow more hardware units to fit on a chip

and result in higher clock rates. Finally, fixed coefficients or constants are often used in DSP

computations. Hardware customized for a given coefficient or constant uses less area and

processes operations more quickly.

Discrete Fourier Transforms (DFTs) are typically computed using the Fast Fourier Transform

(FFT), an algorithm that efficiently computes a DFT by recursively dividing a DFT into

smaller DFTs. In [12], a speed-up of 23 times over a Sparc-10 workstation was achieved for

an FFT algorithm implementation on Splash-2, an FPGA-based array processor. Also, in

[13], an FPGA implementation of a radix-4 FFT achieved speedup factors of 9.4, 10, and 12.5

over a TMS320C5x DSP processor for FFTs of length 64, 256, and 1024 points, respectively.

17

3.2.2 Bioinformatics

One of the main focuses of bioinformatics, an interdisciplinary field which combines biology,

computer science, and information technology, is analyzing and interpreting nucleotide and

amino acid sequences, protein domains, and protein structures. The process of analyzing

and interpreting biological data sets is known as computational biology.

Computational biology works with incredibly large sets of data. For example, in 2008,

the National Center for Biotechnology Information’s GenBank had more than 98 million

sequences on record [14]. In addition, many of the algorithms applied to these large data

sets are computationally intensive. The complexity of comparison algorithms, for instance,

is quadratic with respect to sequence length. The fact that the number of sequences on

record continues to grow exponentially every year along with the fact that computational

biology algorithms are computationally intensive makes the area an ideal candidate for high-

performance computing.

A specific area of study in bioinformatics is sequence alignment, which analyzes similarities

between DNA or protein sequences to assess the genetic relationship between organisms.

Several studies have highlighted the vast speedups of FPGA sequence alignment implemen-

tations. In [15], an FPGA implementation of the Smith-Waterman algorithm was about 330

times faster than a desktop computer with a 1GHz Pentium-III. In another study, mentioned

in [16], a global sequence alignment calculation between two DNA sequences on a Splash-2

board performed 1000 times better than a comparable SPARC-1 workstation.

3.2.3 Cryptography

A key element in achieving computer system security is the use of cryptography, the science

of encrypting and decrypting data. Since cryptographic algorithms are computationally-

18

intensive, easily pipelined, and frequently implemented with hardware components, such as

shift registers and permutation networks, they are an ideal application for reconfigurable

computing. Hardware implementations are well-suited for cryptographic algorithms since

they provide high performance and significant resistance to attacks. In particular, modular

arithmetic, which is an important element of cryptography, is more efficiently implemented

in hardware than with fixed-width microprocessor arithmetic logic units.

The RSA algorithm is a public-key encryption scheme that was developed by Ron Rivest,

Adi Shamir, and Len Adleman. The challenge of RSA lies in the factoring of large numbers,

a problem which becomes exponentially more difficult to solve as the size of the numbers

increases. A fast and efficient factoring algorithm for large numbers has yet to be discovered.

The best factoring algorithm runs in sub-exponential time, which is greater than polynomial

time, but less than exponential time.

In [17], the 0.8 millisecond decryption time for an FPGA-implemented RSA was about 11

times faster than the 9.1 millisecond decryption time for a 512-bit software implementation

on a 150MHz Alpha. Also, the fastest 1024-bit software implementation of 43.3 milliseconds

running on a PPro200 based PC was shown to be about 14 times slower than their best

result of 3.1 milliseconds.

3.3 Summary

This chapter presented an overview of reconfigurable computing systems and a review of

typical FPGA applications. The next chapter describes the design and implementation of

our frameworks.

19

Chapter 4

Design and Implementation

The design goal of the software and hardware core manager frameworks is to provide users

with an API to develop applications for, as well as build and control, a complex distributed

system consisting of a host PC and multiple FPGA boards.

4.1 System Overview

The system consists of the following components:

• A host PC

• A software framework

• A software application

• FPGA boards

• Hardware core managers

• Hardware cores

• A network switch

20

Together these components form a distributed system of multiple FPGA boards that paral-

lelizes computations. A graphical representation of the system is illustrated in Figure 4.1.

Figure 4.1: Graphical representation of the system.

In terms of operation, the software framework, which resides on a host PC, provides the user

with a library of functions for interacting with the FPGA boards. Functionalities provided

by the software framework can be grouped into the following categories: initialization, core

information set up, reading data, formatting data, sending data, and receiving data. Using

these functions, the user has the tools to develop a software application that uses the FPGA

boards to process data.

When input data read by the software application is sent out to the FPGA boards, it is,

more specifically, being sent to the hardware core managers running on the FPGA boards.

The hardware core manager takes the form of a software application that runs on top the soft

core processor implemented on the FPGA. The framework for the hardware core managers

includes a set of initialization, core information set up, read data, format data, send data,

21

and receive data functionalities that are similar to, but independent from, the functionalities

defined for the software framework. The hardware core manager serves as the middleman

between the user’s application and the hardware cores, logic blocks that perform a specific

computation. This is due to the fact that the hardware core manager has the ability to

access the hardware cores directly, writing data sent by the user application to the hardware

core and then reading the result computed by the hardware core. This result is returned to

the software application, where it is sorted and either read to a file or used by the user in

some other manner.

The host PC and FPGA boards are connected together via a network switch to allow for

data communication between the software application and hardware core managers over

a network. Ethernet and lwIP, a implementation of the TCP/IP protocol suite, facilitate

network communication.

4.2 Software Framework

The software framework takes the form of an API software library that provides a set of

data structures and functions that users can use to build an application that sends data to

and receives data from the FPGA boards.

This section describes the components that make up the software framework and provides a

description of their their functionalities and responsibilities. For more details on the software

framework, see Appendix A, which provides the software framework source code.

Figure 4.2 illustrates the flow of data through the software application created using the

software framework.

22

Figure 4.2: Data flow through the software application.

4.2.1 Conventions

The software framework follows the following conventions:

• One thread per input data file

• One thread per data results queue

• One thread per core

• One input data queue per core type

• One data results queue per core type

• One read socket per FPGA board

• One write socket per FPGA board

23

• One thread per read socket

4.2.2 Initialization

Before an application may begin processing data, communication to the FPGA boards must

be established and several data structures must be created and initialized.

4.2.2.1 Communication

The framework provides a setUpSocket() function, which is responsible for creating both a

read and write socket for each IP address associated with an FPGA board, constructing the

FPGA board address structures, and connecting to the FPGA boards. Two separate sockets

must be used for sending and receiving due to the fact that the Sockets API of the provided

implementation of lwIP is not thread-safe, meaning it is not possible for two different threads

to operate on the same lwIP socket without data being corrupted.

4.2.2.2 Data Queues

The software framework provides users with two types of data queues: input data queues and

data results queues. The input data queue is a POSIX message queue structure while the

data results queue is a linked listed structure. For every different input data file, there is one

input data queue. It is assumed that the input data file contains data only intended for one

core type. Therefore, an equivalent statement is that there is one input data queue for each

different core type in the system. Similarly, there is one data results queue for each different

core type in the system. The input data queue is initialized with the setUpQueue() function.

This function creates the message queues by generating message keys and then initializes the

input data queue structure. A separate function called setUpRList() constructs the data

24

results queue.

Finally, there is the setUpCoreInfo() function, which requests, collects, and organizes

information concerning the number and types of cores available for use in the system.

setUpCoreInfo() asks an FPGA board to report the number and types of cores it houses.

To be aware of the locations of all available hardware cores, the software application must

make one call to setUpCoreInfo() for every FPGA board present in the system. After

collecting core information from every FPGA board in the system, the software application

may begin sending data requests to the FPGA boards.

4.2.3 Processing Data

Processing data involves reading input data, formatting data into messages, sending mes-

sages, and receiving results.

4.2.3.1 Reading and Formatting Input Data

In terms of input data, the system currently only supports input data read from a file. The

readFile() function is responsible for reading input data from a file and placing the data

into the appropriate input data queue. In the system, there is one input data queue assigned

to each different core type present in the system. For example, if the system contained 3DES

and FIR filter cores, then there would be two input data queues created, one for 3DES and

one for FIR.

A mapToQueue() function ensures that data is placed into the right queue. Data is pulled

from the input data queue by a core-specific thread. Each core-specific thread is asso-

ciated with a particular hardware core in the system. Since the software framework is not

application-specific, it is the responsibility of the user to develop these core-specific functions.

25

These core-specific functions are associated with a particular core type in the user-defined

coreMapEntry data structure. An example of a core-specific function for 3DES is provided in

Appendix A.1 and can be used as a guide to creating a core-specific function for another type

of core. The core-specific function is responsible for forming and sending the data request

message. The process of setting the message type, core type, and job ID portions of the data

request message does not vary from core type to core type. The process of sending the data

request message out to a particular FPGA board also does not vary from core type to core

type. What does vary, however, is the method of constructing the input data portion of the

message. For example, 3DES requires five pieces of input data: key 1, key 2, key 3, function

select, and data to be processed. These inputs must be gathered from whatever source the

user chooses. In our case, all the keys were read in from a user-defined file, function select

was assigned from a command-line argument, and the data to be processed was grabbed

from an input data file. These pieces of data then had to be concatenated into a collection

of bytes and attached to the message type, core type, and job ID to form a data request

message. Once the data request message is properly formed, it is sent through to a particular

FPGA board through a write socket.

4.2.3.2 Receiving Results

As previously mentioned, there is one read socket for every FPGA board in the system.

A thread executing the recvResults() function operates on each of these read sockets.

recvResults() receives a data response message through the socket and checks the core

type of the message. Based on the core type, recvResults() places the message into the

appropriate data results queue using the addResults() function. The addResults() func-

tion places results into a data result queue in order using the job ID. Once all results have

been received, the user may either use the writeResults() function to write the data to

26

an output file or use the removeResults() function to remove and access results from the

queue.

4.3 Hardware Core Manager Framework

The hardware core manager is a software application that controls the data flow into and

out of the hardware cores. It runs on the MicroBlaze soft core processor and is responsible

for collecting information regarding what types of cores are available for use and sharing this

information with the host PC when the information is requested. Another responsibility of

the hardware core manager is to route data to and from the hardware cores. Source code

for the hardware core manager can be found in Appendix C.

27

Figure 4.3 shows the flow of data through the hardware core manager.

Figure 4.3: Data flow through the hardware core manager.

4.3.1 Conventions

The hardware core manager framework follows the following conventions:

• One read socket

• One write socket

• One thread per read socket

• One thread per core

• One input data queue per core type

28

4.3.2 Operating System

The hardware core manager runs on top of XilKernel, the operating system for the Xilinx

FPGAs. Xilkernel provides such features as threading and message queues.

4.3.3 Initialization

When started, the hardware core manager must first set up its network information. This

requires reading the state of the DIP switches present on the FPGA board. The number

corresponding to the state of the switches represents the last decimal digit of the IP address

to be assigned to the FPGA board. This procedure allows the IP addresses of different

FPGA boards to be set by simply changing the DIP switches. It is important, however, that

these IP addresses correspond to the IP addresses used by the software application on the

host PC.

4.3.4 Receiving Requests

Once the network information has been configured, the hardware core manager must establish

a connection to the host PC. This is done by creating two TCP/IP stream sockets, one socket

for reading and one socket for writing. Each of these sockets is assigned a different known port

number. The hardware core manager then connects to the host PC. Once communication

to the host PC has been established, the hardware core manager may begin to receive and

process requests, a process that is depicted by the flowchart in Figure 4.4.

29

Figure 4.4: Flowchart depicting the receive request process.

4.3.5 Processing Core Requests

A core request is always the first message that the hardware core manager receives from

the host PC. When a core request is received, the hardware core manager sets up its core

30

information, then sends this information to the host PC.

4.3.5.1 Input Data Queue Setup

For every different hardware core type present on the FPGA, an input data queue must be

created. Therefore, the convention is that there is one input data queue per core type.

4.3.5.2 Core List Setup

Each FPGA board has a Compact Flash card inserted into its SysACE controller. The Flash

card contains a text file which describes each core to be used in the system configuration.

An example of the contents of this file is as follows:

3DES,0xcea00000,36,8

3DES,0xcea20000,36,8

!

Each line of the file contains the following information: core type, core base address, core

input data size, and core output data size. In this example, the first line indicates a 3DES

core type with a base address of 0xcea00000, a total input data size of 36 bytes, and an

output data size of 8 bytes. A stop character, in this case ’ !’, is placed on the last line of the

file, so that it is known when the end of the file has been reached.

The process of setting up the core list involves reading the text file containing the core

information and parsing it into the necessary data structures. For each core that is set up, a

thread is created. This thread is assigned specifically to this core and is therefore responsible

to reading/writing data to/from this core. The core information is sent to the host PC so

31

that the software application is aware of the types and locations of the cores present in the

system.

4.3.6 Processing Data Requests

When the hardware core manager receives a data request, it places the message into the

input data queue corresponding the the core type of the message. The core thread created

in the core list setup procedure checks this queue for new data. When a new piece of data is

available, it removes the data and provides the input data to the appropriate core processing

function. This function writes the data to the hardware core and reads the data from the

hardware core. The result computed by the hardware core is formed into a data response

and sent back to the host PC.

4.4 Communication

This section describes the methods with which the software application communicates with

the hardware core manager.

4.4.1 Messages

Data is passed between the host PC and FPGA boards as streams of bytes since TCP/IP is

a byte-stream oriented communication protocol. Based on this characteristic of TCP/IP, we

define a message to be a variable-length packet of bytes that the host PC and FPGA boards

use to exchange information.

32

4.4.1.1 Message Components

Each message, depending on its type, can consist of one or more of the following pieces of

information, as illustrated in Figure 4.5: 1) message type; 2) number of cores; 3) core type;

4) job identifier (job ID); 5) input data; and/or 6) output data.

-Message Type-

-# of Cores-

-Core Type-

-Job ID-

-Input Data-

-Output Data-

1 byte

4 bytes

m bytes

4 bytes

n bytes

x bytes

* Components not to scale. m, n, and x are arbitrary numbers that
may or may not be equal.

Figure 4.5: Message components.

The message type is a one-byte character that enables the hardware core manager to identify

and distinguish incoming messages. Our system defines two types of messages types, core

33

and data. The core request message type is represented by the character, “c”, while the data

request message type is represented by the character, “d”. Since message types are defined

in a header file (wrapper.h in Appendix A.2), it is possible for the user to define new message

types or use a different set of characters to identify messages by simply editing the header

file.

Number of cores represents the number of cores present on a particular FPGA board. The

system currently defines this component to be four bytes in length, specifically using a C int

data type. The use of a C int data type to store the value for the number of cores means

that the maximum number that can be used to represent the number of cores is 231 − 1.

Considering the fact that our system could only handle a maximum of seven hardware cores,

four bytes is more than enough bytes to store the value for the number of cores in the system.

The core type is a byte array consisting of a user-defined variable-length character string

associated with a particular type of core. For our implementation, we defined the core type

to be eight bytes long, allowing cores to be identified by a string consisting of a maximum of

eight characters. As with the message type, the core type is a flexible message component

in that its length can be changed by editing the wrapper.h header file.

The job ID is a number representing the order in which the output data corresponding to the

message must arranged in the data results buffer. The length of the job ID is user-defined,

but must be large enough to storage the maximum number of data requests that will be

sent. For our system, four bytes in the form of a C uint32_t data type were used to hold

the largest possible job ID, meaning the system can support a maximum of 231 − 1 data

requests.

Input data is a byte array containing data supplied to the hardware core. The length of the

input data is dependent on the specifications of the hardware core the data is intended for.

34

For example, input data for the 3DES core consists of 36 bytes that include key 1 (8 bytes),

key 2 (8 bytes), key 3 (8 bytes), function select (4 bytes), and data to be processed (8 bytes).

In the case where there is more than one input, as in 3DES, all input data are concatenated

together when incorporated into a message. The input data are later parsed by a function

specific to the core that the data is intended for. For a system consisting of a heterogeneous

set of hardware cores, the length of the input data section of the message must be equal to

the length of the largest possible input data.

Output data is a byte array holding the result computed by the hardware core. Like the

input data, its length is dependent on the specifications of the hardware core the data is

intended for. For example, the output data of 3DES is 8 bytes long. Again, for a system

consisting of a heterogeneous set of hardware cores,the length of the output data section

must be equal to the length of the largest possible output data.

4.4.1.2 Types of Messages

The various message components described in the previous section are used to form the four

possible types of messages that can be exchanged between the host PC and the FPGA boards:

1) core information request (core request); 2) core information response (core response); 3)

data request; and 4) data response. Requests are messages sent from the host PC to an FPGA

board while responses are messages sent from an FPGA board to the host PC. Figure 4.6

shows the format of the different message types. The composition and usage of each of the

messages are described in the next section.

35

-Message Type-Core Request

Core Response

Data Request

Data Response

. . .-# of Cores- -Core Type- -Core Type- -Core Type-

-Core Type- -Job ID- -Input Data-

-Core Type- -Job ID- -Output Data-

-Message Type-

Figure 4.6: Message formats.

4.4.1.3 Exchanging Messages

Figure 4.7 illustrates the exchanging of messages between the host PC (software application)

and FPGA board (hardware core manager) over time.

36

Figure 4.7: Exchanging of messages between the host PC and FPGA board over time.

The first message in a series of exchanges is a core information request, a message that only

consists of a core request message type. For our system, this is simply the character, “c”.

The core information request is only sent once as part of the system initialization of the

software application running on the host PC. To be able to distribute input data properly,

the application must be aware of what types of cores are present in the system and where

(which FPGA board) each core is located. Therefore, before any data can be sent out to an

FPGA board, the application must first send a core information request out to each of the

FPGA boards.

37

The hardware core manager checks the message type portion of every message it receives and

processes the message based on the message type it sees. If it identifies a core information

request, it sends the host PC a core information response. In this case, it forms a message

that includes the number of cores it has, followed by the core types of these cores.

Once the host PC has received the core information response sent by the FPGA board, it

may begin sending data requests. A data request message consists of: 1) a message type

representing a data request; 2) the core type that the data processing request is for; 3) the

job ID of the request; and 4) input data. After the FPGA board has determined that the

message it has received is a data request, it checks the core type portion of the message to

determine which core type input data queue it should place the input data into. This queue

is being constantly checked for new messages by the corresponding core threads. When a

message is available, a core thread removes the message from the queue and provides the

input data from the message to the hardware core function. This hardware core function is

user-defined since each hardware core has potentially different structures/requirements, such

as number of inputs, size of input data, size of output data, etc. The hardware core function

must parse the input data properly and write it to the hardware core. The hardware core

function then reads the result from the hardware core. The result is then concatenated with

the core type and job ID to form the data response, which is sent back to the host PC.

On the host PC side, a single recvResults() thread per FPGA board retrieves data re-

sponses and places them into a data results queue. After all results have been received and

sorted by job ID, the user do whatever they see fit with the data. If the user wishes to write

the data to a file, a function to do so is provided. In this case, a writeResults() thread

removes data from the results queue and writes them to an output file. Whether the user

chooses to write the data to a file or not, the main application thread should not exit until

all core message queues are removed and all read and write sockets are closed.

38

4.5 Summary

This chapter described the design and operation of the software and hardware core man-

ager frameworks. The next chapter discusses the experimental setup and the results of the

performance analysis.

39

Chapter 5

Testing and Results

5.1 Overview

In addition to designing and constructing the software and hardware core manager frame-

works, our goal was to evaluate the performance of our system design (a hardware/software

configuration) with a software-only solution. Throughput, as defined in Equation 5.1, was

the metric used to evaluate system performance.

Throughput =
Bits

Second
(5.1)

Bits represents input data file size (total amount of data to be processed) and second repre-

sents application runtime.

40

5.2 Experimental Setup

In Section 4.1, the system was described as consisting of seven components: a host PC,

software framework, software application, FPGA boards, hardware core managers, hardware

cores, and a network switch. Since the software framework and hardware core managers

reflect our unique contributions to this research, they were the only components discussed

in depth in Chapter 4. This section, however, will describe the components that were not

specifically created for this research, but instead configured for use in our system.

5.2.1 System Components

This section describes the host PC, FPGA board, network, and input data file components

of the system. The hardware core used in the system is discussed in Section 5.3.2.

5.2.1.1 Host PC

The host PC is a Dell OptiPlex GX280 desktop PC running Ubuntu 10.04 LTS (Lucid Lynx).

5.2.1.2 FPGA Boards

Virtex-5 LXT [18] platform FPGAs were used for this project. The FPGAs contain one or

more Microblaze processors, Ethernet MACs, block RAM, and large arrays of reconfigurable

logic, among many other features. The Microblaze is a high-performance 32-bit RISC Har-

vard architecture soft processor core designed with embedded systems application in mind

[19]. The configurable logic blocks on the FPGA fabric can be used to implement a variety

of logic, including 18 × 18 multipliers, adders, and accumulators.

41

5.2.1.3 Hardware Base System

The hardware base system is the starting foundation for any system configuration imple-

mented on the FPGA. This configuration may be customized to include different hardware

cores. Figure 5.1 is a screenshot of the hardware base system’s System Assembly view in

Xilinx Platform Studio. This window displays the various components included in the de-

sign. This particular screenshot is for a system that has been customized to include 3DES

hardware cores.

Figure 5.1: System Assembly view screenshot.

The hardware base system consists of the following components:

• MicroBlaze processor

• MicroBlaze Debug Module (MDM)

• Processor Local Bus (PLB)

• Local Memory Bus (LMB)

• Universal Asynchronous Receiver/Transmitter (UART)

42

• Local Link Tri-Mode Ethernet Media Access Controller (LL TEMAC)

• Block RAM (BRAM)

• Double Data Rate Synchronous Dynamic Random Access Memory (DRR2 SDRAM)

• DIP Switches

• System ACE Interface Controller (SysACE)

• Interrupt controller

• Timer

• LMB BRAM controller

MicroBlaze The MicroBlaze is a soft 32-bit processor core. On the Virtex 5 FPGA, more

than one MicroBlaze may be implemented. However, for our purposes, only one MicroBlaze

was included in the design. For our test setup, the MicroBlaze was configured to run at

125 MHz.

MDM The MDM enables JTAG-based debugging for the MicroBlaze processor.

SysACE The SysACE provides an interface to CompactFlash, allowing system configura-

tions, as well as files, to be read off of a Flash card.

PLB The PLB is the system bus that connects the processor to high-speed peripherals.

Of the various available CoreConnect peripherals, it offers the highest bandwidth (128-bit

data bus or 32-bit address).

LMB The LMB is a 32-bit bus that is designed to have one master and one slave, the

MicroBlaze and a memory controller, respectively.

43

UART The UART core is a low-speed communication core that allows data to be trans-

mitted serially via a RS-232 cable. Since a PC can be easily interfaced to a UART, it is very

useful for debugging purposes.

LL TEMAC The LL TEMAC is a soft Ethernet core that enables data to be transmitted

and received over a network.

BRAM BRAM is on-chip memory within the FPGA.

DRR2 SDRAM DRR2 SDRAM is off-chip memory for the FPGA.

5.2.1.4 Network

In order for the host PC to be able to communicate with the FPGA boards, Ethernet

(100 Mbps) and lwIP, a lightweight version of TCP/IP, were used.

Light-weight IP (lwIP) Originally developed by Adam Dunkels at the Swedish Institute

of Computer Science, lwIP is a open source, light-weight implementation of the TCP/IP

protocol suite [20]. Our particular implementation of lwIP was provided as part of the

Xilinx Platform Studio. For the system, the Berkeley Sockets API feature of lwIP was used.

It should be noted that lwIP in the sockets API is not thread-safe [21]. One option for

guaranteeing that data does not get corrupted is to create two separate sockets- one for

reading and one for writing- for each connection.

44

5.2.1.5 Input Data Files

The input data files used for testing contained random data and were created using the Unix

command, dd. For example, to generate 1 MB of random data, the following command was

used:

dd if=/dev/urandom of=1MB.log bs=1024 count=1024

if=/dev/urandom specifies that data should be read from the file /dev/urandom, a special

file that, when read, returns random bytes. of=1MB.log indicates that the data should be

written to a file named 1MB.log. bs=1024 is the block size of the data to be written (in

bytes) and count=1024 is the number of blocks to write.

5.2.2 Development Tools

Given that the system was comprised of various different components, several tools were

used to build and debug the system. For portions of the system built on top of the FPGAs,

including the hardware core manager framework and the hardware cores, the Xilinx Design

Suite was used. This set of tools includes the Xilinx Embedded Development Kit, Integrated

Software Environment, Platform Studio, Software Development Kit, and ChipScope. For

the software framework, the freely-available Eclipse Integrated Development Environment

[22] was used for C program development. Finally, for the networking portion of the system,

Wireshark [23], a free open-source network protocol analyzer, was used for both network

troubleshooting and observing network traffic.

45

5.3 Test Application

5.3.1 3DES

3DES is an encryption algorithm that applies the DES algorithm to a block of data three

times. 3DES uses three 64-bit keys, denoted as k1 for key 1, k2 for key 2, and k3 for key 3.

The algorithm for 3DES encryption is given in Equation 5.2. To encrypt a 64-bit block of

data, a DES encryption with k1 is first applied to the data block. Next, a DES decryption

is applied with k2 to the result of the previous encryption. A final 3DES encryption with k3

is then applied to produce the final 3DES encrypted data block.

ciphertext = EK3(DK2(EK1(plaintext))) (5.2)

For decryption, the algorithm shown in Equation 5.3 is used. To decrypt a 64-bit block of

data, a DES decryption with k3 is first applied to the encrypted data block. Next, a DES

encryption with k2 is applied to the result of the previous decryption. Finally, this result is

then DES decrypted with k1 to obtain the decrypted data block.

plaintext = DK1(EK2(DK3(ciphertext))) (5.3)

3DES was chosen as an application since it possesses characteristics that we can use to eval-

uate the flexibility design requirement. First, 3DES requires more than one input. Second,

3DES operates on data blocks that are larger than 32 bits. Third, the input data provided

to 3DES could contain any sort of combination of bytes.

Choosing 3DES as an application ended up affecting how message passing was implemented.

46

Since the data that 3DES could be applied to could be any sequence of bytes, this eliminated

the possibility of using a delimiter-based method for reading and parsing data.

5.3.2 3DES Hardware Core

Since the focus of this work was not to design and build hardware cores, but instead to build

and analyze a system using hardware cores, a pre-built hardware core was used. The 3DES

core chosen for inclusion in our system was from OpenCores, an open-source repository of

hardware components. As of April 2011, the site hosts 800 different IP-blocks [24]. The

project page for the particular 3DES core used in our system can be found at [25].

5.3.2.1 Interfacing with the 3DES Core

To read and write data to/from the hardware core with the hardware core manager, a custom

data structure for 3DES was created. This data structure allowed for easier access to the

software accessible slave registers that are used to read/write data to/from the hardware

core since the address offsets of the different slave registers is taken care of by the definition

of the custom data structure. Code segment 1 shows the 3DES data structure.

47

typedef struct {

long key1_in_A;

long key1_in_B;

long key2_in_A;

long key2_in_B;

long key3_in_A;

long key3_in_B;

long function_select;

long data_in_A;

long data_in_B;

long data_out_A;

long data_out_B;

} tripleDES;

Code Segment 1: Data structure for the 3DES core.

After initializing a pointer to the hardware core, data can be written to and read from

the hardware core using pointers. An abbreviated example of using pointers to access the

hardware core is shown in Code Segment 2. The full code can be found in Appendix C.

48

volatile tripleDES *hw_core = (tripleDES*)(baseAddr);

long key1_in_A;

long key1_in_B;

long data_out_A;

long data_out_B;

// Writing Key 1 data to the core

hw_core->key1_in_A = key1_in_A;

hw_core->key1_in_B = key1_in_B;

// Reading output data from the core

data_out_A = hw_core->data_out_A;

data_out_B = hw_core->data_out_B;

Code Segment 2: Using pointers to access the 3DES core.

5.3.2.2 Verification

While only the runtimes for 3DES encryption were recorded, decryption was still used to

verify that 3DES had been applied correctly to a file. The following lines show how we used

hexdump to verify that the data had been processed correctly:

$ hexdump decryptedFile.txt > decryptedFileHexDump.txt

$ diff decryptedFileHexDump.txt originalFileHexDump.txt

$

Since outputs were in binary format, after a file was encrypted, then decrypted, its contents

49

were written in hexadecimal format to another file using the hexdump command. The hex-

dump of the output file was then compared to the hexdump file of the original input file

using the diff command. If diff did not produce any output, then the file was successfully

encrypted and decrypted.

5.4 Test Scenarios

In order to observe what effect varying the number and configuration of hardware processing

elements (hardware cores and FPGA boards) has on the system, the following test scenarios

were used:

• Single core, single board

• Multiple cores, single board

• Single core per board, multiple boards

• Multiple cores per board, multiple boards

Tests were run a total of ten times, after which the processing times were averaged and the

throughput calculated. Recorded processing times reflect times for an application conducting

3DES encryption, starting from system initialization and ending once all data has been

returned to the software application. These times were generated using the Unix time

command. Variables that were changed between tests include: input data file size (total

amount of data to be processed), number of cores, and number of boards.

In addition to these tests scenarios, a software implementation of 3DES was also tested in

order to compare the performances of a hardware/software solution versus a software-only

solution.

50

5.4.1 Single Core, Single Board Configuration

The single core, single board configuration serves as the base case for the performance anal-

ysis. The calculated throughputs of configurations which incorporated additional hardware

are compared to this particular configuration in order to determine whether a gain in perfor-

mance was achieved or not. Table 5.1 indicates that the baseline throughput is 128 bytes/sec-

ond for a 1 kB input data file size and 135 bytes/second for a 10 kB input data file size.

Average
Number Processing Throughput

of Time (Bytes/Second)
Cores (seconds)

1 kB 10 kB 1 kB 10 kB

1 8.0 76.0 128 135

Table 5.1: Single core, single board configuration throughput results.

5.4.2 Multiple Cores, Single Board Configuration

Following the single core, single board configuration, we performed a series of tests to observe

what effect incorporating additional hardware into the system would have on performance.

Additional hardware can be incorporated into the system in the form of additional hardware

cores or additional FPGA boards. Our first approach involved integrating more hardware

cores.

For the multiple cores, single board configuration, a total of six separate test runs were

conducted. The first test was a two core configuration. Each subsequent test added another

core to the board until a maximum of seven cores were present in the system. Only seven

cores could be configured into the system due to the fact that there is a limit to how many

peripherals can be attached to the PLB bus. As defined in the data sheet for the PLB,

51

the maximum supported allowable value for the number of PLB slaves is 16 [26]. After

subtracting the number of required peripherals that are attached to the PLB bus, such as

those listed in Section 5.2.1.3, only room for seven additional peripherals is available.

Before conducting the tests for this configuration, we hypothesized that each additional

hardware core would increase performance by some given amount since adding more cores

would increase the number of processing elements in the system; however, the results proved

this hypothesis to be incorrect. Table 5.2, which combines the results for the single core,

single board and multiple cores, single board configurations, reveals that adding additional

cores to the system did not result in any gain in performance. In fact, throughput remained

at relatively the same rate for all configurations, with the percentage change from integrating

an additional core being as high as ±2.2 percent and as low as 0 percent. This low percentage

change is reflected in Figure 5.2, which graphically depicts the data from Table 5.2.

Average Percentage Change
Number Processing Throughput of

of Time (Bytes/Second) Throughput
Cores (seconds) (%)

1 kB 10 kB 1 kB 10 kB 1 kB 10 kB

1 8.0 76.0 128 135 0 0
2 8.0 74.2 128 138 0 2.2
3 8.0 74.4 128 138 0 0
4 8.0 74.4 128 138 0 0
5 8.1 74.3 126 138 -1.5 0
6 8.1 75.9 126 135 0 -2.2
7 8.2 74.4 125 138 -0.8 2.2

Table 5.2: Multiple cores, single board configuration throughput results.

52

50

60

70

80

90

100

110

120

130

140

150

Th
ro
u
gh

p
u
t
(b
yt
es
/s
ec
o
n
d
)

Number of Cores vs. Throughput

1 kB file size

10 kB file size

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 3 4 5 6 7

Th
ro
u
gh

p
u
t
(b
yt
es
/s
ec
o
n
d
)

Number of Cores

Number of Cores vs. Throughput

1 kB file size

10 kB file size

Figure 5.2: Graph of number of cores versus throughput.

5.4.3 Single Core Per Board, Multiple Boards Configuration

After collecting data for all the multiple cores, single board configurations, we next tested

what effect incorporating additional hardware into the system would have on performance

using our second approach of incorporating additional boards. For this data set, tests were

conducted up to three boards since we only had three boards at our disposal.

In contrast to all previously-tested configurations, the single core per board, multiple board

configuration showed increased performance when additional hardware was incorporated

into the system. Table 5.3 shows that adding additional boards to the system increased

throughput by roughly between 1.5 to 2 times the single board configuration.

53

It should be noted that seeing improved performance with the single core per board, multiple

boards configuration is dependent on thread scheduling. Initial test runs for a three board

configuration revealed that a single core thread was starving the two other core threads,

causing data to only be sent to a single board. Since the two other boards in the configuration

were not receiving any data, they were not utilized, and the system emulated a single core,

single board configuration. To fix the starvation issue and ensure that all boards were

utilized, sched_yield() was incorporated into the code. sched_yield() forced threads to

give up control of the CPU once they were finished sending data to a particular board.

Average Percentage Change
Number Processing Throughput of

of Time (Bytes/Second) Throughput
cores (seconds) (%)

1 kB 10 kB 100 kB 1 kB 10 kB 100 kB 1 kB 10 kB 100 kB

1 8.0 76.0 756.3 128 135 135 0 0 0
2 5.3 39.3 378.6 193 261 270 50.8 93.3 100
3 3.7 26.5 256.6 277 386 399 43.5 47.9 47.8

Table 5.3: Single core per board, multiple boards throughput results.

54

150

175

200

225

250

275

300

325

350

375

400

425

ro
u
gh
p
u
t
(b
yt
e
s/
se
co
n
d
)

Number of Boards vs. Throughput
(One Core Per Board)

1 kB file size

10 kB file size

100 kB file size

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400

425

1 2 3

T
h
ro
u
gh
p
u
t
(b
yt
e
s/
se
co
n
d
)

Number of Boards

Number of Boards vs. Throughput
(One Core Per Board)

1 kB file size

10 kB file size

100 kB file size

Figure 5.3: Graph of number of boards versus throughput (one core per board).

5.4.4 Multiple Cores Per Board, Multiple Boards Configuration

Based on the results of the multiple cores per board, single board configuration, the con-

clusion was that multiple cores per board, multiple boards configurations would not yield

increased performance. In fact, the multiple cores per board, single board configuration re-

sults suggested that multiple cores per board, multiple boards configurations would perform

similarly to a single core per board, multiple boards configuration. While it was decided

that it was unnecessary to iterate through all the possible multiple cores per board, multiple

boards configurations since they would not generate any significant data, two tests were

conducted to verify the theory that multiple cores per board, multiple boards configura-

tions would produce similar results to a single core per board, multiple boards configuration.

55

These two tests included a test for the median number of cores per board (four cores per

board for a total of 12 cores in the system), as well as the maximum number of cores per

board (seven cores per board for a total of 21 cores in the system). In choosing the median

and maximum number of cores per board, we can assume that throughputs for the configu-

rations that were not tested would not vary significantly from the calculated throughputs of

the median and maximum number of cores per board configurations.

As shown in Table 5.4, having four or seven cores per board in a three board configuration for

a total of 12 and 21 cores in the system, respectively, did not noticeably impact throughput.

At most, a -2.9 percentage change in throughput going from a single core per board to seven

cores per board was observed. This data supports our theory that multiple cores per board,

multiple boards configurations would not yield increased performance.

Number Average Percentage Change
of Processing Throughput of Throughput

Cores Time (Bytes/Second) From Single Core
(Per Board) (seconds) (%)

1 kB 10 kB 1 kB 10 kB 1 kB 10 kB

1 3.7 26.5 277 386 0 0
4 3.6 26.6 284 385 2.5 -0.3
7 3.8 26.7 269 384 -2.9 -0.5

Table 5.4: Multiple cores per board, multiple boards configuration throughput results com-
parison: one core per board vs. four cores per board vs. seven cores per board.

5.5 Software Implementation

To evaluate the performance of the various FPGA board and hardware core configurations,

a software-only implementation of 3DES was written using MATLAB for comparison.

The MATLAB code for 3DES was created with the help of code from [27]. Only MATLAB

56

source code for DES encryption was provided, so code for DES decryption was created by

modifying the DES encryption code. DES encryption and decryption were then used to

form the 3DES algorithm. Source code for the MATLAB implementation is provided in

Appendix D.

Recorded processing times reflect times for 3DES encryption; however 3DES decryption was

used to verify the output files. The output was verified using the “Compare Selected Files”

feature in MATLAB. The profiler feature was used to record runtime. The same input data

files and input keys used for the FPGA-based configurations were used for the MATLAB

implementation. Similarly, tests were run a total of ten times.

Results showed that the MATLAB implementation of 3DES achieved a better throughput

than the best platform configuration. Even the best throughput of the single core per board,

multiple boards configuration of just under 400 bytes/second, shown in Table 5.3, could not

compare to the performance of the MATLAB implementation, whose throughput leveled off

at around 600 bytes/second, as shown in Table 5.5.

File Size Average Processing Time Throughput
(seconds) (bytes/second)

1 kB 2.4 427
10 kB 16.9 606
100 kB 170.0 602
1 MB 1752.7 598

Table 5.5: 3DES MATLAB performance results.

5.6 Preliminary Conclusions

Looking over the data collected for all the various system configurations, we can draw some

preliminary conclusions. First, of the two approaches- additional cores and additional boards-

57

used to evaluate the effect of adding additional hardware into the system, only the addition of

more boards with a single core on each board demonstrated an improvement in performance.

However, even the best single core, multiple board configuration, could not achieve the

same or greater performance than the MATLAB software implementation. Since hardware

typically achieves higher performance than software, particularly in the case of 3DES [9], the

fact that the software implementation of 3DES performed better than our hardware/software

solution using FPGAs suggests that a performance bottleneck exists within the system. In

the next section, we explore possible sources of the bottleneck.

5.7 Performance Bottleneck

Based on how data flows through the system, we can identify five potential locations for the

bottleneck:

• Hardware core

• File I/O

• Network transmission

• Software framework

• Hardware framework

We provide qualitative data on the hardware core, file I/O, and network transmission since

we have the means to isolate those components and observe their contribution to the aver-

age processing time. For the software and hardware frameworks, we offer theories on the

possibility of an existing bottleneck.

58

5.7.1 Hardware Core

To observe the impact of the 3DES computation on overall performance, we remove the

core from the system and replace it with a dummy core. The structure of the dummy core

resembles that of a 3DES core in that it takes in the same number and size of input data,

as well as output data. The difference between the cores is that the dummy core does not

perform the 3DES computation, instead it simply assigns input data to the output. By using

a dummy core, the time it takes for the 3DES computation to be executed in hardware is

removed from the overall processing time.

Table 5.6 provides the 1 kB input data file and 10 kB input data file average processing

times and throughputs for the dummy core and 3DES core. Comparing these values, we

notice that the difference between the throughputs is small- only a 0.7 percentage change of

throughput was observed between the dummy core and 3DES core in the case of a 10 kB

input data file size while no change was observed with the 1 kB input data file size. Based

on these values, we can eliminate the hardware core as the source of the bottleneck.

Average Percentage Change
File Processing Throughput of
Size Time (Bytes/Second) Throughput

(seconds) (%)
Dummy Core 3DES Dummy Core 3DES

1 kB 8.2 8.2 125 125 0
10 kB 75.0 74.4 137 138 0.7

Table 5.6: Hardware core performance comparison.

59

5.7.2 File I/O

After determining that the 3DES hardware core was not the source of the bottleneck, we

looked to see if file I/O was limiting performance. Removing the amount of time it takes to

conduct file I/O involved using gettimeofday() to measure elapsed time starting from the

time that all input data has been read into an input data buffer and ending when all data

has been received back from the FPGA boards.

As with the case with the hardware core, no significant differences in performance were

observed; a -7.4 percentage change was calculated between the throughput without file I/O

and the throughput with file I/O for the 1 kB input data file size while only a 0.7 percentage

change was calculated with the 10 kB input data file size. This data suggests that the

bottleneck is not a result of file I/O.

Average Percentage
File Processing Throughput Change
Size Time (Bytes/Second) of

(Seconds) Throughput
(%)

No File I/O With File I/O No File I/O With File I/O

1 kB 7.6 8.2 135 125 -7.4
10 kB 74.5 74.4 137 138 0.7

Table 5.7: Processing times excluding time for file I/O (1 board, 7 cores per board configu-
ration)

5.7.3 Network Transmission

Finally, to estimate the time that data spends traveling through the network, we refer back

to Section 4.4, which describes the messages that are exchanged between the host PC and

FPGA boards.

60

While there are four types of messages that are exchanged, the bulk of the messages are data

requests and data responses. Therefore, we generalize the amount of data that flows through

the network by only considering data requests and data responses. While core requests and

core responses do contribute to network traffic, since there is only one core request and one

core response required per FPGA board, the contribution, in comparison to that of the total

number of data requests and responses is rather small.

A data request for 3DES requires a core type (8 bytes), job ID (4 bytes), and input data (36

bytes) components, amounting to a total of 52 bytes. A data response for 3DES requires

a core type (8 bytes), job ID (4 bytes), and output data (8 bytes) components for total of

24 bytes. A message header (4 bytes), which stores the total length of a message, must

precede a data request/response, so that the the number of bytes to be read is known. Since

the system uses Ethernet and TCP/IP, an additional 54 bytes (20 bytes for a typical IP

header, 20 bytes for TCP header, and 14 bytes for Ethernet header) must be added to the

data request and response. In total, a data request requires 106 bytes and a data response

requires 78 bytes. Summing these up, every 8 bytes of input data to be processed by a 3DES

hardware core requires 184 bytes to be transmitted over the network.

We can calculate the total amount of bytes transmitted over the network using Equation 5.4,

where n represents the total number of bytes transmitted over the network, f equals the input

data file size in bytes, d is the input data size in bytes, q is the bytes required for a data

request, and r is the bytes required for a data response.

n =
f

d
× (q + r) (5.4)

Using a 10 kB input data file as an example, we can calculate the total number of bytes

transmitted over the network as follows:

61

10240 bytes

8 bytes
× (106 bytes + 78 bytes) = 235520 bytes

Since our Ethernet configuration has the capability of sending 100 Mbps, we can estimate

that the total time that data spends on the network is:

total bytes transmitted over the network

network throughput
=

235520 bytes

100 megabits per second
= 18.8 ms

Comparing 18.8 ms to the processing times provided in Tables 5.2 and 5.3, which show the

average processing times for a 10 kB input data file ranging from 26.5 to 74.2 seconds, reveals

that time that data spends traveling through the network only amounts to a small portion of

the overall processing time. Applying this same method of measuring network transmission

time to the 1 kB input data file case, we come to the conclusion that the bottleneck is not

related to the time that data spends traveling through the network.

5.7.4 Analysis

Of the five potential causes of a performance bottleneck, quantitative data was collected

for the hardware core, file I/O, and network transmission. This data indicated that the

bottleneck is not caused by the hardware core, file I/O, or network transmission, suggesting

that the problem exists in either the software or hardware core manager frameworks.

When evaluating the effect of incorporating additional hardware into the system on per-

formance, we observed improved performance in the single core per board, multiple boards

configuration, but not in the multiple core, single board configuration. Based on this obser-

vation, we theorize that a bottleneck exists in the hardware core manager framework as a

result of the system convention of there only being one input data queue per core type.

62

Queues must be protected from being accessed by multiple threads at the same time in order

to ensure that data is read and written properly. As a result of this protection scheme, only

one thread is allowed to access the queue at a time; therefore, there is a lack of parallelism

since other threads must wait their turn to pull data from the queue. We speculate that the

performance gain in the single core per board, multiple boards configuration was due to the

fact that, by adding additional boards to the system, additional hardware core managers were

made available for processing. The presence of additional hardware core managers meant

that there were more input data queues present in the system. Since each of these input data

queues was on a separate board and independent of each other, it would, in theory, be possible

for each of these queues to be operated on at the same time, thus achieving parallelism. In

the next chapter, we suggest potential methods of eliminating the performance bottleneck

that can be explored as future work.

5.8 Summary

This chapter discussed the results gathered from the performance analysis of the system. The

next chapter summarizes this research and concludes with a discussion of potential future

work.

63

Chapter 6

Conclusion

6.1 Summary

This work involved designing and developing a software framework that provides users with

an API to develop a software application that interfaces with multiple FPGA boards and

a hardware core manager framework that gives users the ability to configure and interact

with multiple FPGA boards and/or hardware cores. We demonstrated that the system is

flexible, in that it could accommodate various application requirements, such as multiple

inputs and inputs larger than 32 bits. We also showed that the system is scalable, in that

it could accommodate multiple hardware cores and FPGA boards. Using an application

developed using the frameworks, we performed an analysis of various system configurations

to observe the effects of incorporating additional hardware components (FPGA boards and

hardware cores) on performance. While the results of our single core per board, multiple

board configuration test scenario showed an increase in performance, the results of the other

test configurations and the software implementation revealed that a performance bottleneck

exists in the system. With a series of tests meant to probe the system for the bottleneck, we

64

were able to eliminate the hardware core, file I/O, and network transmission as sources of

the bottleneck. For the two remaining possible bottleneck locations, the software framework

and the hardware core manager framework, we offered theories on what could potentially

be causing the bottleneck. Suggestions for fixing the potential bottleneck in these areas, are

described in the following section, which discusses future work.

6.2 Future Work

One area of potential future research is exploring methods to improve the performance of

multiple core configurations. The results presented in Chapter 5 revealed that there was no

performance gain when multiple cores were added to the system. In Section 5.7.4, we offered

a theory that the one input data queue per core type system convention, in combination

with the need to protect input data queues from multiple access, caused there to be a lack

of parallelism in the hardware core manager framework. Noting that the single core per

board, multiple boards configuration achieved improved performance, exploring methods of

incorporating multiple hardware core managers on a single board appears to be a viable

path to increasing parallelism in the hardware core manager framework. This solution could

potentially be achieved by configuring an FPGA to support more than one MicroBlaze

processor, therefore allowing more than one hardware core manager to operate on the FPGA.

Another option to increase parallelism would be to redesign the hardware core manager as

a hardware component.

In addition to exploring methods of increasing parallelism, more work could be done in terms

of application development using the frameworks. This work only covered one application,

3DES. Future work could involve developing applications of a different category, such as

digital signal processing or bioinformatics.

65

Bibliography

[1] D. M. Harris and S. L. Harris, Digital Design and Computer Architecture. Elsevier,

2007.

[2] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and Practice of FPGA-

Based Computation. Morgan Kaufmann, 2007.

[3] L. Agarwal, M. Wazlowski, and S. Ghosh, “An asynchronous approach to efficient exe-

cution of programs on adaptive architectures utilizing FPGAs,” in IEEE Workshop on

FPGAs for Custom Computing Machines, 1994, pp. 101–110.

[4] SLAAC, “SLAAC.” [Online]. Available: http://slaac.east.isi.edu/

[5] K. Yao, “Implementing an application programming interface for distributed adaptive

computing systems,” Master’s thesis, Virginia Polytechnic Institute and State Univer-

sity, 2000.

[6] M. Jones, L. Scharf, J. Scott, C. Twaddle, M. Yaconis, K. Yao, P. Athanas, and

B. Schott, “Implementing an API for distributed adaptive computing systems,” in

Proceedings of the Seventh Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 1999, pp. 222–230.

66

http://slaac.east.isi.edu/

[7] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and A. Dickerman,

“A run-time reconfigurable system for gene-sequence searching,” in VLSID ’03: Pro-

ceedings of the 16th International Conference on VLSI Design. Washington, DC, USA:

IEEE Computer Society, 2003, p. 561.

[8] Z. S. Nakad, “High performance applications on reconfigurable clusters,” Ph.D. disser-

tation, Virginia Polytechnic Institute and State University, 2000.

[9] W. S. Troy, “Construction and validation of a reconfigurable computer cluster,” Master’s

thesis, Baylor University, 2009.

[10] R. Sass, W. V. Kritikos, A. G. Schmidt, S. Beeravolu, and P. Beeraka, “Reconfigurable

computing cluster (RCC) project: Investigating the feasibility of FPGA-based petas-

cale computing,” in IEEE International Symposium on Field-Programmable Custom

Computing Machines, 2007, pp. 127–140.

[11] A. G. Schmidt, W. V. Kritikos, S. Datta, and R. Sass, “Reconfigurable computing clus-

ter project: Phase I brief,” in IEEE International Symposium on Field-Programmable

Custom Computing Machines, 2008, pp. 300–301.

[12] N. Shirazi, P. M. Athanas, and A. L. Abbott, “Implementation of a 2-D fast fourier

transform on a FPGA-based custom computing machine,” in Proceedings of the 5th

International Workshop on Field-Programmable Logic and Applications, 1995, pp. 282–

292.

[13] R. J. Petersen and B. L. Hutchings, “An assessment of the suitability of FPGA-based

systems for use in digital signal processing,” in in Digital Signal Processing. In 5th

International Workshop on Field-Programmable Logic and Applications, 1995, pp. 293–

302.

67

[14] National Center for Biotechnology Information GenBank Statistics, “GenBank

Growth.” [Online]. Available: http://slaac.east.isi.edu/

[15] L. Hasan, Z. Al-Ars, and S. Vassiliadis, “Hardware acceleration of sequence alignment

algorithms - an overview,” in International Conference on Design and Technology of

Integrated Systems in Nanoscale Era, 2007, pp. 92–97.

[16] M. B. Gokhale and P. S. Graham, Reconfigurable Computing: Accelerating Computation

with Field-Programmable Gate Arrays. Springer, 2005.

[17] T. Blum, “Modular exponentiation on reconfigurable hardware,” Master’s thesis,

Worcester Polytechnic Institute, 1999.

[18] Xilinx, “Virtex-5 family overview,” 2009. [Online]. Available: http://www.xilinx.com/

support/documentation/data sheets/ds100.pdf

[19] ——, “Microblaze processor reference guide,” 2008. [Online]. Available: http:

//www.xilinx.com/support/documentation/sw manuals/mb ref guide.pdf

[20] “Light-weight IP.” [Online]. Available: http://savannah.nongnu.org/projects/lwip/

[21] “Light-weight IP Documentation Wiki- LwIP and multithreading.” [Online]. Available:

http://lwip.wikia.com/wiki/LwIP and multithreading

[22] “Eclipse.” [Online]. Available: http://www.eclipse.org/

[23] “Wireshark.” [Online]. Available: http://www.wireshark.org/

[24] OpenCores, “OpenCores Statistics.” [Online]. Available: http://opencores.org/numbers

[25] “3DES (Triple DES) / DES (VHDL) :: Overview.” [Online]. Available: http:

//opencores.org/project,3des vhdl

68

http://slaac.east.isi.edu/
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://savannah.nongnu.org/projects/lwip/
http://lwip.wikia.com/wiki/LwIP_and_multithreading
http://www.eclipse.org/
http://www.wireshark.org/
http://opencores.org/numbers
http://opencores.org/project,3des_vhdl
http://opencores.org/project,3des_vhdl

[26] “Processor Local Bus (PLB) v4.6 (v1.04a).” [Online]. Available: http://www.xilinx.

com/support/documentation/ip documentation/ds531.pdf

[27] “Alexander Stanoyevitch’s Cryptography Web Page.” [Online]. Available: http:

//www.csudh.edu/math/astanoyevitch/cryptography.html

69

http://www.xilinx.com/support/documentation/ip_documentation/ds531.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds531.pdf
http://www.csudh.edu/math/astanoyevitch/cryptography.html
http://www.csudh.edu/math/astanoyevitch/cryptography.html

Appendix A

Software Framework

A.1 wrapper.c

#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include ”wrapper.h”

// printf mutex
pthread mutex t stdOutMutex = PTHREAD MUTEX INITIALIZER;

// socket mutex
pthread mutex t sendMutex = PTHREAD MUTEX INITIALIZER;

// thread ID mutex
pthread mutex t threadIDMutex = PTHREAD MUTEX INITIALIZER;

// thread IDs
pthread t threadID[NUM BOARDS];
int threadIDCount = 0;

int fileSize ;
int coreCount = 0;

/∗∗∗

Function: setupSocket

Usage: sets up sockets and establishes connect to FPGA boards

Parameter Definition:
− fpgaIP: IP address of FPGA board

70

− fpgaPort: known port

Return value: socket descriptor

NOTE: must use this function twice for every connection to an
FPGA board since we need one read socket and one write
socket per FPGA board
∗∗∗/

int setupSocket(char ∗fpgaIP, unsigned short fpgaPort) {

int sock;
struct sockaddr in fpgaAddr;

if ((sock = socket(PF INET, SOCK STREAM, IPPROTO TCP)) < 0) {
fprintf (stderr , ”Error creating socket! \n\r”);
exit (1);

}

memset(&fpgaAddr, 0, sizeof(fpgaAddr));
fpgaAddr.sin family = AF INET;
fpgaAddr.sin addr.s addr = inet addr(fpgaIP);
fpgaAddr.sin port = htons(fpgaPort);

if (connect(sock, (struct sockaddr ∗) &fpgaAddr, sizeof(fpgaAddr)) < 0) {
fprintf (stderr , ”Error connecting! \n\r”);
exit (1);

}

return sock;
}

/∗∗∗

Function: setUpQueues

Usage: sets up input data queues

∗∗∗/
void setUpQueues() {

int queueIndex;

for (queueIndex = 0; queueIndex < NUM CORE TYPES; queueIndex++) {
int msgidOut;
int msgidIn;

strcpy(coreQueue[queueIndex].coreType, coreMap[queueIndex].coreType);

// Message key needs to be unique− if you add NUM CORE TYPES to the
// index to create the key value for the result queues, you will
// guarantee that you won’t get the same key value
msgidOut = msgget((key t) queueIndex, (0666 | IPC CREAT));

if ((msgidOut < 0)) {
fprintf (stderr , ”Error creating queues !!! \n\r”);
exit (1);

}

// Initialize core queue information
coreQueue[queueIndex].msgid = msgidOut;
coreQueue[queueIndex].numReceived = 0;
pthread mutex init(&(coreQueue[queueIndex].numReceivedMutex), NULL);
coreQueue[queueIndex].numProcessed = 0;
pthread mutex init(&(coreQueue[queueIndex].numProcessedMutex), NULL);

71

}
}

/∗∗∗

Function: setUpCoreInfo

Usage: Requests core information from FPGA board and builds
core list based on this information

Parameter Definition:
− writeSock: write socket
− readSock: read socket
− cores: list of cores in system
− numCores: number of cores in system

Return value: number of cores set up

∗∗∗/
int setUpCoreInfo(int writeSock, int readSock, ipCore ∗cores, int numCores) {

int bytesRcvd;

uint8 t coreMsgChar[MSG TYPE SIZE];

char coreType = CORE MSG TYPE;

memcpy(coreMsgChar, &coreType, MSG TYPE SIZE);

//Send the string to the server
if (sendMsg(writeSock, coreMsgChar, sizeof(coreMsgChar))

!= sizeof(coreMsgChar) + sizeof(int)) {
fprintf (stderr ,

”Error: sendRequest sent an unexpected number of bytes! \n\r”);
return −1;

}

int coreInfoSize = sizeof(int) + (CORE TYPE SIZE ∗ numCores);
uint8 t coreInfo [coreInfoSize];
uint8 t ∗coreInfoPtr = coreInfo;

// Receive core information
//
// Use < for single board configurations
// Use > for multiple board configurations
if ((bytesRcvd = recvMsg(readSock, coreInfo, coreInfoSize)) > coreInfoSize) {

fprintf (stderr , ”Error: received unexpected number of bytes! \n\r”);
exit (1);

}

int coresRcvd = 0;

memcpy(&coresRcvd, coreInfoPtr, sizeof(int));

coresRcvd = ntohl(coresRcvd);

coreInfoPtr += sizeof(int);

//Receive core information
int i ;
for (i = 0; i < coresRcvd; i++) {

memcpy(cores[coreCount].coreType, coreInfoPtr, CORE TYPE SIZE);

cores [coreCount].location = writeSock;

72

coreCount++;

coreInfoPtr += CORE TYPE SIZE;

}

return coresRcvd;

}

/∗∗∗

Function: readFile

Usage: reads input data from file

Parameter Definition:
− arg: pointer to FileThrdInfo structure

∗∗/
void ∗readFile(void ∗arg) {

FileThrdInfo ∗fileData;
fileData = (FileThrdInfo ∗) arg;

FILE ∗ inFilePtr;

msgStruct msg;

// Open file
if ((inFilePtr = fopen(fileData−>fileName, ”rb”)) == NULL) {

fprintf (stderr , ”Error opening file %s \n\r”, fileData−>fileName);
removeAllQueues();
exit (1);

}

int j = 0;

int bytesRead;
int leftoverBytes ;
int numBytesToRead;
leftoverBytes = fileSize % DATA SIZE;
numBytesToRead = fileSize − leftoverBytes;

while (j < (numBytesToRead / DATA SIZE)) {

if ((bytesRead = fread(&(msg.msgBuffer), DATA SIZE, 1, inFilePtr)) < 1) {
fprintf (

stderr ,
”Error: Read unexpected number of bytes. Expected %d, read %d \n\r”,
DATA SIZE, bytesRead);

removeAllQueues();
exit (1);

}

// Set job ID
// For the message queue, the msg type must be a positive number,
// so increment numReceived before using it as the job id
pthread mutex lock(&((fileData−>queue)−>numReceivedMutex));
((fileData−>queue)−>numReceived)++;
memcpy(&(msg.msgCount), &((fileData−>queue)−>numReceived), JOB ID SIZE);
pthread mutex unlock(&((fileData−>queue)−>numReceivedMutex));

73

// Place data into message queue
if ((msgsnd((fileData−>queue)−>msgid, &msg,

(sizeof(msg) − sizeof(long)), 0)) == −1) {
fprintf (stderr , ”read file msgsnd error! \n\r”);
removeAllQueues();
exit (1);

}

j++;

}

if (leftoverBytes > 0) {

uint8 t ∗msgPtr = msg.msgBuffer;

if ((bytesRead = fread(msgPtr, leftoverBytes, 1, inFilePtr)) < 1) {
fprintf (

stderr ,
”Error: Read unexpected number of bytes. Expected %d, read %d \n\r”,
leftoverBytes , bytesRead);

removeAllQueues();
exit (1);

}

msgPtr += bytesRead;
memset(msgPtr, 0, (DATA SIZE − leftoverBytes));

// Place data into message queue
if ((msgsnd((fileData−>queue)−>msgid, &msg,

(sizeof(msg) − sizeof(long)), 0)) == −1) {
fprintf (stderr , ”read file msgsnd error! \n\r”);
removeAllQueues();
exit (1);

}
}

// Close data file
fclose (inFilePtr);

// Terminate thread
pthread exit(NULL);

}

/∗∗∗

Function: tripleDES

Usage: core−specific function that forms 3DES data request
messages

Parameter Definition:
− arg: pointer to ThrdInfo structure

∗∗/
// Core−specific function (one per core type)
void ∗tripleDES(void ∗arg) {

// Grab input data from the queue (make sure to have a mutex)
// Parse the input string (this will be different for each string)
// Format the request −> make sure to include the core type and job ID
// There should be a separate job ID counter for each queue that
// will need to be protected by a mutex.

ThrdInfo ∗my data;

74

my data = (ThrdInfo ∗) arg;

char dataType = DATA MSG TYPE;

uint8 t msgType[MSG TYPE SIZE];

memcpy(msgType, &dataType, MSG TYPE SIZE);

uint8 t msg[MAX MSG SIZE];
uint8 t ∗msgPtr = msg;

msgStruct msgBuffer;

uint8 t keys[TOTAL KEY SIZE]; // 3DES input keys
uint8 t ∗keysPtr = keys;

uint8 t coreType[CORE TYPE SIZE];
memcpy(coreType, (my data−>core)−>coreType, CORE TYPE SIZE);

FILE ∗ keysFile;

int outBytes = 0;

// Open the file containing the keys
if ((keysFile = fopen(KEY FILE NAME, ”rb”)) == NULL) {

fprintf (stderr , ”ERROR: could not open %s \n\r”, KEY FILE NAME);
removeAllQueues();
exit (1);

}

// Get keys
while (fscanf(keysFile , ”%2x”, keysPtr) == 1) {

keysPtr++;
}

// Close the keys file
fclose (keysFile);

int leftoverBytes ;
int numBytesToRead;
leftoverBytes = fileSize % DATA SIZE;
numBytesToRead = fileSize − leftoverBytes;
int numJobsProcessed = 0;

while (numJobsProcessed < ((numBytesToRead / DATA SIZE) + leftoverBytes)) {
if ((msgrcv((my data−>queue)−>msgid, &msgBuffer, (sizeof(msgBuffer)

− sizeof(long)), 0, 0)) == −1) {
fprintf (stderr , ”tripleDES msgrcv error! \n\r”);
removeAllQueues();
exit (1);

} else {

msgPtr = msg;

// Form the outgoing message

// Message type
memcpy(msgPtr, msgType, MSG TYPE SIZE);
msgPtr += MSG TYPE SIZE;

// Core type
memcpy(msgPtr, (my data−>core)−>coreType, CORE TYPE SIZE);
msgPtr += CORE TYPE SIZE;

75

// Job ID
memcpy(msgPtr, &(msgBuffer.msgCount), JOB ID SIZE);
msgPtr += JOB ID SIZE;

// Keys
memcpy(msgPtr, keys, TOTAL KEY SIZE);
msgPtr += TOTAL KEY SIZE;

// Function select
memcpy(msgPtr, &functionSelect, FUNCT SELECT SIZE);
msgPtr += FUNCT SELECT SIZE;

// Input data
memcpy(msgPtr, msgBuffer.msgBuffer, DATA SIZE);

//Send the message to the FPGA board
pthread mutex lock(&sendMutex);
if ((outBytes

= sendMsg((my data−>core)−>location, msg, sizeof(msg)))
!= sizeof(msg) + sizeof(int)) {

fprintf (stderr , ”Error sending string to server ! \n\r”);
removeAllQueues();
exit (1);

}

// Check how many jobs have been processed
pthread mutex lock(&((my data−>queue)−>numProcessedMutex));
memcpy(&(msgBuffer.msgCount), &((my data−>queue)−>numProcessed),

JOB ID SIZE);
((my data−>queue)−>numProcessed)++;
numJobsProcessed = ((my data−>queue)−>numProcessed);
pthread mutex unlock(&((my data−>queue)−>numProcessedMutex));
pthread mutex unlock(&sendMutex);

}

// UNCOMMENT FOR MULTIPLE BOARD CONFIGURATIONS
// Need one of these per board in the multiple board configuration ,
// so that no thread starvation will occur
//
// sched yield ();
// sched yield ();
// sched yield ();

}

// Terminate thread
pthread exit(NULL);

}

/∗∗∗

Function: matchToMap

Usage: maps core type to core map entry

Parameter Definition:
− inCoreType: core type

Return value: index of core map entry (if successful)
or −1 (if not successful)

∗∗/

76

int matchToMap(char ∗inCoreType) {
// Need to compare the core type with the core types in the core map entries.
// If there is a match, then this is a valid core type.
//
// If there is a mismatch, then this core type has not been defined with a
// core map entry. The user will need to make an entry, in this case.
int i ;

for (i = 0; i < sizeof(coreMap); i++) {
if (strcmp(inCoreType, coreMap[i].coreType) == 0) {

return i;
}

}

return −1; // ERROR
}

/∗∗∗

Function: mapToQueue

Usage: maps core type to input data queue

Parameter Definition:
− inCoreType: core type
− queueList: input data queue

Return value: index of queue (if successful)
or −1 (if not successful)

∗∗∗/
int mapToQueue(char ∗inCoreType, queueInfo queueList[]) {

// If the core type matches the core type of the queue, then place that
// result in that queue.
//
// If there is a mismatch, then something went wrong.
//
int i ;

for (i = 0; i < NUM CORE TYPES; i++) {
if (strcmp(inCoreType, queueList[i].coreType) == 0) {

return i;
}

}

return −1; // ERROR
}

/∗∗∗

Function: recvResults

Usage: receives data results from FPGA board

Parameter Definition:
− arg: pointer to socket to receive results from

∗∗/
void ∗recvResults(void ∗arg) {

int ∗sockPtr = (int ∗) arg;
int sock = ∗sockPtr;

uint8 t inMsg[RESULT SIZE];
uint8 t ∗inMsgPtr = inMsg;

77

int bytesRcvd = 0;
int rListIndex;
int check;

msgStruct msg;
Result r ;

pthread mutex lock(&threadIDMutex);
threadID[threadIDCount] = pthread self();
threadIDCount++;
pthread mutex unlock(&threadIDMutex);

char coreType[CORE TYPE SIZE];
int numResults = 0;

int numToRecv = fileSize / DATA SIZE;

if ((fileSize % DATA SIZE) != 0) {
numToRecv += (fileSize % DATA SIZE);

}

while ((bytesRcvd = recvMsg(sock, inMsg, RESULT SIZE)) > 0) {
// Reset pointer
inMsgPtr = inMsg;

memcpy(coreType, inMsgPtr, CORE TYPE SIZE);
inMsgPtr += CORE TYPE SIZE; // Skip over the core type

if ((rListIndex = mapToResultList(coreType, rList)) >= 0) {
// Set msgCount = inMsg jobID
memcpy(&(r.seqNum), inMsgPtr, sizeof(r.seqNum));

// Only place result into queue, so skip over job id
inMsgPtr += JOB ID SIZE;
memcpy(r.data, inMsgPtr, DATA SIZE);

pthread mutex lock(&(rList[rListIndex].mutex));
addResult(&r, rList);
numResults = rList[rListIndex].numItems;
pthread mutex unlock(&(rList[rListIndex].mutex));

if (numResults == numToRecv) {
break;

}

} else {
fprintf (stderr ,

”Error: Received message core type does not match a queue core type! \n\r”);
exit (1);

}

}

int i = 0;
for (i = 0; i < NUM BOARDS; i++) {

pthread cancel(threadID[i]);
}

// Terminate thread
pthread exit(NULL);

}

/∗∗∗

78

Function: writeResults

Usage: writes results to file

Parameter Definition:
− arg: pointer to WFileThrdInfo data structure

∗∗/
void ∗writeResults(void ∗arg) {

WFileThrdInfo ∗fThrdInfo;
fThrdInfo = (WFileThrdInfo ∗) arg;

msgStruct msg;

FILE ∗ outFilePtr;

int leftoverBytes ;
int numBytesToRead;
leftoverBytes = fileSize % DATA SIZE;
numBytesToRead = fileSize − leftoverBytes;
int numResultsWritten = 0;

if ((outFilePtr = fopen(fThrdInfo−>fileName, ”wb”)) == NULL) {
fprintf (stderr , ”Error opening file %s \n\r”, fThrdInfo−>fileName);
exit (1);

}

// Write results to file
while (!(resultListIsEmpty(fThrdInfo−>rList))) {

Result r ;

removeResult(&r, fThrdInfo−>rList);
fwrite(&r.data, DATA SIZE, 1, outFilePtr);

numResultsWritten++;
}

// Close file
fclose (outFilePtr);

// Terminate thread
pthread exit(NULL);

}

/∗∗∗

Function: removeAllQueues

Usage: removes all input data queues

∗∗/
void removeAllQueues() {

int msgqIndex = 0;

for (msgqIndex = 0; msgqIndex < NUM CORE TYPES; msgqIndex++) {
if ((msgctl(coreQueue[msgqIndex].msgid, IPC RMID, NULL) < 0)) {

fprintf (stderr , ”Error removing queues!!! \n\r”);
exit (1);

}
}

79

}

/∗∗∗

Function: recvMsg

Usage: receives message from FPGA board

Parameter Definition:
− sock: socket to read message from
− inMsg: message to read
− maxMsgSize: length of message to receive

Return value: number of bytes received

∗∗/
int recvMsg(int sock, uint8 t ∗inMsg, int maxMsgSize) {

int msgHeaderSize = sizeof(int);
int msgTotalSize = 0;
int bytesRcvd = 0;

// Receive the size of the incoming message
if ((bytesRcvd = readn(sock, &msgTotalSize, msgHeaderSize))

!= msgHeaderSize) {
fprintf (stderr ,

”Error: expected to receive %d bytes, received %d! \n\r”,
msgHeaderSize, bytesRcvd);

return −1;
}

// Set the number of bytes to expect
msgTotalSize = ntohl(msgTotalSize);

// Check the size of the incoming message
if (msgTotalSize > maxMsgSize) {

fprintf (
stderr ,
”Incoming message too large for receiving buffer! msgTotalSize: %d maxMsgSize: %d \n\r”,
msgTotalSize, maxMsgSize);

return −1;
}

// Clear out the message buffer
memset(inMsg, 0, sizeof(inMsg));

if ((bytesRcvd = readn(sock, inMsg, msgTotalSize)) != msgTotalSize) {
fprintf (stderr ,

”Error: expected to receive %d bytes, received %d! \n\r”,
msgTotalSize, bytesRcvd);

return −1;
}

return bytesRcvd;
}

/∗∗∗

Function: sendMsg

Usage: sends message to FPGA board

Parameter Definition:
− sock: socket to sent message through
− outMsg: message to write

80

− msgSize: length of message to write

Return value: number of bytes sent

∗∗/
int sendMsg(int sock, uint8 t ∗outMsg, int msgSize) {

int bytesSent = 0;
int msgHeaderSize = sizeof(int);
int msgTotalSize = htonl(msgSize);

int msgBufferSize = msgHeaderSize + msgSize;

uint8 t msgBuffer[msgBufferSize];

uint8 t ∗msgBufferPtr = msgBuffer;

memcpy(msgBufferPtr, &msgTotalSize, msgHeaderSize);

msgBufferPtr += msgHeaderSize;

memcpy(msgBufferPtr, outMsg, msgSize);

if ((bytesSent = writen(sock, msgBuffer, msgBufferSize)) != msgBufferSize) {
fprintf (stderr , ”Error: expected to send %d bytes, sent %d! \n\r”,

msgBufferSize, bytesSent);
return −1;

}

return bytesSent;
}

/∗∗∗

Function: readn

Usage: reads bytes from socket

Parameter Definition:
− sock: socket to read data from
− inMsg: message to read from socket
− numBytesToRead: number of bytes to read

Adapted from:

Unix Network Programming − The Sockets Networking API
Volume 1, Third Edition
by W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff
(Page 89)

Return value: number of bytes read

∗∗/

int readn(int sock, void ∗inMsg, int numBytesToRead) {
int numBytesLeft;
int numBytesRead;
void ∗inMsgPtr = inMsg;

numBytesLeft = numBytesToRead;

while (numBytesLeft > 0) {
if ((numBytesRead = recv(sock, inMsgPtr, numBytesLeft, 0)) < 0) {

if (errno == EINTR) {
printf (”Calling recv again ... \n\r”);

81

numBytesRead = 0; // Call recv again
} else {

return −1;
}

} else if (numBytesRead == 0) {
printf (”No more bytes... \n\r”);
break; // No more bytes

}

numBytesLeft −= numBytesRead;
inMsgPtr += numBytesRead;

}

return (numBytesToRead − numBytesLeft); // Return >= 0
}

/∗∗∗

Function: writen

Usage: writes bytes to socket

Parameter Definition:
− sock: socket to write data to
− outMsg: message to write to socket
− numBytesToWrite: number of bytes to write

Unix Network Programming − The Sockets Networking API
Volume 1, Third Edition
by W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff
(Page 89)

Return value: number of bytes written

∗∗/
int writen(int sock, void ∗outMsg, int numBytesToWrite) {

int numBytesLeft;
int numBytesWritten;
void ∗outMsgPtr = outMsg;

numBytesLeft = numBytesToWrite;

while (numBytesLeft > 0) {
if ((numBytesWritten = send(sock, outMsgPtr, numBytesLeft, 0)) <= 0) {

if (numBytesWritten < 0 && errno == EINTR) {
numBytesWritten = 0; // Call send again

} else {
return −1; // Error

}
}

numBytesLeft −= numBytesWritten;
outMsgPtr += numBytesWritten;

}
return numBytesToWrite;

}

/∗∗∗
∗∗

INPUT DATA QUEUE FUNCTIONS

Adapted from:

82

C Primer Plus by Stephen Prata

∗∗
∗∗/

/∗∗∗

Function: mapToResultList

Usage: place output data into the appropriate data results queue

Parameter Definition:
− inCoreType: core type
− rl: data results queue

Return value: index of data results queue

∗∗/

int mapToResultList(char ∗inCoreType, ResultList rl[]) {

int i ;

for (i = 0; i < NUM CORE TYPES; i++) {
if (strncmp(inCoreType, rl[i]. coreType, strlen(rl [i]. coreType)) == 0) {

return i;
}

}

return −1; // ERROR
}

/∗∗∗
copyToNode and copyToItem function definitions
∗∗/

static void copyToNode(Result result, Node ∗pn);
static void copyToItem(Node ∗pn, Result ∗result);

/∗∗∗

Function: copyToNode

Usage: copies results

Parameter Definition:
− result : result to copy
− pn: node to copy result to

∗∗/
static void copyToNode(Result result, Node ∗pn) {

pn−>result = result;
}

/∗∗∗

Function: copyToItem

Usage: copies result to new item

Parameter Definition:
− pn: node to copy result to
− result : result to copy

∗∗/

83

static void copyToItem(Node ∗pn, Result ∗result) {
∗result = pn−>result;

}

/∗∗∗

Function: initResultList

Usage: initialize the data results queue

Parameter Definition:
− rl: data results queue
− inCoreType: core type

∗∗/
void initResultList(ResultList ∗rl , char ∗inCoreType) {

memcpy(rl−>coreType, inCoreType, CORE TYPE SIZE);
pthread mutex init(&(rl−>mutex), NULL);
rl−>front = rl−>rear = NULL;
rl−>numItems = 0;

}

/∗∗∗

Function: resultListIsEmpty

Usage: checks if the data results queue is empty

Parameter Definition:
− rl: data results queue

Return value: true (if the data results queue is empty)
false (if the data results queue is not empty)

∗∗/
bool resultListIsEmpty(const ResultList ∗rl) {

return rl−>numItems == 0;
}

/∗∗∗

Function: resultListItemCount

Usage: returns number of results in the data results queue

Parameter Definition:
− rl: data result queue

Return value: number of results in the data results queue

∗∗/
int resultListItemCount(const ResultList ∗rl) {

return rl−>numItems;
}

/∗∗∗

Function: addResult

Usage: adds result to data results queue in order by job ID

Parameter Definition:
− r: result to add
− rl: data results queue to add result to

84

Return value: true (if successful)
false (if unsuccessful)

∗∗/
bool addResult(Result ∗r, ResultList ∗rl) {

Node ∗pnew;
Result temp;

Node ∗current, ∗last ;

pnew = (Node ∗) malloc(sizeof(Node));

if (pnew == NULL) {
fprintf (stderr , ”Unable to allocate memory!\n”);
exit (1);

}

memcpy(&temp, r, sizeof(Result));
copyToNode(temp, pnew);
pnew−>next = NULL;

if (resultListIsEmpty(rl)) {
rl−>front = pnew; //Item goes to front

} else if ((pnew−>result).seqNum < (rl−>front−>result).seqNum) {
pnew−>next = rl−>front;
rl−>front = pnew; // Item goes to front

} else {
current = rl−>front−>next;
last = rl−>front;

int keepGoing = 1;

// Keep going through list until sequence number is < next number in list
while (keepGoing && current != NULL) {

if ((pnew−>result).seqNum > ((current−>result).seqNum)) {
last = current;
current = current−>next;

} else {
keepGoing = 0;

}
}

last−>next = pnew;
pnew−>next = current;

}

rl−>numItems++; //One more item in queue

return true;
}

/∗∗∗

Function: removeResult

Usage: removes results from the front of the data results queue

Parameter Definition:
− r: result to remove
− rl: data results queue to remove result from

Return value: true (if successful)
false (if unsuccessful)

85

∗∗/
bool removeResult(Result ∗result, ResultList ∗rl) {

Node ∗pt;

if (resultListIsEmpty(rl))
return false;

copyToItem(rl−>front, result);
pt = rl−>front;
rl−>front = rl−>front−>next;
free (pt);
rl−>numItems−−;
if (rl−>numItems == 0)

rl−>rear = NULL;

return true;
}

/∗∗∗

Function: emptyResults

Usage: empties data results queue

Parameter Definition:
− rl: data results queue to empty

∗∗/
void emptyResults(ResultList ∗rl) {

Result dummy;
while (!resultListIsEmpty(rl))

removeResult(&dummy, rl);
}

A.2 wrapper.h

#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <stdbool.h>
#include <sys/time.h>
#include <sys/msg.h>
#include <sched.h>

// Number of different core types (i .e. tripleDES)
#define NUM CORE TYPES 1

// Number of boards in the system
// Must manually change this for different configurations
#define NUM BOARDS 1

// Maximum length for a file name
#define MAX FILE NAME SIZE 20

// Size of the different components of the message in terms of bytes
#define MSG TYPE SIZE 1 // Message type
#define CORE TYPE SIZE 8 // Core type
#define JOB ID SIZE 4 // Job ID

86

#define KEY SIZE 8 // Input data
#define NUM KEYS 3 // Input data
#define TOTAL KEY SIZE (KEY SIZE ∗ 3) // Input data
#define FUNCT SELECT SIZE 4 // Input data
#define DATA SIZE 8 // Input data
#define RESULT SIZE (CORE TYPE SIZE + JOB ID SIZE + DATA SIZE) // Output data
#define MAX MSG SIZE (MSG TYPE SIZE + CORE TYPE SIZE + JOB ID SIZE + \

(KEY SIZE ∗ NUM KEYS) + FUNCT SELECT SIZE + DATA SIZE)

// File that contains 3DES keys
#define KEY FILE NAME ”keys.txt”

// File that contains IP addresses
#define IP ADDR FILE NAME ”ipAddrs.txt”

#define IP ADDR SIZE 15 //(###.###.###.###)
// Request message definitions
#define CORE MSG TYPE ’c’ // Core request
#define DATA MSG TYPE ’d’ // Data request
// Known port definitions
#define READ PORT 9600
#define SEND PORT 9601

//
// ipCore
//
// Represents a hardware core
//
typedef struct {

char coreType[CORE TYPE SIZE]; // core type; i.e. multiplier
int location ; // location aka socket descriptor of board it ’s located on

} ipCore;

//
// board
//
// Represents an FPGA board
//
typedef struct {

char ipAddr[IP ADDR SIZE]; //IP address of board
int sock; // write socket

} board;

//
// coreMapEntry
//
// Represents a core map entry
//
// User must use this to associate core types with their core−specific functions
//
typedef struct {

char coreType[CORE TYPE SIZE]; // Core type, i.e. ”tripleDES, ”FIR”...
char fileName[MAX FILE NAME SIZE]; // Input data file associated with core type
void (∗funct)(char ∗dataIn, char∗ dataOut); // Function pointer

} coreMapEntry;

//
// queueInfo
//
// Represents an input data queue
//
typedef struct {

char coreType[CORE TYPE SIZE]; // core type
int msgid; // message id of queue

87

int numReceived; // number of messages received
pthread mutex t numReceivedMutex; // mutex to protect numReceived
int numProcessed; // number of messages processed
pthread mutex t numProcessedMutex; // mutex to protect numProcessed

} queueInfo;

//
// Result
//
// Represents a result from a hardware core
//
typedef struct {

uint8 t data[DATA SIZE]; // result from hardware core
int seqNum; // job ID

} Result;

//
// Node
//
// Represents a node in the data results queue
//
typedef struct node {

Result result ; // data result
struct node ∗next; // pointer to next result

} Node;

//
// ResultList
//
// Represents a data results queue
//
typedef struct {

char coreType[CORE TYPE SIZE]; //core type
pthread mutex t mutex; // mutex
Node ∗front; //pointer to the front of the queue
Node ∗rear; //pointer to the rear of the queue
int numItems; //number of items in the queue

} ResultList;

//
// ThrdInfo
//
// Information needed by a core−specific thread
//
typedef struct {

ipCore ∗core; // core associated with thread
queueInfo ∗queue; // queue associated with thread

} ThrdInfo;

//
// FileThrdInfo
//
// Information needed by a read file thread
//
typedef struct {

char fileName[MAX FILE NAME SIZE]; // file to read from
queueInfo ∗queue; // queue to put data from file into

} FileThrdInfo;

//
// WFileThrdInfo
//
// Information needed by a write results file thread
//

88

typedef struct {
char fileName[MAX FILE NAME SIZE]; // file to write to
ResultList ∗rList ; // data results queue to pull data from

} WFileThrdInfo;

//
// msgStructure
//
// Represents a message
//
typedef struct {

long msgCount; // job ID
uint8 t msgBuffer[MAX MSG SIZE]; // message buffer

} msgStruct;

//
// EXTERNAL VARIABLES
//
extern ResultList rList[NUM CORE TYPES];
extern coreMapEntry coreMap[NUM CORE TYPES];
extern queueInfo coreQueue[NUM CORE TYPES];
extern coreMapEntry coreMap[NUM CORE TYPES];
extern msgStruct msgStructure;
extern int fileSize ;
extern int functionSelect;
extern pthread t threadID[NUM BOARDS];
extern int threadCount;
extern struct timeval start, end;
extern int coreCount;

//
// EXTERNAL FUNCTIONS
//

// Communication−related
extern int setupSocket(char ∗fpgaIP, unsigned short fpgaPort);
extern int setUpCoreInfo(int writeSock, int readSock, ipCore ∗cores,

int numCores);
extern int recvMsg(int sock, uint8 t ∗inMsg, int maxMsgSize);
extern int sendMsg(int sock, uint8 t ∗outMsg, int sizeOfMsg);
extern int readn(int sock, void ∗inMsg, int numBytesToRead);
extern int writen(int sock, void ∗outMsg, int numBytesToWrite);

// Queue−related
extern bool resultListIsEmpty(const ResultList ∗rl);
extern int resultListItemCount(const ResultList ∗rl);
extern bool addResult(Result ∗r, ResultList ∗rl);
extern bool removeResult(Result ∗result, ResultList ∗rl);
extern void emptyResults(ResultList ∗rl);
extern int mapToResultList(char ∗inCoreType, ResultList rl[]);
extern void initResultList(ResultList ∗rl , char ∗inCoreType);
extern void setUpQueues();
extern void removeAllQueues();

// Data formatting−related
extern void ∗writeResults(void ∗arg);
extern void ∗readFile(void ∗arg);
extern void ∗recvResults(void ∗arg);

// Mapping functions
extern int matchToMap(char ∗inCoreType);
extern int mapToQueue(char ∗inCoreType, queueInfo queueList[]);

// Core−specific (3DES)

89

extern void ∗tripleDES(void ∗arg);

// Other
extern ipCore ∗getCore(char ∗coreType, ipCore cores[]);

90

Appendix B

Example Software Application

B.1 FPGA.c

#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include ”wrapper.h”

// File names
FILE ∗inFilePtr; // input data file
FILE ∗outFilePtr; // output data file

// Variables for IP address file
FILE ∗ipAddrFile;
char ipAddr[IP ADDR SIZE]; //+1 to leave room for the null−terminator

FILE ∗keysFile;

// Core map
coreMapEntry coreMap[NUM CORE TYPES] = { { ”3DES”, ”3DES.txt”,

(void ∗) tripleDES } };

// Read and write sockets
int readSock, writeSock;

// Function pointer to the core−specific parser function
void (∗functPtr)(char ∗dataIn, char∗ dataOut);

// THREADS
//

91

// One thread per input data file to read input data into the queues
// One thread per result data queue to read result data to file
pthread t readFileThrds[NUM CORE TYPES];
pthread t writeResultThrds[NUM CORE TYPES];

//Input data queue information
queueInfo coreQueue[NUM CORE TYPES];

//Result queue information
ResultList rList [NUM CORE TYPES];

// Thread information
FileThrdInfo readFileThrdInfo[sizeof(coreMap)];
WFileThrdInfo writeFileThrdInfo[sizeof(coreMap)];

// Message structure
msgStruct msgStructure = { 1 };

// MESSAGE COMPONENTS

// Actual message
uint8 t mesg[MAX MSG SIZE];
uint8 t ∗msgPtr = mesg;

// 3DES input keys
uint8 t keys[TOTAL KEY SIZE];
uint8 t ∗keysPtr = keys;

// 3DES function select
uint8 t functSelect [FUNCT SELECT SIZE];
int functionSelect ;

// 3DES input data buffer
uint8 t dataBuffer[DATA SIZE];
uint8 t ∗dataBufferPtr = dataBuffer;

// 3DES result buffer
uint8 t result [RESULT SIZE];
uint8 t ∗resultPtr = result ;

// File size (used to calculate number of data requests)
int fileSize ;

// Variables to calculate elapsed time
struct timeval start ;
struct timeval end;

// MAIN
int main(int argc, char ∗argv[]) {

// COMMAND−LINE ARGUMENTS

// core type to process data with
char ∗inCoreType = argv[1];

// number of boards in system
int numBoards = atoi(argv[2]);

// number of cores in system
int numCores = atoi(argv[3]);

// function select (0 = decryption; 1 = encryption)
int fSelect = atoi(argv [4]);

92

// input data file name
char ∗inFileName = argv[5];

// output data file name
char ∗outFileName = argv[6];

// Core setup
int coresSetUp = 0;
int totalCoresSetUp = 0;

// Boards
board ∗boards;
boards = (board ∗) malloc(numBoards ∗ sizeof(board));

// Cores
ipCore ∗cores;
cores = (ipCore ∗) malloc(numCores ∗ sizeof(ipCore));

// MUTEXES

// One mutex per results queue
pthread mutex t ∗resultMutex;
resultMutex = (pthread mutex t ∗) malloc(numBoards

∗ sizeof(pthread mutex t));

// One mutex per input data queue
pthread mutex t ∗coreMutex;
coreMutex = (pthread mutex t ∗) malloc(numCores ∗ sizeof(pthread mutex t));

// THREADS

// One thread per socket for recv−ing results
pthread t ∗recvResultThrds;
recvResultThrds = (pthread t ∗) malloc(numBoards ∗ sizeof(pthread t));

// One thread per core for sending requests
pthread t ∗coreThrds;
coreThrds = (pthread t ∗) malloc(numCores ∗ sizeof(pthread t));

// Thread ID
//
// Used to kill threads in multiple board configurations , so that the
// application can exit
pthread t ∗ threadID;
threadID = (pthread t ∗) malloc(numBoards ∗ sizeof(pthread t));

// Thread information
ThrdInfo ∗inThrdInfo;
inThrdInfo = (ThrdInfo ∗) malloc(numCores ∗ sizeof(ThrdInfo));

// Check number of command−line arguments
if (argc < 7) {

fprintf (
stderr ,
”Usage: %s <core type> <number of boards> <number of cores> \
<function select> <input file name> <output file name> \n\r”,
argv [0]);

exit (1);
}

// Check that the given core type is valid (of the right length)
if (strlen (inCoreType) > CORE TYPE SIZE) {

fprintf (
stderr ,

93

”ERROR: %s has too many characters. Max number of characters is %d!!! \n\r”,
inCoreType, CORE TYPE SIZE);

exit (1);
}

// Check that the given core type is defined in the core map
int i ;
for (i = 0; i < sizeof(coreMap); i++) {

if (strcmp(coreMap[i].coreType, inCoreType) == 0) {
strcpy(coreMap[i].fileName, inFileName);
strcpy(coreQueue[i].coreType, coreMap[i].coreType);
initResultList (rList , coreMap[i].coreType);
break;

}

// ERROR: Core type does not match a core type in the core map!
fprintf (stderr ,

”ERROR: %s is NOT defined in the program core map!!! \n\r”,
inCoreType);

exit (1);
}

// Check that the function select is a valid value (0 or 1)
// Function select = 0 for decryption
// Function select = 1 for encryption
if (fSelect == 0) {

functionSelect = 0x0000000;
} else if (fSelect == 1) {

functionSelect = 0xFFFFFFFF;
} else {

fprintf (
stderr ,
”ERROR: invalid function select! Must be 0 (for decryption) or 1 (for encryption). \n\r”);

exit (1);
}

// Make sure the file exists
if ((ipAddrFile = fopen(IP ADDR FILE NAME, ”rb”)) == NULL) { // File name should be a variable/macro

fprintf (stderr , ”Cannot open %s \n\r”, IP ADDR FILE NAME);
exit (1);

}

i = 0;

// Get the IP addresses
while (fscanf(ipAddrFile, ”%s”, ipAddr) != EOF) {

// Build the sockets for this IP address
readSock = setupSocket(ipAddr, READ PORT);
writeSock = setupSocket(ipAddr, SEND PORT);

// Set board information
memcpy(boards[i].ipAddr, ipAddr, sizeof(ipAddr));
boards[i]. sock = writeSock;

// Create core list
if ((coresSetUp = setUpCoreInfo(readSock, writeSock, cores, numCores))

< 0) {
fprintf (stderr , ”Error setting up core information! \n\r”);
exit (1);

}

totalCoresSetUp += coresSetUp;

94

i++;
}

// Close IP address file
fclose (ipAddrFile);

// Verify that correct number of cores was set up
if (totalCoresSetUp != numCores) {

fprintf (
stderr ,
”Error: set up incorrect amount of core information! Expected: %d. Set up: %d \n\r”,
numCores, totalCoresSetUp);

exit (1);
}

// Set up the input data queues
setUpQueues();

// SET FILE SIZE BASED ON INPUT FILE
// Open file
if ((inFilePtr = fopen(inFileName, ”rb”)) == NULL) { // File name should be a variable/macro

fprintf (stderr , ”Error opening file %s \n\r”, inFileName);
exit (1);

}

// Get size of data file
fseek(inFilePtr , 0, SEEK END);
fileSize = ftell (inFilePtr);

// Close file
fclose (inFilePtr);

// Create one thread per input data file
// There is one input data file per core type.
for (i = 0; i < NUM CORE TYPES; i++) {

strcpy(readFileThrdInfo[i]. fileName, inFileName);

int index;
index = mapToQueue(coreMap[i].coreType, coreQueue);

readFileThrdInfo[i]. queue = &coreQueue[index];

if (pthread create(&readFileThrds[i], NULL, readFile,
(void ∗) &readFileThrdInfo[i]))

printf (”Thread creation failed! \n\r”);
}

int j ;

// Go through core list and create a thread for each core
for (j = 0; j < numCores; j++) {

int index, index2;

// Does this core have a core map entry?
if ((index = matchToMap(cores[j].coreType)) < 0) {

// ERROR!
printf (”index: %d \n\r”, index);
printf (”cores type: %s \n\r”, cores[j]. coreType);
printf (

”ERROR: This core type does not exist in the core map!!! \n\r”);
}

95

// Does this core have an input data queue?
if ((index2 = mapToQueue(cores[j].coreType, coreQueue)) < 0) {

// ERROR!
printf (”index2: %d \n\r”, index2);
printf (”cores type: %s \n\r”, cores[j]. coreType);
printf (

”ERROR: This core type does not exist in the queue list!!! \n\r”);
}

// The function that will construct the request
functPtr = coreMap[index].funct;

inThrdInfo[j]. core = &cores[j];
inThrdInfo[j]. queue = &coreQueue[index2];

if (pthread create(&coreThrds[j], NULL, tripleDES,
(void ∗) &inThrdInfo[j]))

printf (”Thread creation failed! \n\r”);

}

// Create thread to received results from the FPGA boards
for (i = 0; i < numBoards; i++) {

if (pthread create(&recvResultThrds[i], NULL, recvResults,
(void ∗) &boards[i].sock))

printf (”Thread creation failed! \n\r”);
}

// Wait for all results to be received before continuing
for (i = 0; i < numBoards; i++) {

pthread join(recvResultThrds[i], NULL);
}

// Create write results threads
for (i = 0; i < NUM CORE TYPES; i++) {

strcpy(writeFileThrdInfo[i]. fileName, outFileName);

int index;
index = mapToResultList(coreMap[i].coreType, rList);

writeFileThrdInfo[i]. rList = &rList[index];

if (pthread create(&writeResultThrds[i], NULL, writeResults,
(void ∗) &writeFileThrdInfo[i]))

printf (”Thread creation failed! \n\r”);
}

// Wait for all results to be written
for (i = 0; i < NUM CORE TYPES; i++) {

pthread join(writeResultThrds[i], NULL);
}

// Clean up!

// Remove the message queues
removeAllQueues();

// Close the read sockets
for (i = 0; i < numCores; i++) {

close (cores [i]. location);
}

// Close the send sockets

96

for (i = 0; i < numBoards; i++) {
close (boards[i]. sock);

}

return 0;

}

B.2 Script to Run Software Application

#!/bin/sh
echo −n ”Enter core type: ”
read −e CORETYPE
echo −n ”Enter total number of boards in the system: ”
read −e NUMBOARDS
echo −n ”Enter total number of cores in the system: ”
read −e NUMCORES
echo −n ”Enter input filename: ”
read −e INFILENAME
UNCOMMENT TO VERIFY 3DES USING DECRYPTION
#echo −n ”Enter input file hexdump file: ”
#read −e INFILEHEXDUMP
OUTFILENAME=outFile.txt
UNCOMMENT TO VERIFY 3DES USING DECRYPTION
#OUTFILENAME2=outFile2.txt
#OUTFILENAME2HEXDUMP=outFile2HexDump.txt

for i in 1 2 3 4 5 6 7 8 9 10
do

time ./FPGA $CORETYPE $NUMBOARDS $NUMCORES 1 $INFILENAME $OUTFILENAME
UNCOMMENT TO VERIFY 3DES USING DECRYPTION
./FPGA $CORETYPE $NUMBOARDS $NUMCORES 0 $OUTFILENAME $OUTFILENAME2
hexdump $OUTFILENAME2 > $OUTFILENAME2HEXDUMP
diff $OUTFILENAME2HEXDUMP $INFILEHEXDUMP
done

B.3 Makefile for Software Application

CC = gcc
HDRS = wrapper.h
OBJS = wrapper.o
CFLAGS = −Wall −g −lpthread
EXECS = FPGA

all : $(EXECS)

%.o: %.c $(HDRS)
$(CC) −c $(CFLAGS) $< −o $@

FPGA: FPGA.c wrapper.o
$(CC) $(CFLAGS) $< $(OBJS) −o $@ $(LFLAGS)

97

clean:
/bin/rm −f $(OBJS) $(EXECS) core∗ ∗˜ semantic.cache

98

Appendix C

Hardware Core Manager

C.1 main.c

/∗
∗ Copyright (c) 2008 Xilinx, Inc. All rights reserved.
∗
∗ Xilinx, Inc.
∗ XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION ”AS IS” AS A
∗ COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
∗ ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
∗ STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
∗ IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
∗ FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
∗ XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
∗ THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
∗ ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE
∗ FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
∗ AND FITNESS FOR A PARTICULAR PURPOSE.
∗
∗/

//
// NOTE TO USER:
//
// Portions of this code were adapted from the lwip demo software application from
// the Xilinx EDK Standard IP Design with Pcores Addition reference design,
// which can be found at: http://www.xilinx.com/univ/xupv5−lx110t−bsb.htm.
//

#include ”xmk.h” // Must be first header file listed in order to use Xilkernel
#include <stdio.h>
#include ”xenv standalone.h”
#include ”xparameters.h”
#include ”netif/xadapter.h”
#include ”memory map.h”
#include ”wrapper.h”

99

#include ”xgpio.h”

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Constant Definitions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#define ESCAPE 0x1b

// Specify the base address of the MAC we are using
#ifdef XPAR ETHERNET MAC BASEADDR
#define EMAC BASEADDR XPAR ETHERNET MAC BASEADDR
#elif XPAR LLTEMAC 0 BASEADDR
#define EMAC BASEADDR XPAR LLTEMAC 0 BASEADDR
#else
#error ”Design needs to have at least one MAC”
#endif

/∗∗∗

Function: print ip

Usage: prints out the IP address

Parameter Definition:
− msg: message to print
− ip: IP address to print

∗∗/
void print ip(char ∗msg, struct ip addr ∗ip) {

print(msg);
xil printf (”%d.%d.%d.%d\n\r”, ip4 addr1(ip), ip4 addr2(ip), ip4 addr3(ip),

ip4 addr4(ip));
}

/∗∗∗

Function: print ip settings

Usage: prints out IP setting details

Parameter Definition:
− ip: IP address
− mask: netmask address
− gw: gateway address

∗∗/
void print ip settings (struct ip addr ∗ip, struct ip addr ∗mask,

struct ip addr ∗gw) {

print ip (”Board IP: ”, ip);
print ip (”Netmask : ”, mask);
print ip (”Gateway : ”, gw);

}

/∗∗∗

Function: main

Usage: starts Xilkernel

∗∗/
int main() {
#ifdef MICROBLAZE

microblaze init icache range (0, XPAR MICROBLAZE 0 CACHE BYTE SIZE);
microblaze init dcache range(0, XPAR MICROBLAZE 0 DCACHE BYTE SIZE);

100

microblaze enable exceptions();
#endif

// Enable caches
XCACHE ENABLE ICACHE();
XCACHE ENABLE DCACHE();

// Starts main thread()
xilkernel main ();

}

struct netif server netif ;

/∗∗∗

Function: startNetwork

Usage: sets up the IP address based on the DIP switch
settings ; sets up the core list ; sets up the network
interface ; starts the echo application thread

∗∗/
int startNetwork() {

struct netif ∗netif ;
struct ip addr ipaddr, netmask, gw;

// Every board has a unique MAC address.
unsigned char
mac ethernet address[] = { 0x00, 0x18, 0x3E, 0x00, 0xa3, 0x47 }; // Board #1
//unsigned char mac ethernet address[] = { 0x00, 0x18, 0x3E, 0x00, 0x8a, 0x02 }; // Board #2
//unsigned char mac ethernet address[] = { 0x00, 0x18, 0x3E, 0x00, 0xa2, 0xfa }; // Board #3

netif = &server netif;

// Set last digit of IP address using DIP switches
//
// This DIP switch code is adapted from BoardConnect code written by
// Dave Palframan (Bucknell EE ’09)
u8 data;
XGpio gpio;
XGpio Initialize(&gpio, XPAR DIP SWITCHES 8BIT DEVICE ID);
XGpio SetDataDirection(&gpio, 1, 0xFFFFFFFF);
data = (u8) XGpio DiscreteRead(&gpio, 1);

// Initialize IP addresses to be used
IP4 ADDR(&ipaddr, 192, 168, 1, data);
IP4 ADDR(&netmask, 255, 255, 255, 0);
IP4 ADDR(&gw, 192, 168, 1, 1);

// Print out IP settings of the board
xil printf (”\n\r”);
print ip settings (&ipaddr, &netmask, &gw);
xil printf (”\n\r”);

// Print all application headers
print echo app header();

xil printf (”\n\r\n\r”);
xil printf (”xemac add \n\r”);

// Add network interface to the netif list , and set it as default
if (!xemac add(netif, &ipaddr, &netmask, &gw, mac ethernet address,

EMAC BASEADDR)) {
xil printf (”Error adding N/W interface\n\r”);

101

return −1;
}

xil printf (” netif set default \n\r”);
netif set default (netif);

// Specify that the network if is up
xil printf (” netif set up \n\r”);
netif set up (netif);

// Start packet receive thread − required for lwIP operation
xil printf (”sys thread new \n\r”);

sys thread new(xemacif input thread, netif , DEFAULT THREAD PRIO);

// Start receiving requests
xil printf (”Ready to receive requests...\n\r”);

recvRequests();

return 0;
}

/∗∗∗

Function: main thread

Usage: initializes lwIP; starts the network thread

∗∗/
int main thread() {

// Initialize lwIP before calling sys thread new
lwip init ();

// Any thread using lwIP should be created using sys thread new
xil printf (”Starting network... \n\r”);

sys thread new(startNetwork, NULL, DEFAULT THREAD PRIO);

}

C.2 HCM.c

/∗
∗ Copyright (c) 2008 Xilinx, Inc. All rights reserved.
∗
∗ Xilinx, Inc.
∗ XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION ”AS IS” AS A
∗ COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
∗ ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
∗ STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
∗ IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
∗ FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
∗ XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
∗ THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
∗ ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE
∗ FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
∗ AND FITNESS FOR A PARTICULAR PURPOSE.
∗
∗/

//
// NOTE TO USER:
//

102

// Portions of this code were adapted from the lwip demo software application from
// the Xilinx EDK Standard IP Design with Pcores Addition reference design,
// which can be found at: http://www.xilinx.com/univ/xupv5−lx110t−bsb.htm.
//

#include ”xmk.h” // Must be first header file listed in order to use Xilkernel
#include <stdio.h>
#include <string.h>

#include <stdlib.h>
#include <stdint.h>

#include <sysace stdio.h>

#include ”lwip/inet.h”
#include ”lwip/sockets.h”
#include ”lwipopts.h”

#include ”xparameters.h”
#include ”xbasic types.h”
#include ”xstatus.h”
#include ”wrapper.h”

#include ”sys/timer.h”

ipCore cores[NUM CORES]; // Core list
queueInfo queueList[NUM CORE TYPES]; // Queue list

pthread mutex t sockMutex = PTHREAD MUTEX INITIALIZER;

int doneProcessing = 0;

pid t threadID[NUM CORES];

u16 t READ PORT = 9600;
u16 t WRITE PORT = 9601;

/∗∗∗

Function: checkPeripheral

Usage: checks that the peripheral exists

Parameter Definition:
− core: hardware core

∗∗/
void checkPeripheral(ipCore core) {

Xuint32 ∗baseaddr p = (Xuint32 ∗) (core.baseAddr);

// Check that the peripheral exists
XASSERT NONVOID(baseaddr p != XNULL);

}

/∗∗∗

Function: print echo app header

Usage: prints a header for the application

∗∗/

103

void print echo app header() {

xil printf (”\n\r−−−−−FPGA Processing Platform −−−−−−\n\r”);
xil printf (”You can connect to read port %d and send port %d \n\r”,

READ PORT, WRITE PORT);
}

/∗∗∗

Function: processCoreRequest

Usage: processes a core request from the host PC; sends
core information to the host PC

Parameter Definition:
− sock: socket to send core information to

∗∗/
void processCoreRequest(int sock) {

int bytesRcvd, bytesSent;
int i ;

// Core type buffer
uint8 t coreType[CORE TYPE SIZE];

// Number of cores on this FPGA
int numCores = NUM CORES;

// Length of the core response message buffer
int coreInfoBufferSize = sizeof(int) + (sizeof(coreType) ∗ NUM CORES);

// Core response message buffer
uint8 t coreInfoBuffer [coreInfoBufferSize];
uint8 t ∗coreInfoBufferPtr = coreInfoBuffer;

// Format value to network byte order
numCores = htonl(numCores);

// Copy the number of cores on this FPGA to the core response
// message buffer
memcpy(coreInfoBufferPtr, &numCores, sizeof(int));

coreInfoBufferPtr += sizeof(int);

for (i = 0; i < NUM CORES; i++) {
// Copy the core types into the core response message buffer
memset(coreType, ’\0’, CORE TYPE SIZE);
memcpy(coreType, cores[i].type, CORE TYPE SIZE);
memcpy(coreInfoBufferPtr, coreType, CORE TYPE SIZE);
coreInfoBufferPtr += CORE TYPE SIZE;

}

// Lock the socket , so that outgoing data does not get corrupted
pthread mutex lock(&sockMutex);

// Send core information
if ((bytesSent = sendMsg(sock, coreInfoBuffer, coreInfoBufferSize))

!= coreInfoBufferSize + sizeof(int)) {
printf (”Error! Sent unexpected number of bytes! \n\r”);
exit (1);

}

// Done sending data, so unlock the socket

104

pthread mutex unlock(&sockMutex);

}

/∗∗∗

Function: processDataRequest

Usage: places incoming data request messages into the
appropriate data queue

Parameter Definition:
− inMsg: data request message
− inMsgSize: length of data request message

∗∗/
void processDataRequest(uint8 t ∗inMsg, int inMsgSize) {

int i ;

// Temporary buffer
uint8 t tmpBuffer[inMsgSize];
uint8 t ∗tmpBufferPtr = tmpBuffer;

// Message structure
msgStruct msg = { 1 };

// Core type buffer
uint8 t coreType[CORE TYPE SIZE];

memset(tmpBuffer, 0, sizeof(tmpBuffer));
memset(coreType, 0, sizeof(coreType));

// Copy the data request message to the temporary buffer
memcpy(tmpBuffer, inMsg, inMsgSize);

// Copy the core type from the data request
memcpy(coreType, tmpBuffer, sizeof(coreType));

// Copy the data request message into the message buffer
memcpy(msg.msgBuffer, tmpBuffer, sizeof(tmpBuffer));

// Place the data request message into the appropriate queue
for (i = 0; i < NUM CORE TYPES; i++) {

if (strcmp(coreType, queueList[i].coreType) == 0) {
if ((msgsnd(queueList[i].msgid, &msg, (sizeof(msg) − sizeof(long)),

0)) == −1)
xil printf (”msgsnd error! \n\r”);

break;
}

// No match!
xil printf (”ERROR: data queue for this core type does not exist! \n\r”);

}
}

/∗∗∗

Function: processRequest

Usage: receives messages from the host PC and processes them
based on the message type

Parameter Definition:

105

− read sd: socket to read requests from
− write sd: socket to write responses to

∗∗/
void processRequest(int read sd, int write sd) {

// Request message
uint8 t inMsg[MAX MSG SIZE];
uint8 t ∗inMsgPtr = inMsg;

int bytesRcvd;
char msgType;
int i = 0;

// While there are still incoming messages...
while ((bytesRcvd = recvMsg(read sd, inMsg, MAX MSG SIZE)) > 0) {

inMsgPtr = inMsg;

// Copy the message type
memcpy(&msgType, inMsgPtr, MSG TYPE SIZE);

// Is it a core request?
if (msgType == CORE MSG TYPE) {

// Set up the queues
setUpQueues();

// Set up core list
setUpCoreList(CORE INFO FILE NAME, write sd);

// Process the core request message
processCoreRequest(write sd);

// Is it a data request?
} else if (msgType == DATA MSG TYPE) {

// Skip over the message type portion of the data request message
inMsgPtr += MSG TYPE SIZE;

// Process the data request message
processDataRequest(inMsgPtr, (bytesRcvd − MSG TYPE SIZE));

} else {
xil printf (”Invalid request!”);

}

}

// Kill processData threads, remove message queues, close sockets, and
// re− initialize threadIDCount, so that we can perform multiple test
// runs of a particular configuration without having to restart the
// FPGA board.

// Kills processData threads
for (i = 0; i < NUM CORES; i++) {

kill (threadID[i]);
}

// Removes message queues
for (i = 0; i < NUM CORE TYPES; i++) {

msgctl(queueList[i]. msgid, IPC RMID, (struct msqid ds ∗) NULL);
}

106

// Close read and write sockets
close (read sd);
close (write sd);

// Re−initialize threadIDCount
threadIDCount = 0;

}

/∗∗∗

Function: recvRequests

Usage: Establishes the connection to the host PC. Sets up
the read and write sockets .

∗∗/
void recvRequests() {

// Since the sockets API of the Xilinx−provided implementation of lwip
// is not thread−safe, it is necessary to create two separate sockets −
// one for reading and one for writing.

int sock, sock2, read sd, write sd ;
struct sockaddr in address, address2, remote, remote2;
int size , size2 ;

if ((sock = lwip socket(AF INET, SOCK STREAM, IPPROTO TCP)) < 0)
return;

if ((sock2 = lwip socket(AF INET, SOCK STREAM, IPPROTO TCP)) < 0)
return;

address. sin family = AF INET;
address. sin port = htons(READ PORT);
address.sin addr.s addr = INADDR ANY;

address2.sin family = AF INET;
address2.sin port = htons(WRITE PORT);
address2.sin addr.s addr = INADDR ANY;

if (lwip bind(sock, (struct sockaddr ∗) &address, sizeof(address)) < 0)
return;

if (lwip bind(sock2, (struct sockaddr ∗) &address2, sizeof(address2)) < 0)
return;

lwip listen (sock, MAX SOCKETS);

lwip listen (sock2, MAX SOCKETS);

size = sizeof(remote);
size2 = sizeof(remote2);

while (1) {
read sd = lwip accept(sock, (struct sockaddr ∗) &remote, &size);
write sd = lwip accept(sock2, (struct sockaddr ∗) &remote2, &size2);
processRequest(read sd, write sd);

}
}

107

C.3 wrapper.c

#include ”xmk.h” // Must be first header file listed

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include ”lwip/inet.h”
#include ”lwip/sockets.h”
#include ”lwipopts.h”
#include ”wrapper.h”

/∗∗∗

VARIABLE DECLARATIONS

∗∗/
const char NEWLINE = ’\n’;
const char STOP = ’!’;

// User−defined core type map
const coreMapEntry entry[NUM CORE TYPES] = { { ”3DES”, &tripleDESFunction } };

queueInfo queueList[NUM CORE TYPES];
threadInfo tInfo [NUM CORES];

// MUTEXES
pthread mutex t uartMutex = PTHREAD MUTEX INITIALIZER;
pthread mutex t totalSentMutex = PTHREAD MUTEX INITIALIZER;
pthread mutex t threadIDMutex = PTHREAD MUTEX INITIALIZER;
pthread mutex t sockMutex;

int doneProcressing;
int threadIDCount = 0;

/∗∗∗

Function: matchToMap

Usage: Check if the given core type is a valid
core type, as defined by the user in the core map.

Parameter Definition:
− inCoreType: input core type

∗∗/

int matchToMap(char ∗inCoreType) {

int i ;

for (i = 0; i < NUM CORE TYPES; i++) {
// Does this core type match a core type defined by the user
// in the core map?
if (strcmp(inCoreType, entry[i].coreType) == 0) {

return i; // Yes, there is a match!
}

return −1; // No, there is not a match!
}

108

}

/∗∗∗

Function: mapToQueue

Usage: Place data of a given core type into
its respective queue.

Parameter Definition:
− inCoreType: input core type

∗∗/

int mapToQueue(char ∗inCoreType) {

int i ;

for (i = 0; i < NUM CORE TYPES; i++) {
// Does this core type match one of the queues’ core type?
if (strcmp(inCoreType, queueList[i].coreType) == 0) {

return i; // Yes, there is a match!
}

return −1; // No, there is no match!
}

}

/∗∗∗

Function: setUpQueues

Usage: Sets up the queues using a message queue.

∗∗/

void setUpQueues() {

int queueIndex;

for (queueIndex = 0; queueIndex < NUM CORE TYPES; queueIndex++) {
int msgid;

memset(queueList[queueIndex].coreType, ’\0’,
sizeof(queueList[queueIndex].coreType));

// Use the core types defined in the core map to label the queues
strcpy(queueList[queueIndex].coreType, entry[queueIndex].coreType);

// Create a unique message id for the queue
msgid = msgget((key t) queueIndex, IPC CREAT);

// Set this queue’s message id to the message id that was just
// created
queueList[queueIndex].msgid = msgid;

}
}

/∗∗∗

Function: processData

Usage: Grabs input data from message queue, processes
the input data, and send the result back to the

109

host PC.

Parameter Definition:
− arg: Pointer to a threadInfo data structure

∗∗/

void ∗processData(void ∗arg) {

threadInfo ∗tInfoPtr = (threadInfo ∗) arg;
threadInfo tInfo = ∗tInfoPtr;

msgStruct msg = { 1 };

int bytesSent;

pthread mutex lock(&threadIDMutex);
threadID[threadIDCount] = get currentPID();
threadIDCount++;
pthread mutex unlock(&threadIDMutex);

int tmpDataSize = CORE TYPE SIZE + JOB ID SIZE + tInfo.inputSize;
int inDataSize = tInfo.inputSize;
int resultDataSize = tInfo.outputSize;
int outDataSize = CORE TYPE SIZE + JOB ID SIZE + tInfo.outputSize;

uint8 t tmpData[tmpDataSize];
uint8 t ∗tmpDataPtr = tmpData;
uint8 t inData[inDataSize];
uint8 t resultData[resultDataSize];
uint8 t outData[outDataSize];
uint8 t ∗outDataPtr = outData;
uint8 t coreType[CORE TYPE SIZE];
uint32 t jobID;

// Function pointer to the function used to process the data for this
// thread’s core type
void (∗functPtr)(uint8 t ∗dataIn, uint8 t ∗dataOut, Xuint32 baseAddr) =

tInfo .functPtr;

while (1) {

// Clear data structures
memset(tmpData, 0, tmpDataSize);
memset(resultData, 0, resultDataSize);
memset(outData, 0, outDataSize);
memset(coreType, 0, CORE TYPE SIZE);
memset(&jobID, 0, JOB ID SIZE);
memset(&msg, 0, sizeof(msg));

// Reset bytesSent
bytesSent = 0;

// Reset pointers
tmpDataPtr = tmpData;
outDataPtr = outData;

// Grab data from the queue
if (msgrcv(tInfo.msgid, &msg, (sizeof(msg) − sizeof(long)), 0, 0) == −1) {

xil printf (”msgrcv error! \n\r”);
exit (1);

} else {

// Copy the data message into the temporary buffer

110

memcpy(tmpData, msg.msgBuffer, tmpDataSize);

// Move the pointer to the start of the input data
tmpDataPtr += (CORE TYPE SIZE + JOB ID SIZE);

// Copy the input data
memcpy(inData, tmpDataPtr, inDataSize);

// Process the data using the core−specific function
functPtr(inData, resultData, tInfo .baseAddr);

// Copy the core type and job ID into the data response message
memcpy(outDataPtr, msg.msgBuffer, (CORE TYPE SIZE + JOB ID SIZE));

// Move the pointer to where the output data should be copied to
outDataPtr += (CORE TYPE SIZE + JOB ID SIZE);

// Copy the output data into the data response message
memcpy(outDataPtr, resultData, resultDataSize);

// Lock the socket that data is going to be sent through,
// so the data response doesn’t get corrupted
pthread mutex lock(&sockMutex);

// Send the data response to the host PC
if ((bytesSent = sendMsg(tInfo.sock, outData, outDataSize))

!= outDataSize + sizeof(int)) {
pthread mutex lock(&uartMutex);
xil printf (”Error: expected to send %d bytes, sent %d! \n\r”,

outDataSize, bytesSent);
pthread mutex unlock(&uartMutex);

}

// Done sending, so unlock the socket
pthread mutex unlock(&sockMutex);

}
}

pthread exit(NULL);
}

/∗∗∗

Function: setUpCoreList

Usage: Reads core information from a file on the CF card
and builds the core list based on this information.
A thread is created for each core.

Parameter Definitions:
− fileName: name of the file located on the Flash card
that contains the board’s core information
− sd: socket that data will be sent to

∗∗/

void setUpCoreList(const char ∗fileName, int sd) {

int fd; // File descriptor for core information file
char infoBuffer[MAX RECV BUF]; // Char. read from the core info. file
char string[MAX RECV BUF] = ””; // Core information string

int stop = 0;
int coreIndex = 0;

111

int i = 0;

ipCore inCore;

// Open the file on the CF card that contains the core information
if ((fd = sysace fopen(fileName, ”r”)) == 0) {

xil printf (”Cannot open input file: %s \r\n”, fileName);
exit (1);

}

// While there’s still data to be read from the file ...
while (!stop) {

// Read from file
if (sysace fread(infoBuffer , 1, 1, fd) == −1) {

xil printf (”Error with reading! \r\n”);
exit (1);

}

// Is the character not a newline and also not a stop character?
if ((∗ infoBuffer != NEWLINE) && (∗infoBuffer != STOP)) {

// Yes, so concatenate it to the core information string
strcat (string , infoBuffer);

// Is the character is a new line character?
} else if (∗ infoBuffer == NEWLINE) {

int index, index2;

memset(&inCore, 0, sizeof(inCore));

// Parse the core information string into the necessary data
// structures (e.g. core type, base address, core input data
// size , and core output data size)
sscanf(string , ”%[ˆ,],%lx,%d,%d\n”, &inCore.type, &inCore.baseAddr,

&inCore.inputSize, &inCore.outputSize);

cores [coreIndex] = inCore;

// Index of the queue that matches this core type
index = mapToQueue(inCore.type);

// Index of the core map entry that matches this core type
index2 = matchToMap(inCore.type);

// SET UP THE CORE INFORMATION

// Base address of the core that this thread will be responsible
// for sending input data to and receiving data from
tInfo [i]. baseAddr = cores[coreIndex].baseAddr;

// Message id for this thread’s core queue
tInfo [i]. msgid = queueList[index].msgid;

// Pointer to the function that processes data for this core type
tInfo [i]. functPtr = entry[index2].functPtr;

// Socket that this thread will need to send data through
tInfo [i]. sock = sd;

// Combined length of the core’s input data (in bytes)
tInfo [i]. inputSize = cores[coreIndex].inputSize;

// Combined length of the core’s output data (in bytes)

112

tInfo [i]. outputSize = cores[coreIndex].outputSize;

// Create the core−specific thread
sys thread new(processData, &tInfo[i], DEFAULT THREAD PRIO);

coreIndex++;
i++;

// Reset the string
memset(string, ’\0’ , sizeof(string));

// Has the end of the file been reached?
} else if (∗ infoBuffer == STOP) {

// Yes
stop = 1;

}
}

// Close the file
if (sysace fclose (fd) == −1) {

xil printf (”Cannot close input file : %s \r\n”, fileName);
exit (1);

}
}

/∗∗∗

Function: mapCoreToFunct

Usage: Match the given core type to the function that is
responsible for processing said core type.

Parameter Definitions:
− inCoreType: input core type
− inFunct: pointer to a user−defined function that
processes data for a given core type

∗∗/

int mapCoreToFunct(char ∗inCoreType, void(∗inFunct)(uint8 t ∗inData,
uint8 t ∗outData, Xuint32 baseAddr)) {

int i ;

for (i = 0; i < NUM CORE TYPES; i++) {
// Does this core type match one of functions defined in the core map?
if (strcmp(inCoreType, entry[i].coreType) == 0) {

inFunct = entry[i]. functPtr; // Yes, there is a match!
return i;

}
}

return −1; // No, there is no match!
}

/∗∗∗

Function: tripleDESFunction

Usage: This is a user−defined function that formats and
sends input data to a triple DES hardware core.

Parameter Definitions:
− dataIn: input data
− dataOut: result of the tripleDES computation

113

− baseAddr: baseAddr of the tripleDES core

∗∗/

void tripleDESFunction(uint8 t ∗dataIn, uint8 t ∗dataOut, Xuint32 baseAddr) {
long key1 in A;
long key1 in B;
long key2 in A;
long key2 in B;
long key3 in A;
long key3 in B;
long funct select ; // FFFFFFFF for encryption; 00000000 for decryption
long data in A;
long data in B;
long data out A;
long data out B;
long encrypted A;
long encrypted B;

// Pointer to the hardware core
volatile tripleDES ∗hw core = (tripleDES∗) (baseAddr);

// Input data
uint8 t inputData[TRIPLEDES DATA SIZE];
uint8 t ∗inputDataPtr = inputData;

// Output data
uint8 t resultData[DATA SIZE];
uint8 t ∗resultDataPtr = resultData;

// Copy the the input data
memcpy(inputData, dataIn, TRIPLEDES DATA SIZE);

// Copy the first 32 bits of key 1
memcpy(&key1 in A, inputDataPtr, KEY SIZE / 2);
inputDataPtr += KEY SIZE / 2;

// Copy the last 32 bits of key 1
memcpy(&key1 in B, inputDataPtr, KEY SIZE / 2);
inputDataPtr += KEY SIZE / 2;

// Copy the first 32 bits of key 2
memcpy(&key2 in A, inputDataPtr, KEY SIZE / 2);
inputDataPtr += KEY SIZE / 2;

// Copy the last 32 bits of key 2
memcpy(&key2 in B, inputDataPtr, KEY SIZE / 2);
inputDataPtr += KEY SIZE / 2;

// Copy the first 32 bits of key 3
memcpy(&key3 in A, inputDataPtr, KEY SIZE / 2);
inputDataPtr += KEY SIZE / 2;

// Copy the last 32 bits of key 3
memcpy(&key3 in B, inputDataPtr, KEY SIZE / 2);
inputDataPtr += KEY SIZE / 2;

// Copy the function select
memcpy(&funct select, inputDataPtr, FUNCT SELECT SIZE);
inputDataPtr += FUNCT SELECT SIZE;

// Copy the first 32 bits of input data
memcpy(&data in A, inputDataPtr, DATA SIZE / 2);
inputDataPtr += DATA SIZE / 2;

114

// Copy the last 32 bits of input data
memcpy(&data in B, inputDataPtr, DATA SIZE / 2);

// WRITE DATA TO THE HARDWARE CORE

// Function select
hw core−>function select = funct select;

// Key 1
hw core−>key1 in A = key1 in A;
hw core−>key1 in B = key1 in B;

// Key 2
hw core−>key2 in A = key2 in A;
hw core−>key2 in B = key2 in B;

// Key 3
hw core−>key3 in A = key3 in A;
hw core−>key3 in B = key3 in B;

// Input data
hw core−>data in A = data in A;
hw core−>data in B = data in B;

// Need to wait before grabbing data from core
sleep (0);

// READ RESULT FROM THE HARDWARE CORE
data out A = hw core−>data out A;
data out B = hw core−>data out B;

// Copy the first 32 bits of the result
memcpy(resultDataPtr, &(hw core−>data out A), (DATA SIZE / 2));
resultDataPtr += (DATA SIZE / 2);

// Copy the last 32 bits of the result
memcpy(resultDataPtr, &(hw core−>data out B), (DATA SIZE / 2));

// Copy the result to the output data buffer
memcpy(dataOut, resultData, TRIPLEDES RESULT SIZE);

}

/∗∗∗

Function: recvMsg

Usage: Receives messages

Parameter Definitions:
− sock: socket to read messages from
− inMsg: incoming message buffer
− maxMsgSize: maximum number of bytes to read

Return value: the number of bytes received

∗∗/
int recvMsg(int sock, uint8 t ∗inMsg, int maxMsgSize) {

int msgHeaderSize = sizeof(int); // Use 4 bytes to store the message size
int msgTotalSize = 0; // Message size (in bytes)
int bytesRcvd = 0; // Number of bytes received

// Read the size of the message
if ((bytesRcvd = readn(sock, &msgTotalSize, msgHeaderSize))

115

!= msgHeaderSize) {
pthread mutex lock(&uartMutex);
xil printf (”Error: expected to receive %d bytes, received %d! \n\r”,

msgHeaderSize, bytesRcvd);
pthread mutex unlock(&uartMutex);
return −1;

}

// Set the number of bytes to expect
msgTotalSize = ntohl(msgTotalSize);

// Check the size of the incoming message
if (msgTotalSize > maxMsgSize) {

pthread mutex lock(&uartMutex);
xil printf (”Incoming message too large for receiving buffer! \n\r”);

pthread mutex unlock(&uartMutex);
return −1;

}

// Clear out the message buffer
memset(inMsg, ’\0’, sizeof(inMsg));

// Read the message
if ((bytesRcvd = readn(sock, inMsg, msgTotalSize)) != msgTotalSize) {

pthread mutex lock(&uartMutex);
xil printf (”Error: expected to receive %d bytes, received %d! \n\r”,

msgTotalSize, bytesRcvd);
pthread mutex unlock(&uartMutex);
return −1;

}

return bytesRcvd;
}

/∗∗∗

Function: sendMsg

Usage: Sends messages

Parameter Definitions:
− sock: socket to send messages through
− outMsg: outgoing message buffer
− msgSize: number of bytes to send

Return value: the number of bytes sent

∗∗/
int sendMsg(int sock, uint8 t ∗outMsg, int msgSize) {

int msgHeaderSize = sizeof(int); // Use 4 bytes to store the message size
int bytesSent = 0;

int msgTotalSize = htonl(msgSize);

// Length of the outgoing message
int msgBufferSize = msgHeaderSize + msgSize;

// Outgoing message buffer
uint8 t msgBuffer[msgBufferSize];
uint8 t ∗msgBufferPtr = msgBuffer;

// Copy the length of the outgoing message
memcpy(msgBufferPtr, &msgTotalSize, msgHeaderSize);
msgBufferPtr += msgHeaderSize;

116

// Copy the outgoing message
memcpy(msgBufferPtr, outMsg, msgSize);

// Send the message
if ((bytesSent = writen(sock, msgBuffer, msgBufferSize)) != msgBufferSize) {

pthread mutex lock(&uartMutex);
xil printf (”Error: expected to send %d bytes, sent %d! \n\r”,

msgHeaderSize, bytesSent);
pthread mutex unlock(&uartMutex);
return −1;

}

return bytesSent;
}

/∗∗∗

Function: readn

Usage: reads bytes from a socket

Parameter Definitions:
− sock: socket to read bytes from
− inMsg: incoming message buffer
− numBytesToRead: number of bytes to read

Return value: the number of bytes read

−−

Adapted from:
Unix Network Programming − The Sockets Networking API
Volume 1, Third Edition
by W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff
(Page 89)

∗∗/

int readn(int sock, void ∗inMsg, int numBytesToRead) {
int numBytesLeft;
int numBytesRead;
void ∗inMsgPtr = inMsg;

numBytesLeft = numBytesToRead;

// While there are still bytes to read ...
while (numBytesLeft > 0) {

// Read bytes
if ((numBytesRead = recv(sock, inMsgPtr, numBytesLeft, 0)) < 0) {

// Handle errors
if (errno == EINTR) {

pthread mutex lock(&uartMutex);
xil printf (”Calling recv again ... \n\r”);

pthread mutex unlock(&uartMutex);
numBytesRead = 0; // Call recv again

} else {
return −1;

}
} else if (numBytesRead == 0) {

pthread mutex lock(&uartMutex);
xil printf (”No more bytes for recv... \n\r”);

pthread mutex unlock(&uartMutex);
break; // No more bytes

117

}

numBytesLeft −= numBytesRead;
inMsgPtr += numBytesRead;

}

return (numBytesToRead − numBytesLeft); // Return >= 0
}

/∗∗∗

Function: writen

Usage: write bytes to a socket

Parameter Definitions:
− sock: socket to write bytes to
− outMsg: outgoing message buffer
− numBytesToWrite: number of bytes to write

Return value: the number of bytes written

−−

Adapted from:
Unix Network Programming − The Sockets Networking API
Volume 1, Third Edition
by W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff

(Page 89)

∗∗/
int writen(int sock, void ∗outMsg, int numBytesToWrite) {

int numBytesLeft;
int numBytesWritten;
void ∗outMsgPtr = outMsg;

numBytesLeft = numBytesToWrite;

void ∗outMsgPtrTest = outMsg;

// While there are still bytes to write ...
while (numBytesLeft > 0) {

// Send bytes
if ((numBytesWritten = send(sock, outMsgPtr, numBytesLeft, 0)) <= 0) {

// Handle errors
if (numBytesWritten < 0 && errno == EINTR) {

pthread mutex lock(&uartMutex);
xil printf (”Call send again ... \n\r”);

pthread mutex unlock(&uartMutex);
numBytesWritten = 0; // Call send again

} else {
return −1; // Error

}
}

numBytesLeft −= numBytesWritten;
outMsgPtr += numBytesWritten;

}

return numBytesToWrite;
}

118

C.4 wrapper.h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <pthread.h>
#include <errno.h>
#include <stdint.h>
#include <semaphore.h>
#include ”lwip/inet.h”
#include ”lwipopts.h”
#include ”xbasic types.h”
#include ”sys/msg.h”
#include ”sys/ipc.h”
#include ”sys/timer.h”
#include ”sys/process.h”

/∗∗

MACROS

∗∗/
#define NUM BOARDS 1
#define NUM CORES 3 // Must manually change this value when configuration is changed

#define CORE TYPE CHARS 4 // Number of characters in the core type string
#define IP ADDR CHARS 15 // Number of characters in the IP address string (###.###.###.###)
#define NUM CORE TYPES 1 // Number of different core types in system

#define MAX SOCKETS 5 // Maximum number of sockets to listen on
#define CORE INFO FILE NAME ”cores.txt” // Name of file on CF card containing core info.
#define CORE MSG TYPE ’c’ // Core request definition
#define DATA MSG TYPE ’d’ // Data request definition
#define MSG TYPE SIZE 1 // Message type size in bytes
#define CORE TYPE SIZE 8 // Core type size in bytes
#define JOB ID SIZE 4 // Job ID size in bytes
#define KEY SIZE 8 // 3DES key input data size in bytes
#define NUM KEYS 3 // Number of keys
#define FUNCT SELECT SIZE 4 // Function select input data size in bytes
#define DATA SIZE 8 // Output data size in bytes
#define TRIPLEDES DATA SIZE ((KEY SIZE ∗ NUM KEYS) + FUNCT SELECT SIZE + DATA SIZE)
#define MAX DATA SIZE ((KEY SIZE ∗ NUM KEYS) + FUNCT SELECT SIZE + DATA SIZE)
#define MAX MSG SIZE (MSG TYPE SIZE + CORE TYPE SIZE + JOB ID SIZE + MAX DATA SIZE)
#define TRIPLEDES RESULT SIZE 8 // Output data size in bytes
#define MAX RECV BUF 2048

/∗∗

STRUCTURES

∗∗/
//
// Core information
//
// Represents a hardware core
//
typedef struct {

char type[CORE TYPE SIZE]; // core type; i.e. multiplier
Xuint32 baseAddr; // base address
int inputSize; // input size (in bytes)
int outputSize; // output size (in bytes)

} ipCore;

119

//
// Message structure
//
// Represents a message that gets placed into an input data queue
//
typedef struct {

long msgCount; // Message number
uint8 t msgBuffer[MAX MSG SIZE]; // Message buffer

} msgStruct;

//
// Core map entry
//
// A data structure used by the user to assigned a core−specific function
// to a particular core type
//
typedef struct {

char coreType[CORE TYPE SIZE]; // Core type, i.e. ”tripleDES, ”FIR”...
void (∗functPtr)(uint8 t ∗dataIn, uint8 t ∗dataOut, Xuint32 baseAddr); // Pointer to function

} coreMapEntry;
// associated with the core type

//
// Queue information
//
// Represent an input data queue
//
typedef struct {

char coreType[CORE TYPE SIZE]; // Core type
int msgid; // Message id

} queueInfo;

//
// Thread information
//
// Represents a core−specific thread
//
typedef struct {

int msgid; // Input data queue message id
Xuint32 baseAddr; // Hardware core base address
int sock; // Socket to send data to
int inputSize; // Core input data size (in bytes)
int outputSize; // Core output data size (in bytes)
void (∗functPtr)(uint8 t ∗dataIn, uint8 t ∗dataOut, Xuint32 baseAddr); // Pointer to core−specific function

} threadInfo;

/∗∗∗

EXTERNAL VARIABLES

∗∗/
// Character definitions
extern const char STOP;
extern const char NEWLINE;

// Core information
extern ipCore cores[NUM CORES];

// Core map entries
extern const coreMapEntry entry[NUM CORE TYPES];

// Queue information
extern queueInfo queueList[NUM CORE TYPES];

120

// Thread information
extern threadInfo tInfo[NUM CORES];

// Mutexes
extern pthread mutex t uartMutex;
extern pthread mutex t sockMutex;
extern pthread mutex t threadIDMutex;

// Thread ID
extern pid t threadID[NUM CORES];
extern int threadIDCount;

/∗∗∗

EXTERNAL FUNCTIONS

∗∗/

// Initialization functions
extern void makeQueues();
extern void makeThread();
extern void setUpCoreList(const char ∗fileName, int sd);
extern void setUpQueues();
extern int setupSocket(char ∗serverIP, unsigned short serverPort);

// Message reading/writing/passing functions
extern int readn(int sock, void ∗inMsg, int numBytesToRead);
extern int recvData(int sock, char ∗dataBuffer);
extern int recvMsg(int sock, uint8 t ∗inMsg, int maxMsgSize);
extern void recvRequests();
extern int sendData(int sock, int jobID, char ∗data);
extern int sendMsg(int sock, uint8 t ∗outMsg, int msgSize);
extern int writen(int sock, void ∗outMsg, int numBytesToWrite);

// Mapping functions
extern int mapToMap(char ∗inCoreType);
extern int matchToQueue(char ∗inCoreType);

// Other useful functions
extern ipCore ∗getCore(char ∗coreType, ipCore cores[]);
extern void ∗processData(void ∗arg);

/∗∗∗

CORE−SPECIFIC INFORMATION

∗∗/
//
// tripleDES
//
// Stores all the necessary input and output data for a 3DES hardware core
//
typedef struct {

long key1 in A; // First 32 bits of key 1
long key1 in B; // Last 32 bits of key 1
long key2 in A; // First 32 bits of key 2
long key2 in B; // Last 32 bits of key 2
long key3 in A; // First 32 bits of key 3
long key3 in B; // Last 32 bits of key 3
long function select ; // 0xFFFFFFFF for encryption; 0 for decryption
long data in A; // First 32 bits of input data
long data in B; // Last 32 bits of input data
long data out A; // First 32 bits of output data

121

long data out B; // Last 32 bits of output data
} tripleDES;

// Core−specific function for 3DES
extern void tripleDESFunction(uint8 t ∗dataIn, uint8 t ∗dataOut,

Xuint32 baseAddr);

C.5 memory map.h

/∗∗
∗
∗ XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION ”AS IS”
∗ AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
∗ SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
∗ OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
∗ APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
∗ THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
∗ AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
∗ FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
∗ WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
∗ IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
∗ REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
∗ INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
∗ FOR A PARTICULAR PURPOSE.
∗
∗ (c) Copyright 2007 Xilinx Inc.
∗ All rights reserved.
∗
∗∗/

/∗∗
∗ Header file that translates existing constants in xparameters.h
∗ into constants that are used by the software applications .
∗ Note: xparameters.h must be included before this file .
∗∗/

#ifndef MEMORY MAP H
#define MEMORY MAP H

#define UART BASEADDR XPAR RS232 UART 1 BASEADDR
#define UART2 BASEADDR XPAR RS232 UART 2 BASEADDR
#define UART BAUDRATE 9600
#define UART CLOCK XPAR XUARTNS550 CLOCK HZ
#define TMRCTR BASEADDR XPAR XPS TIMER 1 BASEADDR

#define SYSACE BASEADDR XPAR SYSACE COMPACTFLASH BASEADDR
#define SRAM BASEADDR XPAR SRAM MEM0 BASEADDR
#define FLASH BASEADDR XPAR SRAM MEM1 BASEADDR

#define PUSHB CWSEN BASEADDR XPAR PUSH BUTTONS 5BIT BASEADDR
#define DIPSW BASEADDR XPAR DIP SWITCHES 8BIT BASEADDR

#define LEDS CWSEN BASEADDR XPAR LEDS POSITIONS BASEADDR
#define GPIO LEDS BASEADDR XPAR LEDS 8BIT BASEADDR

#define ERR LEDS BASEADDR XPAR XPS GPIO 0 BASEADDR
#define PIEZO BASEADDR XPAR XPS GPIO 1 BASEADDR
#define ROTARY ENCODER BASEADDR XPAR XPS GPIO 2 BASEADDR
#define LCD BASEADDR XPAR XPS GPIO 4 BASEADDR

#define IIC 0 BASE ADDRESS XPAR XPS IIC 0 BASEADDR
#define IIC 1 BASE ADDRESS XPAR XPS IIC 1 BASEADDR

122

#define IIC 2 BASE ADDRESS XPAR XPS IIC 2 BASEADDR

#define IIC BASE ADDRESS XPAR IIC EEPROM BASEADDR
#define TFT DEVICE ID XPAR PLBV46 DVI CNTLR 0 DEVICE ID
#define TFT BASEADDR XPAR PLBV46 DVI CNTLR 0 DCR BASEADDR
#define ETHERNET BASEADDR XPAR LLTEMAC 0 BASEADDR

//#define PPC440

#ifdef PPC440
#define DDR BASEADDR XPAR DDR2 SDRAM MEM BASEADDR
#define CPU CORE FREQUENCY XPAR CPU PPC440 CORE CLOCK FREQ HZ
#else
#define DDR BASEADDR XPAR DDR2 SDRAM MPMC BASEADDR
#define CPU CORE FREQUENCY XPAR MICROBLAZE CORE CLOCK FREQ HZ
#endif

//#define PPC440CACHE
#ifdef PPC440CACHE
#define PPC440 ICACHE 0xC0000000
#define PPC440 DCACHE 0xC0000000
#endif

#endif

123

Appendix D

MATLAB Implementation

D.1 Script to Run 3DES

% Prompt user for inputs
% Note: keys and file names must be entered as strings, so they must have
% single quote marks around them
k1 = input(’Enter key 1: ’);
k2 = input(’Enter key 2: ’);
k3 = input(’Enter key 3: ’);
numTestRuns = input(’Enter number of test runs: ’);
inFileName = input(’Enter input file name: ’);
outFileName = input(’Enter output file name: ’);
outResultsFileName = input(’Enter results file name: ’);

results = zeros(1,numTestRuns);

fid = fopen(outResultsFileName, ’w’);

for i=1:numTestRuns
profile on;
TripleDES(inFileName, k1, k2, k3, 1, outFileName);
p = profile (’ info ’);
disp([p.FunctionTable(p.FunctionHistory(2,1)).TotalTime]);
profile off
results (i) = [p.FunctionTable(p.FunctionHistory(2,1)).TotalTime];
fprintf(fid , ’Test Run #%d: %10.3f seconds\n’, i, results(i));

end

average = sum(results)/numTestRuns

fprintf(fid , ’Average Time: %10.3f seconds\n’, average);

fclose(fid);

124

D.2 3DES MATLAB Code

The source code for helper functions, InitPerm(), InvInitPerm(), DESRoundKeys, SBox(),
DESRoundKeyFunction(), and DES() can be found at [27].

function y = TripleDES(inFileName,inKey1,inKey2,inKey3,inFunct, outFileName)
%
% Triple DES Function
%
% Input Parameters:
%
% inFileName: input file (e.g. inFile . jpg , inFile . txt)
% inKey1: key 1 in hexadecimal format
% inKey2: key 2 in hexadecimal format
% inKey3: key 3 in hexadecimal format
% inFunct: function selection− 1 for encryption, 0 for decryption
% outFileName: output file (e.g. outFile. jpg , outFile. txt)
%
% Return value:
%
% y: binary vector of encrypted/decrypted data
%
% Overview of Triple DES:
%
% E Key# = DES encryption with Key #
% D Key# = DES decryption with Key #
%
% Encryption: E Key3(D Key2(E Key1(Message))) = Output
% Decryption: D Key1(E Key2(D Key3(Output))) = Message
%
% Example Usage:
%
% >> TripleDES(’file.jpg’, ’0123456789ABCDEF’, ’0123456789ABCDEF’, ’0123456789ABCDEF’, 1, ’outFile.jpg’)
%
%

% Array of 32 zeros, for the case when there isn’t an even number of 32−bit
% data chunks
extraData = 0;

% Open file
fid = fopen(inFileName);

% Read file in unsigned 32−bit chunks
[data, amountOfData] = fread(fid, inf, ’ubit32’);

% Close file
fclose(fid);

fileInfo = dir(inFileName);
fileInfoBits = fileInfo .bytes∗8;

extraBits = mod(fileInfoBits ,32);

% Can we evenly divide all the 32−bit chunks of data into pairs to form 64−bit chunks of data?
if (mod(amountOfData, 2) == 0) % Divisible by 2

counter = amountOfData;
else % Not divisible by 2

data = [data ; extraData]; % Add 32 zeros
counter = amountOfData + 1; % Increment amount of data since we added data

end

125

% Vector to hold output data
outData = [];

% Convert Key1 from hexadecimal format to binary vector
key1 = hex2bin(char(inKey1));

% Convert Key2 from hexadecimal format to binary vector
key2 = hex2bin(char(inKey2));

% Convert Key3 from hexadecimal format to binary vector
key3 = hex2bin(char(inKey3));

for i=1:2:counter

% Convert from decimal to binary in 32−bit chunks since converting
% in 64−bit chunks isn’t accurate
inMsg A = de2bi(data(i), 32);
inMsg B = de2bi(data(i+1), 32);

% Concatenate 32−bit chunks to form 64−bit chunk
inMsg = [inMsg A inMsg B];

% 3DES
if (inFunct == 1)

% Encryption
outEncrypt = DES(DESDecrypt (DES (inMsg, key1), key2), key3);
outData = [outData outEncrypt];

elseif (inFunct == 0)
% Decryption
outDecrypt = DESDecrypt(DES(DESDecrypt(inMsg, key3), key2), key1);
outData = [outData outDecrypt];

else
% Invalid value for function
fprintf(’ERROR! Invalid value for function! Valid values: 1 for encryption, 0 for decryption. \n\r’);

end

end

% Create the file
fid2 = fopen(outFileName,’w’);

% Write data to file
fwrite(fid2, outData, ’ubit1’);

% Close the file
fclose(fid2);

%fprintf(’Size of outData: %d bits \n\r’, size(outData,2));

y = outData;

126

D.3 DESDecrypt MATLAB Code

function C = DESDecrypt(P,Key)
% C = DES(P,Key)
% Inputs: P = 64 bit (plaintext) vector P, Key = a 64 bit vector
% that serves as an admissible DES key.
% Output: C = the 64 bit (ciphertext) vector that corresponds to the
% output of the DES encryption algorithm.
% If the key is not admissible (i .e ., if the parity check bits do not
% satisfy the required properties) the program will produce an error message.

% UNCOMMENT TO ENFORCE PARITY BIT REQUIREMENT OF DES
%First we check if the parity check bits are correct .
% for i = 8:8:64
% if mod(Key(i)+sum(Key(i−7:i−1)),2)==0
% error(’Key fails parity bit requirement of DES, use another key and try again.’), return
% end
% end

%We generate the 16 round keys; the ith row of the following matrix is the
%ith round key (of 48 bits)
RoundKeys = DESRoundKeys(Key);

%Step 1: Initial Permutation
PIP = InitPerm(P);
L = PIP(1:32); R = PIP(33:64);

%Step 2: 16 Round Feistel Cipher
for round = 1:16

RoundKey = RoundKeys(17−round,:);
Lnew = R;
Rnew = xor(L,DESRoundKeyFunction(R,RoundKey));
L = Lnew; R = Rnew;

end

%Step 3: Left/Right switch, and then apply inverse of initial permutation
%to get the ciphertext

C = InvInitPerm([R L]);

127

	Bucknell University
	Bucknell Digital Commons
	2011

	Design and Development of an FPGA-based Distributed Computing Processing Platform
	Juliana Su
	Recommended Citation

	4js084_2011_Signature
	4js084_2011
	Introduction
	FPGAs
	Distributed Computing
	Problem Overview
	Contributions
	Thesis Organization

	Problem Statement
	Challenges of Designing with FPGAs
	Development Time
	Hardware/Software Partitioning
	FPGA Fabric

	Design Requirements
	Summary

	Related Work
	Reconfigurable Computing Systems
	Splash/Splash 2
	PRISM
	SLAAC
	Tower of Power
	Adaptive Computing Systems (ACS) Application Programming Interface (API)

	Baylor University Cluster
	The Reconfigurable Computing Cluster (RCC) Project

	Types of Applications
	Digital Signal Processing
	Bioinformatics
	Cryptography

	Summary

	Design and Implementation
	System Overview
	Software Framework
	Conventions
	Initialization
	Communication
	Data Queues

	Processing Data
	Reading and Formatting Input Data
	Receiving Results

	Hardware Core Manager Framework
	Conventions
	Operating System
	Initialization
	Receiving Requests
	Processing Core Requests
	Input Data Queue Setup
	Core List Setup

	Processing Data Requests

	Communication
	Messages
	Message Components
	Types of Messages
	Exchanging Messages

	Summary

	Testing and Results
	Overview
	Experimental Setup
	System Components
	Host PC
	FPGA Boards
	Hardware Base System
	Network
	Input Data Files

	Development Tools

	Test Application
	3DES
	3DES Hardware Core
	Interfacing with the 3DES Core
	Verification

	Test Scenarios
	Single Core, Single Board Configuration
	Multiple Cores, Single Board Configuration
	Single Core Per Board, Multiple Boards Configuration
	Multiple Cores Per Board, Multiple Boards Configuration

	Software Implementation
	Preliminary Conclusions
	Performance Bottleneck
	Hardware Core
	File I/O
	Network Transmission
	Analysis

	Summary

	Conclusion
	Summary
	Future Work

	Bibliography
	Software Framework
	wrapper.c
	wrapper.h

	Example Software Application
	FPGA.c
	Script to Run Software Application
	Makefile for Software Application

	Hardware Core Manager
	main.c
	HCM.c
	wrapper.c
	wrapper.h
	memory_map.h

	MATLAB Implementation
	Script to Run 3DES
	3DES MATLAB Code
	DESDecrypt MATLAB Code

