184 research outputs found

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    A nonmonotone GRASP

    Get PDF
    A greedy randomized adaptive search procedure (GRASP) is an itera- tive multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the con- struction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solu- tion. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut prob- lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP)

    The Traveling Tournament Problem

    Get PDF
    In this thesis we study the Traveling Tournament problem (TTP) which asks to generate a feasible schedule for a sports league such that the total travel distance incurred by all teams throughout the season is minimized. Throughout our three technical chapters a wide range of topics connected to the TTP are explored. We begin by considering the computational complexity of the problem. Despite existing results on the NP-hardness of TTP, the question of whether or not TTP is also APX-hard was an unexplored area in the literature. We prove the affirmative by constructing an L-reduction from (1,2)-TSP to TTP. To reach the desired result, we show that given an instance of TSP with a solution of cost K, we can construct an instance of TTP with a solution of cost at most 20m(m+1)cK where m = c(n-1)+1, n is the number of teams, and c > 5, c ∈ ℤ is fixed. On the other hand, we show that given a feasible schedule to the constructed TTP instance, we can recover a tour on the original TSP instance. The next chapter delves into a popular variation of the problem, the mirrored TTP, which has the added stipulation that the first and second half of the schedule have the same order of match-ups. Building upon previous techniques, we present an approximation algorithm for constructing a mirrored double round-robin schedule under the constraint that the number of consecutive home or away games is at most two. We achieve an approximation ratio on the order of 3/2 + O(1)/n. Lastly, we present a survey of local search methods for solving TTP and discuss the performance of these techniques on benchmark instances

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Problemas de asignación de recursos humanos a través del problema de asignación multidimensional

    Get PDF
    149 páginas. Doctorado en Optimización.El problema de asignación de personal aparece en diversas industrias. La asignación eficiente de personal a trabajos, proyectos, herramientas, horarios, entre otros, tiene un impacto directo en términos monetarios para el negocio. El problema de asignación multidimensional (PAM) es la extensión natural del problema de asignación y puede ser utilizado en aplicaciones donde se requiere la asignación de personal. El caso más estudiado de PAM es el problema de asignación en tres dimensiones, sin embargo en años recientes han sido propuestas algunas heurísticas de búsqueda local y algoritmos meméticos para el caso general. En este trabajo de tesis se realiza un estudio profundo de PAM comenzando con un resumen del estado del arte de algoritmos, heurísticas y metaheurísticas para su resolución. Se describen algunos algoritmos y se propone uno nuevo que resuelve instancias de tamaño medio para PAM. Se propone la generalización de las conocidas heurísticas de variación de dimensión como una búsqueda local generalizada que proporciona un nuevo estado del arte de búsquedas locales para PAM. Adicionalmente, se propone un algoritmo memético con una estructura sencilla pero efectiva y que es competitivo con el mejor algoritmo memético conocido para PAM. Finalmente, se presenta un caso particular de problema de asignación de personal: el Problema de Asignación de Horarios (PAH). El PAH considera la asignación de personal a uno, dos o más conjuntos de objetos, por ejemplo puede ser requerida la asignación de profesores a cursos a periodos de tiempo a salones, para determinados grupos de estudiantes. Primero, se presenta el PAH así como una breve descripción de su estado del arte. Luego, se propone una nueva forma de modelar este problema a través de la resolución de PAM y se aplica sobre el PAH en la Universidad Autónoma Metropolitana, unidad Azcapotzalco (UAM-A). Se describen las consideraciones particulares del PAH en la UAM-A y proponemos una nueva solución para éste. Nuestra solución se basa en la resolución de múltiples PA3 a través de los algoritmos y heurísticas propuestos.Personnel assignment problems appear in several industries. The e cient assignment of personnel to jobs, projects, tools, time slots, etcetera, has a direct impact in terms monetary for the business. The Multidimensional Assignment Problem (MAP) is a natural extension of the well-known assignment problem and can be used on applications where the assignment of personnel is required. The most studied case of the MAP is the three dimensional assignment problem, though in recent years some local search heuristics and memetic algorithms have been proposed for the general case. Let X1; : : : ;Xs be a collection of s 3 disjoint sets, consider all combinations that belong to the Cartesian product X = X1 Xs such that each vector x 2 X, where x = (x1; : : : ; xs) with xi 2 Xi 8 1 i s, has associated a weight w(x). A feasible assignment is a collection A = (x1; : : : ; xn) of n vectors if xi k 6= xj k for each i 6= j and 1 k s. The weight of an assignment A is given by w(A) = Pn i=1 w(xi). A MAP in s dimensions is denoted as sAP. The objective of sAP is to nd an assignment of minimal weight. In this thesis we make an in depth study of MAP beginning with the state-ofthe- art algorithms, heuristics, and metaheuristics for solving it. We describe some algorithms and we propose a new one for solving optimally medium size instances of MAP. We propose the generalization of the called dimensionwise variation heuristics for MAP and a new generalized local search heuristic that provides new state-of-theart local searches for MAP. We also propose a new simple memetic algorithm that is competitive against the state-of-the-art memetic algorithm for MAP. In the last part of this thesis, we study a particular case of personnel assignment problem: the School Timetabling Problem (STP). The STP considers the assignment of personnel to other two or more sets, for example the assignment of professors to courses to time slots to rooms can be required. First, we provide a brief description of the state-of-the-art for STP. Then, we introduce a new approach for modeling this problem through the resolution of several MAP and we apply our solution on a real life case of study: STP at the Universidad Autonoma Metropolitana campus Azcapotzalco (UAM-A). We provide the particular aspects for STP at UAM-A and we provide a new solution for this problem. Our approach is based on solving several 3AP considering the introduced model and our proposed techniques.Consejo Mexiquense de Ciencia y Tecnología (Comecyt).Consejo Nacional de Ciencia y Tecnología (México
    corecore