8 research outputs found

    Real valued negative selection for anomaly detection in wireless ad hoc networks

    Get PDF
    Wireless ad hoc network is one of the network technologies that have gained lots of attention from computer scientists for the future telecommunication applications. However it has inherits the major vulnerabilities from its ancestor (i.e., the fixed wired networks) but cannot inherit all the conventional intrusion detection capabilities due to its features and characteristics. Wireless ad hoc network has the potential to become the de facto standard for future wireless networking because of its open medium and dynamic features. Non-infrastructure network such as wireless ad hoc networks are expected to become an important part of 4G architecture in the future. In this paper, we study the use of an Artificial Immune System (AIS) as anomaly detector in a wireless ad hoc network. The main goal of our research is to build a system that can learn and detect new and unknown attacks. To achieve our goal, we studied how the real-valued negative selection algorithm can be applied in wireless ad hoc network network and finally we proposed the enhancements to real-valued negative selection algorithm for anomaly detection in wireless ad hoc network

    An Artificial Immune System Approach to Misbehavior Detection in Mobile Ad-Hoc Networks

    Get PDF
    In mobile ad-hoc networks, nodes act both as terminals and information relays, and participate in a common routing protocol, such as Dynamic Source Routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. In this paper we investigate the use of an Artificial Immune System (AIS) to detect node misbehavior in a mobile ad-hoc network using DSR. The system is inspired by the natural immune system of vertebrates. Our goal is to be able to build a system that, like its natural counterpart, automatically learns and detects new misbehavior. We describe the first step of our design; it employs negative selection, an algorithm used by the natural immune system. We define how we map the natural immune system concepts such as self, antigen and antibody to a mobile ad-hoc network, and give the resulting algorithm for misbehavior detection

    Enhancing Bio-inspired Intrusion Response in Ad-hoc Networks

    Get PDF
    Practical applications of Ad-hoc networks are developing everyday and safeguarding their security is becoming more important. Because of their specific qualities, ad-hoc networks require an anomaly detection system that adapts to its changing behaviour quickly. Bio-inspired algorithms provide dynamic, adaptive, real-time methods of intrusion detection and particularly in initiating a response. A key component of bio-inspired response methods is the use of feedback from the network to better adapt their response to the specific attack and the type of network at hand. However, calculating an appropriate length of time at which to provide feedback is crucial - premature feedback or delayed feedback from the network can have adverse effects on the attack mitigation process. The antigen-degeneracy response selection algorithm (Schaust & Szczerbicka, 2011) is one of the few bio-inspired algorithms for selecting the appropriate response for misbehavior that considers network performance and adapts to the network. The main drawback of this algorithm is that it has no measure of the amount of time to wait before it can take performance measurements (feedback) from the network. In this thesis, we attempt to develop an understanding of the length of time required before feedback is provided in a range of types of ad-hoc network that have been subject of an attack, in order that future development of bio-inspired intrusion detection algorithms can be enhanced.Aiming toward an adaptive timer, we discuss that ad-hoc networks can be divided into Wireless Sensor Network (WSN), Wireless Personal Area Network (WPAN) and Spontaneously Networked Users (SNU). We use ns2 to simulate these three different types of ad-hoc networks, each of which is analysed for changes in its throughput after an attack is responded to, in order to calculate the corresponding feedback time. The feedback time in this case is the time it takes for the network to stabilise. Feedback time is not only essential to bio-inspired intrusion response methods, but can also be used in network applications where a stable network reading is required, e.g. security monitoring and motion tracking.Interestingly, we found that the network feedback time does not vary greatly between the different types of networks, but it was calculated to be less than half of what Schaust and Szczerbicka used in their algorith

    Artificial immune system for the Internet

    Get PDF
    We investigate the usability of the Artificial Immune Systems (AIS) approach for solving selected problems in computer networks. Artificial immune systems are created by using the concepts and algorithms inspired by the theory of how the Human Immune System (HIS) works. We consider two applications: detection of routing misbehavior in mobile ad hoc networks, and email spam filtering. In mobile ad hoc networks the multi-hop connectivity is provided by the collaboration of independent nodes. The nodes follow a common protocol in order to build their routing tables and forward the packets of other nodes. As there is no central control, some nodes may defect to follow the common protocol, which would have a negative impact on the overall connectivity in the network. We build an AIS for the detection of routing misbehavior by directly mapping the standard concepts and algorithms used for explaining how the HIS works. The implementation and evaluation in a simulator shows that the AIS mimics well most of the effects observed in the HIS, e.g. the faster secondary reaction to the already encountered misbehavior. However, its effectiveness and practical usability are very constrained, because some particularities of the problem cannot be accounted for by the approach, and because of the computational constrains (reported also in AIS literature) of the used negative selection algorithm. For the spam filtering problem, we apply the AIS concepts and algorithms much more selectively and in a less standard way, and we obtain much better results. We build the AIS for antispam on top of a standard technique for digest-based collaborative email spam filtering. We notice un advantageous and underemphasized technological difference between AISs and the HIS, and we exploit this difference to incorporate the negative selection in an innovative and computationally efficient way. We also improve the representation of the email digests used by the standard collaborative spam filtering scheme. We show that this new representation and the negative selection, when used together, improve significantly the filtering performance of the standard scheme on top of which we build our AIS. Our complete AIS for antispam integrates various innate and adaptive AIS mechanisms, including the mentioned specific use of the negative selection and the use of innate signalling mechanisms (PAMP and danger signals). In this way the AIS takes into account users' profiles, implicit or explicit feedback from the users, and the bulkiness of spam. We show by simulations that the overall AIS is very good both in detecting spam and in avoiding misdetection of good emails. Interestingly, both the innate and adaptive mechanisms prove to be crucial for achieving the good overall performance. We develop and test (within a simulator) our AIS for collaborative spam filtering in the case of email communications. The solution however seems to be well applicable to other types of Internet communications: Internet telephony, chat/sms, forum, news, blog, or web. In all these cases, the aim is to allow the wanted communications (content) and prevent those unwanted from reaching the end users and occupying their time and communication resources. The filtering problems, faced or likely to be faced in the near future by these applications, have or are likely to have the settings similar to those that we have in the email case: need for openness to unknown senders (creators of content, initiators of the communication), bulkiness in receiving spam (many recipients are usually affected by the same spam content), tolerance of the system to a small damage (to small amounts of unfiltered spam), possibility to implicitly or explicitly and in a cheap way obtain a feedback from the recipients about the damage (about spam that they receive), need for strong tolerance to wanted (non-spam) content. Our experiments with the email spam filtering show that our AIS, i.e. the way how we build it, is well fitted to such problem settings

    Fault detection algorithm for telephone systems using the danger theory

    Get PDF
    Orientador: Fernando Jose Von ZubenDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Essa dissertação apresenta um algoritmo de detecção de falhas composto de múltiplos módulos interconectados e operando de acordo com o paradigma suportado pela Teoria do Perigo em imunologia. Esse algoritmo busca atingir características significativas que um sistema de detecção de falhas deve expressar ao monitorar um sistema telefônico. Essas características seriam basicamente a adaptabilidade, devido à forte variação que esse sistema pode ter em seus parâmetros ao longo do tempo, e a diminuição no número de falsos positivos que podem ser gerados ao se classificar como falha toda anormalidade encontrada. Cenários simulados foram concebidos para validar a proposta, sendo que os resultados obtidos foram analisados e comparados com propostas alternativasAbstract: Abstract This thesis presents a fault detection algorithm composed of multiple interconnected modules, and operating according to the paradigm supported by the Danger Theory in immunology. This algorithm attempts to achieve significant features that a fault detection system is supposed to express when monitoring a telephone system. These features would basically be adaptability, due to the strong variation that operational conditions may exhibit over time, and the decrease in the number of false positives, which can be generated when any abnormal behavior is erroneously classified as being a fault. Simulated scenarios have been conceived to validate the proposal, and the obtained results are then analyzed and compared with alternative proposalsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    An investigation to cybersecurity countermeasures for global internet infrastructure.

    Get PDF
    The Internet is comprised of entities. These entities are called Autonomous Systems (ASes). Each one of these ASes is managed by an Internet Service Provider (ISP). In return each group of ISPs are managed by Regional Internet Registry (RIR). Finally, all RIRs are managed by Internet Assigned Number Authority (IANA). The different ASes are globally connected via the inter-domain protocol that is Border Gateway Protocol (BGP). BGP was designed to be scalable to handle the massive Internet traffic; however, it has been studied for improvements for its lack of security. Furthermore, it relies on Transmission Control Protocol (TCP) which, in return, makes BGP vulnerable to whatever attacks TCP is vulnerable to. Thus, many researchers have worked on developing proposals for improving BGP security, due to the fact that it is the only external protocol connecting the ASes around the globe. In this thesis, different security proposals are reviewed and discussed for their merits and drawbacks. With the aid of Artificial Immune Systems (AIS), the research reported in this thesis addresses Man-In-The-Middle (MITM) and message replay attacks. Other attacks are discussed regarding the benefits of using AIS to support BGP; however, the focus is on MITM and message replay attacks. This thesis reports on the evaluation of a novel Hybrid AIS model compared with existing methods of securing BGP such as S-BGP and BGPsec as well as the traditional Negative Selection AIS algorithm. The results demonstrate improved precision of detecting attacks for the Hybrid AIS model compared with the Negative Selection AIS. Higher precision was achieved with S-BGP and BGPsec, however, at the cost of higher end-to-end delays. The high precision shown in the collected results for S-BGP and BGPsec is largely due to S-BGP encrypting the data by using public key infrastructure, while BGPsec utilises IPsec security suit to encapsulate the exchanged BGP packets. Therefore, neither of the two methods (S-BGP and BGPsec) are considered as Intrusion Detection Systems (IDS). Furthermore, S-BGP and BGPsec lack in the decision making and require administrative attention to mitigate an intrusion or cyberattack. While on the other hand, the suggested Hybrid AIS can remap the network topology depending on the need and optimise the path to the destination
    corecore