4,640 research outputs found

    Designing of Collagen Based Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Scaffolds for Tissue Engineering

    Get PDF
    P(3HB-co-4HB) copolymer was modified using collagen by adapting dual solvent system. The surface properties of samples were characterized by Fourier transforminfrared spectroscopy (FTIR), scanning electron microscopy (SEM), organic elemental analysis (CHN analysis), and water contact angle measurements.The effects of collagen concentration, scaffold thickness, and 4HB molar fraction on the hydrophilicitywere optimized by the Taguchi method.The orthogonal array experiment was conducted to obtain the response for a hydrophilic scaffold. Analysis of variance (ANOVA) was used to determine the significant parameters and determine the optimal level for each parameter. The results also showed that the hydrophilicity of P(3HB-co-4HB)/collagen blend scaffolds increased as the collagen concentration increased up to 15 wt% with a molar fraction of 50mol% at 0.1mm scaffold thickness. The biocompatibility of the P(3HB-co-4HB)/collagen blend surface was evaluated by fibroblast cell (L929) culture.The collagen blend scaffold surfaces showed significant cell adhesion and growth as compared to P(3HB-co-4HB) copolymer scaffolds

    Application of soft computing models with input vectors of snow cover area in addition to hydro-climatic data to predict the sediment loads

    Get PDF
    The accurate estimate of sediment load is important for management of the river ecosystem, designing of water infrastructures, and planning of reservoir operations. The direct measurement of sediment is the most credible method to estimate the sediments. However, this requires a lot of time and resources. Because of these two constraints, most often, it is not possible to continuously measure the daily sediments for most of the gauging sites. Nowadays, data-based sediment prediction models are famous for bridging the data gaps in the estimation of sediment loads. In data-driven sediment predictions models, the selection of input vectors is critical in determining the best structure of models for the accurate estimation of sediment yields. In this study, time series inputs of snow cover area, basin effective rainfall, mean basin average temperature, and mean basin evapotranspiration in addition to the flows were assessed for the prediction of sediment loads. The input vectors were assessed with artificial neural network (ANN), adaptive neuro-fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro-fuzzy logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro-fuzzy logic inference system with fuzzy c-means clustering (ANFIS-FCM), multiple adaptive regression splines (MARS), and sediment rating curve (SRC) models for the Gilgit River, the tributary of the Indus River in Pakistan. The comparison of different input vectors showed improvements in the prediction of sediments by using the snow cover area in addition to flows, effective rainfall, temperature, and evapotranspiration. Overall, the ANN model performed better than all other models. However, as regards sediment load peak time series, the sediment loads predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to the measured sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment yields with a relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 80.16% of relative accuracies, respectively. The developed multiple linear regression equation of all models show an R2^{2} value of 0.85 and 0.74 during the training and testing period, respectively

    Sustainable Reservoir Management Approaches under Impacts of Climate Change - A Case Study of Mangla Reservoir, Pakistan

    Get PDF
    Reservoir sedimentation is a major issue for water resource management around the world. It has serious economic, environmental, and social consequences, such as reduced water storage capacity, increased flooding risk, decreased hydropower generation, and deteriorated water quality. Increased rainfall intensity, higher temperatures, and more extreme weather events due to climate change are expected to exacerbate the problem of reservoir sedimentation. As a result, sedimentation must be managed to ensure the long-term viability of reservoirs and their associated infrastructure. Effective reservoir sedimentation management in the face of climate change necessitates an understanding of the sedimentation process and the factors that influence it, such as land use practices, erosion, and climate. Monitoring and modelling sedimentation rates are also useful tools for forecasting future impacts and making management decisions. The goal of this research is to create long-term reservoir management strategies in the face of climate change by simulating the effects of various reservoir-operating strategies on reservoir sedimentation and sediment delta movement at Mangla Reservoir in Pakistan (the second-largest dam in the country). In order to assess the impact of the Mangla Reservoir's sedimentation and reservoir life, a framework was developed. This framework incorporates both hydrological and morphodynamic models and various soft computing models. In addition to taking climate change uncertainty into consideration, the proposed framework also incorporates sediment source, sediment delivery, and reservoir morphology changes. Furthermore, the purpose of this study is to provide a practical methodology based on the limited data available. In the first phase of this study, it was investigated how to accurately quantify the missing suspended sediment load (SSL) data in rivers by utilizing various techniques, such as sediment rating curves (SRC) and soft computing models (SCMs), including local linear regression (LLR), artificial neural networks (ANN) and wavelet-cum-ANN (WANN). Further, the Gamma and M-test were performed to select the best-input variables and appropriate data length for SCMs development. Based on an evaluation of the outcomes of all leading models for SSL estimation, it can be concluded that SCMs are more effective than SRC approaches. Additionally, the results also indicated that the WANN model was the most accurate model for reconstructing the SSL time series because it is capable of identifying the salient characteristics in a data series. The second phase of this study examined the feasibility of using four satellite precipitation datasets (SPDs) which included GPM, PERSIANN_CDR, CHIRPS, and CMORPH to predict streamflow and sediment loads (SL) within a poorly gauged mountainous catchment, by employing the SWAT hydrological model as well as SWAT coupled soft computing models (SCMs) such as artificial neural networks (SWAT-ANN), random forests (SWAT-RF), and support vector regression (SWAT-SVR). SCMs were developed using the outputs of un-calibrated SWAT hydrological models to improve the predictions. The results indicate that during the entire simulation, the GPM shows the best performance in both schemes, while PERSIAN_CDR and CHIRPS also perform well, whereas CMORPH predicts streamflow for the Upper Jhelum River Basin (UJRB) with relatively poor performance. Among the best GPM-based models, SWAT-RF offered the best performance to simulate the entire streamflow, while SWAT-ANN excelled at simulating the SL. Hence, hydrological coupled SCMs based on SPDs could be an effective technique for simulating streamflow and SL, particularly in complex terrain where gauge network density is low or uneven. The third and last phase of this study investigated the impact of different reservoir operating strategies on Mangla reservoir sedimentation using a 1D sediment transport model. To improve the accuracy of the model, more accurate boundary conditions for flow and sediment load were incorporated into the numerical model (derived from the first and second phases of this study) so that the successive morphodynamic model could precisely predict bed level changes under given climate conditions. Further, in order to assess the long-term effect of a changing climate, a Global Climate Model (GCM) under Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 for the 21st century is used. The long-term modelling results showed that a gradual increase in the reservoir minimum operating level (MOL) slows down the delta movement rate and the bed level close to the dam. However, it may compromise the downstream irrigation demand during periods of high water demand. The findings may help the reservoir managers to improve the reservoir operation rules and ultimately support the objective of sustainable reservoir use for societal benefit. In summary, this study provides comprehensive insights into reservoir sedimentation phenomena and recommends an operational strategy that is both feasible and sustainable over the long term under the impact of climate change, especially in cases where a lack of data exists. Basically, it is very important to improve the accuracy of sediment load estimates, which are essential in the design and operation of reservoir structures and operating plans in response to incoming sediment loads, ensuring accurate reservoir lifespan predictions. Furthermore, the production of highly accurate streamflow forecasts, particularly when on-site data is limited, is important and can be achieved by the use of satellite-based precipitation data in conjunction with hydrological and soft computing models. Ultimately, the use of soft computing methods produces significantly improved input data for sediment load and discharge, enabling the application of one-dimensional hydro-morphodynamic numerical models to evaluate sediment dynamics and reservoir useful life under the influence of climate change at various operating conditions in a way that is adequate for evaluating sediment dynamics.:Chapter 1: Introduction Chapter 2:Reconstruction of Sediment Load Data in Rivers Chapter 3:Assessment of The Hydrological and Coupled Soft Computing Models, Based on Different Satellite Precipitation Datasets, To Simulate Streamflow and Sediment Load in A Mountainous Catchment Chapter 4:Simulating the Impact of Climate Change with Different Reservoir Operating Strategies on Sedimentation of the Mangla Reservoir, Northern Pakistan Chapter 5:Conclusions and Recommendation

    Assessment of climate change and development of data based prediction models of sediment yields in Upper Indus Basin

    Get PDF
    Hohe Raten von Sedimentflüssen und ihre Schätzungen in Flusseinzugsgebieten erfordern die Auswahl effizienter Quantifizierungsansätze mit einem besseren Verständnis der dominierten Faktoren, die den Erosionsprozess auf zeitlicher und räumlicher Ebene steuern. Die vorherige Bewertung von Einflussfaktoren wie Abflussvariation, Klima, Landschaft und Fließprozess ist hilfreich, um den geeigneten Modellierungsansatz zur Quantifizierung der Sedimenterträge zu entwickeln. Einer der schwächsten Aspekte bei der Quantifizierung der Sedimentfracht ist die Verwendung traditioneller Beziehung zwischen Strömungsgeschwindigkeit und Bodensatzlöschung (SRC), bei denen die hydrometeorologischen Schwankungen, Abflusserzeugungsprozesse wie Schneedecke, Schneeschmelzen, Eisschmelzen usw. nicht berücksichtigt werden können. In vielen Fällen führt die empirische Q-SSC Beziehung daher zu ungenauen Prognosen. Heute können datenbasierte Modelle mit künstlicher Intelligenz die Sedimentfracht präziser abschätzen. Die datenbasierten Modelle lernen aus den eingespeisten Datensätzen, indem sie bei komplexen Phänomenen wie dem Sedimenttransport die geeignete funktionale Beziehung zwischen dem Output und seinen Input-Variablen herstellen. In diesem Zusammenhang wurden die datenbasierten Modellierungsalgorithmen in der vorliegenden Forschungsarbeit am Lehrstuhl für Wasser- und Flussgebietsmanagement des Karlsruher Instituts für Technologie in Karlsruhe entwickelt, die zur Vorhersage von Sedimenten in oberen unteren Einzugsgebieten des oberen Indusbeckens von Pakistan (UIB) verwendet wurden. Die dieser Arbeit zugrunde liegende Methodik gliedert sich in vier Bearbeitungsschritte: (1) Vergleichende Bewertung der räumlichen Variabilität und der Trends von Abflüssen und Sedimentfrachten unter dem Einfluss des Klimawandels im oberen Indus-Becken (2) Anwendung von Soft-Computing-Modellen mit Eingabevektoren der schneedeckten Fläche zusätzlich zu hydro-klimatischen Daten zur Vorhersage der Sedimentfracht (3) Vorhersage der Sedimentfracht unter Verwendung der NDVI-Datensätze (Hydroclimate and Normalized Difference Vegetation Index) mit Soft-Computing-Modellen (4) Klimasignalisierung bei suspendierten Sedimentausträge aus Gletscher und Schnee dominierten Teileinzugsgebeiten im oberen Indus-Becken (UIB). Diese im UIB durchgeführte Analyse hat es ermöglicht, die dominiertenden Parameter wie Schneedecke und hydrologischen Prozesses besser zu und in eine verbesserte Prognose der Sedimentfrachten einfließen zu lassen. Die Analyse der Bewertung des Klimawandels von Flüssen und Sedimenten in schnee- und gletscherdominierten UIB von 13 Messstationen zeigt, dass sich die jährlichen Flüsse und suspendierten Sedimente am Hauptindus in Besham Qila stromaufwärts des Tarbela-Reservoirs im ausgeglichenen Zustand befinden. Jedoch, die jährlichen Konzentrationen suspendierter Sedimente (SSC) wurden signifikant gesenkt und lagen zwischen 18,56% und 28,20% pro Jahrzehnt in Gilgit an der Alam Bridge (von Schnee und Gletschern dominiertes Becken), Indus in Kachura und Brandu in Daggar (von weniger Niederschlag dominiertes Becken). Während der Sommerperiode war der SSC signifikant reduziert und lag zwischen 18,63% und 27,79% pro Jahrzehnt, zusammen mit den Flüssen in den Regionen Hindukush und West-Karakorum aufgrund von Anomalien des Klimawandels und im unteren Unterbecken mit Regen aufgrund der Niederschlagsreduzierung. Die SSC während der Wintersaison waren jedoch aufgrund der signifikanten Erwärmung der durchschnittlichen Lufttemperatur signifikant erhöht und lagen zwischen 20,08% und 40,72% pro Jahrzehnt. Die datenbasierte Modellierung im schnee und gletscherdominierten Gilgit Teilbecken unter Verwendung eines künstlichen neuronalen Netzwerks (ANN), eines adaptiven Neuro-Fuzzy-Logik-Inferenzsystems mit Gitterpartition (ANFIS-GP) und eines adaptiven Neuro-Fuzzy-Logik-Inferenzsystems mit subtraktivem Clustering (ANFIS) -SC), ein adaptives Neuro-Fuzzy-Logik- Inferenzsystem mit Fuzzy-C-Mittel-Clustering, multiplen adaptiven Regressionssplines (MARS) und Sedimentbewertungskurven (SRC) durchgeführt. Die Ergebnisse von Algorithmen für maschinelles Lernen zeigen, dass die Eingabekombination aus täglichen Abflüssen (Qt), Schneedeckenfläche (SCAt), Temperatur (Tt-1) und Evapotranspiration (Evapt-1) die Leistung der Sedimentvorhersagemodelle verbesserne. Nach dem Vergleich der Gesamtleistung der Modelle schnitt das ANN-Modell besser ab als die übrigen Modelle. Bei der Vorhersage der Sedimentfrachten in Spitzenzeiten lag die Vorhersage der ANN-, ANIS-FCM- und MARS-Modelle näher an den gemessenen Sedimentbelastungen. Das ANIS-FCM-Modell mit einem absoluten Gesamtfehler von 81,31% schnitt bei der Vorhersage der Spitzensedimente besser ab als ANN und MARS mit einem absoluten Gesamtfehler von 80,17% bzw. 80,16%. Die datenbasierte Modellierung der Sedimentfrachten im von Regen dominierten Brandu-Teilbecken wurde unter Verwendung von Datensätzen für Hydroklima und biophysikalische Eingaben durchgeführt, die aus Strömungen, Niederschlag, mittlerer Lufttemperatur und normalisiertem Differenzvegetationsindex (NDVI) bestehen. Die Ergebnisse von vier ANNs (Artificial Neural Networks) und drei ANFIS-Algorithmen (Adaptive Neuro-Fuzzy Logic Inference System) für das Brandu Teilnbecken haben gezeigt, dass der mittels Fernerkundung bestimmte NDVI als biophysikalische Parameter zusätzlich zu den Hydroklima-Parametern die Leistung das Modell nicht verbessert. Der ANFIS-GP schnitt in der Testphase besser ab als andere Modelle mit einer Eingangskombination aus Durchfluss und Niederschlag. ANN, eingebettet in Levenberg-Marquardt (ANN-LM) für den Zeitraum 1981-2010, schnitt jedoch am besten mit Eingabekombinationen aus Strömungen, Niederschlag und mittleren Lufttemperaturen ab. Die Ergebnisgenauigkeit R2 unter Verwendung des ANN-LM-Algorithmus verbesserte sich im Vergleich zur Sedimentbewertungskurve (SRC) um bis zu 28%. Es wurde gezeigt, dass für den unteren Teil der UIB-Flüsse Niederschlag und mittlere Lufttemperatur dominierende Faktoren für die Vorhersage von Sedimenterträgen sind und biophysikalische Parameter (NDVI) eine untergeordnete Rolle spielen. Die Modellierung zur Bewertung der Änderungen des SSC in schnee- und gletschergespeiste Gilgit- und Astore-Teilbecken wurde unter Verwendung des Temp-Index degree day modell durchgeführt. Die Ergebnisse des Mann-Kendall-Trendtests in den Flüssen Gilgit und Astore zeigten, dass der Anstieg des SSC während der Wintersaison auf die Erwärmung der mittleren Lufttemperatur, die Zunahme der Winterniederschläge und die Zunahme der Schneeschmelzen im Winter zurückzuführen ist. Während der Frühjahrssaison haben die Niederschlags- und Schneedeckenanteile im Gilgit-Unterbecken zugenommen, im Gegensatz zu seiner Verringerung im Astore-Unterbecken. Im Gilgit-Unterbecken war der SSC im Sommer aufgrund des kombinierten Effekts der Karakorum-Klimaanomalie und der vergrößerten Schneedecke signifikant reduziert. Die Reduzierung des Sommer-SSC im Gilgit Fluss ist auf die Abkühlung der Sommertemperatur und die Bedeckung der exponierten proglazialen Landschaft zurückzuführen, die auf erhöhten Schnee, verringerte Trümmerflüsse Trümmerflüsse und verringerte Schneeschmelzen von Trümmergletschern zurückzuführen sind. Im Gegensatz zum Gilgit River sind die SSC im Astore River im Sommer erhöht. Der Anstieg des SSC im Astore-Unterbecken ist auf die Verringerung des Frühlingsniederschlags und der Schneedecke, die Erwärmung der mittleren Sommerlufttemperatur und den Anstieg des effektiven Niederschlags zurückzuführen. Die Ergebnisse zeigen ferner eine Verschiebung der Dominanz von Gletscherschmelzen zu Schneeschmelzen im Gilgit-Unterbecken und von Schnee zu Niederschlägen im Astore-Unterbecken bei Sedimenteden Sedimentfrachten in UIB. Die vorliegende Forschungsarbeit zur Bewertung der klimabedingten Veränderungen des SSC und seiner Vorhersage sowohl in den oberen als auch in den unteren Teilbecken des UIB wird nützlich sein, um den Sedimenttransportprozess besser zu verstehen und aufbauen auf dem verbessertenProzessverständnis ein angepasstes Sedimentmanagement und angepasste Planungen der zukünftigen Wasserinfrastrukturen im UIB ableiten zu können

    Modification Methods For Soil And Water Assessment Tool (SWAT) Performance In Simulating Runoff And Sediment Of Watersheds In Cold Regions

    Get PDF
    Streamflow predication is an important task in water management studies. It is needed in the operation and optimization of water resources and flood control projects. The accuracy of these predictions has a great influence on the water resources management and decision making processes. Various models and tool packages have been developed for simulation and prediction of streamflow. Among them, the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, which was originally developed to predict the impacts of land management on water, sediment and agricultural chemical yield in large watershed simulations. Results of the SWAT streamflow simulations have indicated that this tool has deficiencies in simulating the peaks in streamflow generated by snow melting processes in the cold regions. Since global temperature is projected to be increased and the phenomena will change the snow melting characteristics in the snow dominant areas, such as the time of first melt and rate of melting. This trend along with more precipitation will cause more flooding problems in these regions. To improve daily streamflow prediction in these regions, two methods were developed. Firstly, a method was performed by separation of winter and summer seasons simulated streamflow with subsequent validation conducted in two different seasons using Calibration Uncertainty Procedure (SWAT_CUP). It should be noted that sensitivity analysis was performed on each of the seasons separately. The second method was conducted based on coupling Artificial Neural Networks (ANNs ) with calibrated and validated results of SWAT_CUP without any separation of the seasons. The calibrated streamflow, precipitation, maximum temperature, minimum temperature, snow depth, wind speed, and relative humidity were used as inputs to the ANNs model. The results of both methods have indicated significant improvements in the simulated series. In comparison between these two methods, the operation of the second method is considered better than the first method. Although, the first method has shown improvement in the simulated results but there is still a difference between the peak streamflow and the measured streamflow by USGS (United State Geological Survey) stations. However, this difference was found diminished in the simulations using the second method. ANNs method have increased peak streamflow predication in about 70%. With this improvement, the weakness of the SWAT model in simulating sediment accumulation due to improper peak run off simulation was eliminated

    Estimation of hydraulic conductivity and its uncertainty from grain-size data using GLUE and artificial neural networks

    Full text link
    peer reviewedaudience: researcher, professionalVarious approaches exist to relate saturated hydraulic conductivity (Ks) to grain-size data. Most methods use a single grain-size parameter and hence omit the information encompassed by the entire grain-size distribution. This study compares two data-driven modelling methods, i.e.multiple linear regression and artificial neural networks, that use the entire grain-size distribution data as input for Ks prediction. Besides the predictive capacity of the methods, the uncertainty associated with the model predictions is also evaluated, since such information is important for stochastic groundwater flow and contaminant transport modelling. Artificial neural networks (ANNs) are combined with a generalized likelihood uncertainty estimation (GLUE) approach to predict Ks from grain-size data. The resulting GLUE-ANN hydraulic conductivity predictions and associated uncertainty estimates are compared with those obtained from the multiple linear regression models by a leave-one-out cross-validation. The GLUE-ANN ensemble prediction proved to be slightly better than multiple linear regression. The prediction uncertainty, however, was reduced by half an order of magnitude on average, and decreased at most by an order of magnitude. This demonstrates that the proposed method outperforms classical data-driven modelling techniques. Moreover, a comparison with methods from literature demonstrates the importance of site specific calibration. The dataset used for this purpose originates mainly from unconsolidated sandy sediments of the Neogene aquifer, northern Belgium. The proposed predictive models are developed for 173 grain-size -Ks pairs. Finally, an application with the optimized models is presented for a borehole lacking Ks data

    A Framework For Assessing Water Quality, Prioritizing Recovery Potential, And Analyzing Placement Of Best Management Practices

    Get PDF
    Motivated by the U.S. EPA goals, this research developed a framework to support identification and restoration of nutrient-impaired water bodies. The study objectives were developing total nitrogen (TN) and total phosphorus (TP) prediction models, evaluating the impact of social indicators on assessing recovery potential, and developing a spatial decision support system for choice and placement of best management practices (BMPS). An artificial neural network was used to develop TN and TP predictive regional models for U.S. lakes using easily measurable and cost-effective variables. The performance of models was superior for regions trained with larger datasets and/or regions with lower temperature and precipitation variability. The use of datasets larger than existing records and obtained from homogeneous climatic region was suggested to achieve the desired performance. The impact of social indicators on assessing a recovery potential was studied by comparing four watersheds using ecological, stressor, and social indicators. Social indicators were grouped into socio-economic, organizational, and information and planning subcategories. The existing U.S. EPA recovery potential screening tool prioritizes restoration for a water body with the most favorable ecological and social condition as well as the least stressing factors. In the present study, water bodies ranked lowest were observed with lower social scores associated with lower socio-economic conditions. This could mean a manager would take a water body with lower socio-economic condition as the lowest priority for restoration. It is suggested that such prioritization plan should carefully incorporate community goals in a prioritization effort because restoration supports an improvement of quality of life. A spatial decision support system was developed with the necessary information to assess nitrogen (n) pollution and methods to estimate an annual exported n load into Beasley Lake, Mississippi. A decision analysis of choice and placement of BMPS was performed based on performance, site suitability, and establishment cost criteria. From this analysis, a BMP scenario that reduces 25% of the exported load at an establishment and an annual opportunity cost-to-performance ratios of 148 /kgand29/kg and 29 /kg, respectively, was developed. The presented approach supports similar efforts when the use of existing watershed models is limited by data availability

    Geotechnical Properties Of the Travis Peak (Hosston) Formation in East Texas: A Compressive and Tensile Strength Analysis using Regression Analysis.

    Get PDF
    The estimation of rock mass strength is a key parameter in geotechnical engineering which is used in the design of geotechnical structures like tunnels, dams and slopes. Geotechnical engineering is the branch of civil engineering which works on the principles of soil and rock mechanics to evaluate subsurface conditions, stability of slopes, foundations of structures and construction of earthworks. The main focus of this study was to calculate the strength of Lower Cretaceous Travis Peak Formation rocks of East Texas and to check the accuracy by comparing it with Regression analysis. The parameters which were used were the Uniaxial Compression Test (UCS) and tensile strength. Core samples were collected at Stephen F. Austin State University Core Lab Repository. Strength tests were conducted at the lab facilities of University of Houston. Parameters such as load for UCS and tensile strength were experimentally determined using procedures outlined by the International Society of Rock Mechanics (ISRM, Rock characterization testing and monitoring, 1981). In this study, a linear regression analysis was also performed to predict and compare the strength values of the core rock samples from the Travis Peak Formation. Based on previous studies, it was shown that regression analysis is accurate in providing the strength of rocks. The results obtained from the tests are useful in predicting the strength of rocks from the Travis Peak Formation. Uniaxial compression and tensile strength tests were performed for 12 samples at the Department of Civil Engineering’s Laboratory at the University of Houston. Before the tests, the samples were cut before into the size of 7.2 to 3.6 in ratio of length to diameter to maintain a 2:1 ratio. The average value of UCS for the 12 samples was 27.43 MPa. Similarly, the average value for tensile strength for 12 samples was 4.05 MPa. Based on the values which were calculated, these samples were classified as medium strength rocks which belongs to Class D. Linear Regression analysis was performed using MATLAB software for predicting the strength of core rock samples. The equation for linear regression was in the form of , where y is the tensile strength and x is UCS. The root mean square generated for regression analysis was 0.6378
    corecore