5,138 research outputs found

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations

    Formal Reasoning Using an Iterative Approach with an Integrated Web IDE

    Full text link
    This paper summarizes our experience in communicating the elements of reasoning about correctness, and the central role of formal specifications in reasoning about modular, component-based software using a language and an integrated Web IDE designed for the purpose. Our experience in using such an IDE, supported by a 'push-button' verifying compiler in a classroom setting, reveals the highly iterative process learners use to arrive at suitably specified, automatically provable code. We explain how the IDE facilitates reasoning at each step of this process by providing human readable verification conditions (VCs) and feedback from an integrated prover that clearly indicates unprovable VCs to help identify obstacles to completing proofs. The paper discusses the IDE's usage in verified software development using several examples drawn from actual classroom lectures and student assignments to illustrate principles of design-by-contract and the iterative process of creating and subsequently refining assertions, such as loop invariants in object-based code.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    FOAL 2004 Proceedings: Foundations of Aspect-Oriented Languages Workshop at AOSD 2004

    Get PDF
    Aspect-oriented programming is a paradigm in software engineering and FOAL logos courtesy of Luca Cardelli programming languages that promises better support for separation of concerns. The third Foundations of Aspect-Oriented Languages (FOAL) workshop was held at the Third International Conference on Aspect-Oriented Software Development in Lancaster, UK, on March 23, 2004. This workshop was designed to be a forum for research in formal foundations of aspect-oriented programming languages. The call for papers announced the areas of interest for FOAL as including, but not limited to: semantics of aspect-oriented languages, specification and verification for such languages, type systems, static analysis, theory of testing, theory of aspect composition, and theory of aspect translation (compilation) and rewriting. The call for papers welcomed all theoretical and foundational studies of foundations of aspect-oriented languages. The goals of this FOAL workshop were to: � Make progress on the foundations of aspect-oriented programming languages. � Exchange ideas about semantics and formal methods for aspect-oriented programming languages. � Foster interest within the programming language theory and types communities in aspect-oriented programming languages. � Foster interest within the formal methods community in aspect-oriented programming and the problems of reasoning about aspect-oriented programs. The papers at the workshop, which are included in the proceedings, were selected frompapers submitted by researchers worldwide. Due to time limitations at the workshop, not all of the submitted papers were selected for presentation. FOAL also welcomed an invited talk by James Riely (DePaul University), the abstract of which is included below. The workshop was organized by Gary T. Leavens (Iowa State University), Ralf L?ammel (CWI and Vrije Universiteit, Amsterdam), and Curtis Clifton (Iowa State University). The program committee was chaired by L?ammel and included L?ammel, Leavens, Clifton, Lodewijk Bergmans (University of Twente), John Tang Boyland (University of Wisconsin, Milwaukee), William R. Cook (University of Texas at Austin), Tzilla Elrad (Illinois Institute of Technology), Kathleen Fisher (AT&T Labs�Research), Radha Jagadeesan (DePaul University), Shmuel Katz (Technion�Israel Institute of Technology), Shriram Krishnamurthi (Brown University), Mira Mezini (Darmstadt University of Technology), Todd Millstein (University of California, Los Angeles), Benjamin C. Pierce (University of Pennsylvania), Henny Sipma (Stanford University), Mario S?udholt ( ?Ecole des Mines de Nantes), and David Walker (Princeton University). We thank the organizers of AOSD 2004 for hosting the workshop
    corecore