3,906 research outputs found

    Homomorphic Data Isolation for Hardware Trojan Protection

    Full text link
    The interest in homomorphic encryption/decryption is increasing due to its excellent security properties and operating facilities. It allows operating on data without revealing its content. In this work, we suggest using homomorphism for Hardware Trojan protection. We implement two partial homomorphic designs based on ElGamal encryption/decryption scheme. The first design is a multiplicative homomorphic, whereas the second one is an additive homomorphic. We implement the proposed designs on a low-cost Xilinx Spartan-6 FPGA. Area utilization, delay, and power consumption are reported for both designs. Furthermore, we introduce a dual-circuit design that combines the two earlier designs using resource sharing in order to have minimum area cost. Experimental results show that our dual-circuit design saves 35% of the logic resources compared to a regular design without resource sharing. The saving in power consumption is 20%, whereas the number of cycles needed remains almost the sam

    Producing Random Bits with Delay-Line Based Ring Oscillators

    Get PDF
    One of the sources of randomness for a random bit generator (RBG) is jitter present in rectangular signals produced by ring oscillators (ROs). This paper presents a novel approach for the design of delays used in these oscillators. We suggest using delay elements made on carry4 primitives instead of series of inverters or latches considered in the literature. It enables the construction of many high frequency ring oscillators with different nominal frequencies in the same field programmable gate array (FPGA). To assess the unpredictability of bits produced by RO-based RBG, the restarts mechanism, proposed in earlier papers, was used. The output sequences pass all NIST 800-22 statistical tests for smaller number of ring oscillators than the constructions described in the literature. Due to the number of ROs with different nominal frequencies and the method of construction of carry4 primitives, it is expected that the proposed RBG is more robust to cryptographic attacks than RBGs using inverters or latches as delay element

    Time- and Amplitude-Controlled Power Noise Generator against SPA Attacks for FPGA-Based IoT Devices

    Get PDF
    Power noise generation for masking power traces is a powerful countermeasure against Simple Power Analysis (SPA), and it has also been used against Differential Power Analysis (DPA) or Correlation Power Analysis (CPA) in the case of cryptographic circuits. This technique makes use of power consumption generators as basic modules, which are usually based on ring oscillators when implemented on FPGAs. These modules can be used to generate power noise and to also extract digital signatures through the power side channel for Intellectual Property (IP) protection purposes. In this paper, a new power consumption generator, named Xored High Consuming Module (XHCM), is proposed. XHCM improves, when compared to others proposals in the literature, the amount of current consumption per LUT when implemented on FPGAs. Experimental results show that these modules can achieve current increments in the range from 2.4 mA (with only 16 LUTs on Artix-7 devices with a power consumption density of 0.75 mW/LUT when using a single HCM) to 11.1 mA (with 67 LUTs when using 8 XHCMs, with a power consumption density of 0.83 mW/LUT). Moreover, a version controlled by Pulse-Width Modulation (PWM) has been developed, named PWM-XHCM, which is, as XHCM, suitable for power watermarking. In order to build countermeasures against SPA attacks, a multi-level XHCM (ML-XHCM) is also presented, which is capable of generating different power consumption levels with minimal area overhead (27 six-input LUTS for generating 16 different amplitude levels on Artix-7 devices). Finally, a randomized version, named RML-XHCM, has also been developed using two True Random Number Generators (TRNGs) to generate current consumption peaks with random amplitudes at random times. RML-XHCM requires less than 150 LUTs on Artix-7 devices. Taking into account these characteristics, two main contributions have been carried out in this article: first, XHCM and PWM-XHCM provide an efficient power consumption generator for extracting digital signatures through the power side channel, and on the other hand, ML-XHCM and RML-XHCM are powerful tools for the protection of processing units against SPA attacks in IoT devices implemented on FPGAs.Junta de AndaluciaEuropean Commission B-TIC-588-UGR2

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    D2.1 - Report on Selected TRNG and PUF Principles

    Get PDF
    This report represents the final version of Deliverable 2.1 of the HECTOR work package WP2. It is a result of discussions and work on Task 2.1 of all HECTOR partners involved in WP2. The aim of the Deliverable 2.1 is to select principles of random number generators (RNGs) and physical unclonable functions (PUFs) that fulfill strict technology, design and security criteria. For example, the selected RNGs must be suitable for implementation in logic devices according to the German AIS20/31 standard. Correspondingly, the selected PUFs must be suitable for applying similar security approach. A standard PUF evaluation approach does not exist, yet, but it should be proposed in the framework of the project. Selected RNGs and PUFs should be then thoroughly evaluated from the point of view of security and the most suitable principles should be implemented in logic devices, such as Field Programmable Logic Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) during the next phases of the project

    Digital Design of New Chaotic Ciphers for Ethernet Traffic

    Get PDF
    Durante los últimos años, ha habido un gran desarrollo en el campo de la criptografía, y muchos algoritmos de encriptado así como otras funciones criptográficas han sido propuestos.Sin embargo, a pesar de este desarrollo, hoy en día todavía existe un gran interés en crear nuevas primitivas criptográficas o mejorar las ya existentes. Algunas de las razones son las siguientes:• Primero, debido el desarrollo de las tecnologías de la comunicación, la cantidad de información que se transmite está constantemente incrementándose. En este contexto, existen numerosas aplicaciones que requieren encriptar una gran cantidad de datos en tiempo real o en un intervalo de tiempo muy reducido. Un ejemplo de ello puede ser el encriptado de videos de alta resolución en tiempo real. Desafortunadamente, la mayoría de los algoritmos de encriptado usados hoy en día no son capaces de encriptar una gran cantidad de datos a alta velocidad mientras mantienen altos estándares de seguridad.• Debido al gran aumento de la potencia de cálculo de los ordenadores, muchos algoritmos que tradicionalmente se consideraban seguros, actualmente pueden ser atacados por métodos de “fuerza bruta” en una cantidad de tiempo razonable. Por ejemplo, cuando el algoritmo de encriptado DES (Data Encryption Standard) fue lanzado por primera vez, el tamaño de la clave era sólo de 56 bits mientras que, hoy en día, el NIST (National Institute of Standards and Technology) recomienda que los algoritmos de encriptado simétricos tengan una clave de, al menos, 112 bits. Por otro lado, actualmente se está investigando y logrando avances significativos en el campo de la computación cuántica y se espera que, en el futuro, se desarrollen ordenadores cuánticos a gran escala. De ser así, se ha demostrado que algunos algoritmos que se usan actualmente como el RSA (Rivest Shamir Adleman) podrían ser atacados con éxito.• Junto al desarrollo en el campo de la criptografía, también ha habido un gran desarrollo en el campo del criptoanálisis. Por tanto, se están encontrando nuevas vulnerabilidades y proponiendo nuevos ataques constantemente. Por consiguiente, es necesario buscar nuevos algoritmos que sean robustos frente a todos los ataques conocidos para sustituir a los algoritmos en los que se han encontrado vulnerabilidades. En este aspecto, cabe destacar que algunos algoritmos como el RSA y ElGamal están basados en la suposición de que algunos problemas como la factorización del producto de dos números primos o el cálculo de logaritmos discretos son difíciles de resolver. Sin embargo, no se ha descartado que, en el futuro, se puedan desarrollar algoritmos que resuelvan estos problemas de manera rápida (en tiempo polinomial).• Idealmente, las claves usadas para encriptar los datos deberían ser generadas de manera aleatoria para ser completamente impredecibles. Dado que las secuencias generadas por generadores pseudoaleatorios, PRNGs (Pseudo Random Number Generators) son predecibles, son potencialmente vulnerables al criptoanálisis. Por tanto, las claves suelen ser generadas usando generadores de números aleatorios verdaderos, TRNGs (True Random Number Generators). Desafortunadamente, los TRNGs normalmente generan los bits a menor velocidad que los PRNGs y, además, las secuencias generadas suelen tener peores propiedades estadísticas, lo que hace necesario que pasen por una etapa de post-procesado. El usar un TRNG de baja calidad para generar claves, puede comprometer la seguridad de todo el sistema de encriptado, como ya ha ocurrido en algunas ocasiones. Por tanto, el diseño de nuevos TRNGs con buenas propiedades estadísticas es un tema de gran interés.En resumen, es claro que existen numerosas líneas de investigación en el ámbito de la criptografía de gran importancia. Dado que el campo de la criptografía es muy amplio, esta tesis se ha centra en tres líneas de investigación: el diseño de nuevos TRNGs, el diseño de nuevos cifradores de flujo caóticos rápidos y seguros y, finalmente, la implementación de nuevos criptosistemas para comunicaciones ópticas Gigabit Ethernet a velocidades de 1 Gbps y 10 Gbps. Dichos criptosistemas han estado basados en los algoritmos caóticos propuestos, pero se han adaptado para poder realizar el encriptado en la capa física, manteniendo el formato de la codificación. De esta forma, se ha logrado que estos sistemas sean capaces no sólo de encriptar los datos sino que, además, un atacante no pueda saber si se está produciendo una comunicación o no. Los principales aspectos cubiertos en esta tesis son los siguientes:• Estudio del estado del arte, incluyendo los algoritmos de encriptado que se usan actualmente. En esta parte se analizan los principales problemas que presentan los algoritmos de encriptado standard actuales y qué soluciones han sido propuestas. Este estudio es necesario para poder diseñar nuevos algoritmos que resuelvan estos problemas.• Propuesta de nuevos TRNGs adecuados para la generación de claves. Se exploran dos diferentes posibilidades: el uso del ruido generado por un acelerómetro MEMS (Microelectromechanical Systems) y el ruido generado por DNOs (Digital Nonlinear Oscillators). Ambos casos se analizan en detalle realizando varios análisis estadísticos a secuencias obtenidas a distintas frecuencias de muestreo. También se propone y se implementa un algoritmo de post-procesado simple para mejorar la aleatoriedad de las secuencias generadas. Finalmente, se discute la posibilidad de usar estos TRNGs como generadores de claves. • Se proponen nuevos algoritmos de encriptado que son rápidos, seguros y que pueden implementarse usando una cantidad reducida de recursos. De entre todas las posibilidades, esta tesis se centra en los sistemas caóticos ya que, gracias a sus propiedades intrínsecas como la ergodicidad o su comportamiento similar al comportamiento aleatorio, pueden ser una buena alternativa a los sistemas de encriptado clásicos. Para superar los problemas que surgen cuando estos sistemas son digitalizados, se proponen y estudian diversas estrategias: usar un sistema de multi-encriptado, cambiar los parámetros de control de los sistemas caóticos y perturbar las órbitas caóticas.• Se implementan los algoritmos propuestos. Para ello, se usa una FPGA Virtex 7. Las distintas implementaciones son analizadas y comparadas, teniendo en cuenta diversos aspectos tales como el consumo de potencia, uso de área, velocidad de encriptado y nivel de seguridad obtenido. Uno de estos diseños, se elige para ser implementado en un ASIC (Application Specific Integrate Circuit) usando una tecnología de 0,18 um. En cualquier caso, las soluciones propuestas pueden ser también implementadas en otras plataformas y otras tecnologías.• Finalmente, los algoritmos propuestos se adaptan y aplican a comunicaciones ópticas Gigabit Ethernet. En particular, se implementan criptosistemas que realizan el encriptado al nivel de la capa física para velocidades de 1 Gbps y 10 Gbps. Para realizar el encriptado en la capa física, los algoritmos propuestos en las secciones anteriores se adaptan para que preserven el formato de la codificación, 8b/10b en el caso de 1 Gb Ethernet y 64b/10b en el caso de 10 Gb Ethernet. En ambos casos, los criptosistemas se implementan en una FPGA Virtex 7 y se diseña un set experimental, que incluye dos módulos SFP (Small Form-factor Pluggable) capaces de transmitir a una velocidad de hasta 10.3125 Gbps sobre una fibra multimodo de 850 nm. Con este set experimental, se comprueba que los sistemas de encriptado funcionan correctamente y de manera síncrona. Además, se comprueba que el encriptado es bueno (pasa todos los test de seguridad) y que el patrón del tráfico de datos está oculto.<br /

    Design and Evaluation of FPGA-based Hybrid Physically Unclonable Functions

    Get PDF
    A Physically Unclonable Function (PUF) is a new and promising approach to provide security for physical systems and to address the problems associated with traditional approaches. One of the most important performance metrics of a PUF is the randomness of its generated response, which is presented via uniqueness, uniformity, and bit-aliasing. In this study, we implement three known PUF schemes on an FPGA platform, namely SR Latch PUF, Basic RO PUF, and Anderson PUF. We then perform a thorough statistical analysis on their performance. In addition, we propose the idea of the Hybrid PUF structure in which two (or more) sources of randomness are combined in a way to improve randomness. We investigate two methods in combining the sources of randomness and we show that the second one improves the randomness of the response, significantly. For example, in the case of combining the Basic RO PUF and the Anderson PUF, the Hybrid PUF uniqueness is increased nearly 8%, without any pre-processing or post-processing tasks required. Two main categories of applications for PUFs have been introduced and analyzed: authentication and secret key generation. In this study, we introduce another important application for PUFs. In fact, we develop a secret sharing scheme using a PUF to increase the information rate and provide cheater detection capability for the system. We show that, using the proposed method, the information rate of the secret sharing scheme will improve significantly
    corecore